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Abstract

In this work we consider the Linear BESS model at the LHC. This model can be seen as an adequated 
benchmark for exploring the phenomenological consequences of a composite Higgs sector since its particle 
content is the one we would expect in a realistic low energy description of modern (Technicolor inspired) 
dynamical electroweak symmetry breaking scenarios. Additionally, the model exhibits the property of de-
coupling, producing a good ultraviolet behavior. We focus on the limits on the masses of the new heavy 
vector particles imposed by direct resonance searches, recent measurements of the decay of the Higgs boson 
into two photons and the electroweak precision tests. We found that the model is capable to accommodate 
the existing experimental constrains provided that the spin-1 resonances are heavier than 3.4 TeV.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Despite its enormous experimental success, the Standard Model (SM) offers some aspects 
which are not completely satisfactory from the theoretical point of view. One of them is that 
not all the interactions present in the model have their origin in the gauge principle. Indeed, the 
scalar potential and the Yukawa interactions, which are central parts of the model, are not dic-
tated by a local symmetry. In fact, it may be argued that this is the origin of crucial problems 
of the SM like the Naturalness Problem. A very elegant solution to this criticism is to assume 
that the Higgs sector and the Yukawa interactions have their origin in a strongly interacting 
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gauge theory. A paradigmatic example of this framework is (extended) Technicolor, specially its 
modern incarnation: Walking Technicolor. When working with strongly interacting theories, it is 
usually convenient to consider effective approaches which include only the (composite) degrees 
of freedom which are relevant in the low energy limit. A very well known effective approach to 
the Dynamical Electroweak Symmetry Breaking paradigm is the BESS model [1,2]. Originally, 
the BESS model (as the old Technicolor idea) was Higgsless. However, the Higgs boson was 
discovered and, consequently, the original version is ruled out. Fortunately, toward the end of 
the 1990’s, a version of the BESS model which included scalar fields was formulated. This is 
the so called Linear BESS (LBESS) model [3,4]. This model is of special interest because its 
particle content (two isotriplet spin-1 resonances, a Higgs-like scalar and two heavy scalars) is 
the one we would expect in a realistic low energy description of a new strong sector responsible 
for the electroweak symmetry breaking [5,6]. Additionally, the LBESS model is renormalizable 
and it possesses the property of decoupling [3,4], i.e., for a large New Physics scale the SM is 
exactly recovered. This is a very important feature, given the current lack of unequivocal signals 
beyond SM at the LHC, which indicates that the scale of New Physics (if any) may be larger 
than originally expected. Indeed, the LBESS model may provide a useful interpolation in the 
phenomenological studies of two kinds of Dynamical Electroweak Symmetry Breaking scenar-
ios: one characterized by a low scale of a few TeV (like Walking Technicolor) and a second one 
where the Higgs boson appears as a pseudo-Nambu-Goldstone boson (the so called Composite 
Higgs models) and the typical New Physics scale is of the order of 10 TeV. In summary, the 
LBESS model helps us to study the phenomenological implications of scenarios which elegantly 
explain the dynamics underlying the electroweak symmetry breaking process and solve the Nat-
uralness problem, and simultaneously promises to be consistent with the current experimental 
situation.

In this work, we study the phenomenology of this model at the LHC. We focus on four kinds 
of measurements in order to constrain the parameter space of the model: the Higgs decay into 
a pair of photons, resonance searches in the dijet and the dilepton spectra, and the precision 
electroweak tests.

The paper is organized as follows. In section 2 we briefly recall the main features of the 
LBESS model. In section 3, we describe our simulations and results, while in section 4 we state 
our conclusions. For the sake of completeness we add a longer description of the model in an 
appendix.

2. Recalling the Linear BESS model

The basic point of view behind the BESS model attributes the origin of the electroweak scale 
to a new strongly interacting sector in analogy to the dynamical origin of �QCD in QCD. The 
hypothetical new strong interaction is supposed to be confining and at low energy it manifests 
itself through composite states. It is expected that the lightest composite particles be scalars and 
vector resonances. In this section, we provide a general description of the main features of the 
model. More details can be found in the Appendix and in the original literature [1–4].

Following the Hidden Local Symmetry (HLS) formalism, the composite vectors can be in-
troduced as gauge fields of effective gauge groups. Consequently, in the LBESS model, we start 
with an extended gauge symmetry given by SU(2)L⊗U(1) ⊗SU(2)′L ⊗SU(2)′R . The symmetry 
is broken down to U(1)em in two steps as shown in the following scheme
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SU(2)L ⊗ U(1) ⊗ SU(2)′L ⊗ SU(2)′R↓ u

SU(2)weak ⊗ U(1)Y
↓ v

U(1)em

where u is the scale characterizing the breaking of the HLS and v is the usual electroweak scale. 
All the symmetry breaking processes are assumed to be produced by the vacuum expectation 
values of (composite) scalar fields 〈ρU 〉 = v and 〈ρL〉 = 〈ρR〉 = u. The breaking down of the 
symmetries produces non-diagonal mass matrices in the gauge and scalar sectors. The physical 
spectrum (composed by the mass eigenstates) consists on the following fields:

1. Two heavy vector triplet: (V +
L , V 0

L, V −
L ) and (V +

R , V 0
R, V −

R ). These vector bosons are mainly 
the gauge bosons of SU(2)′L ⊗ SU(2)′R with a small mixing with the gauge field of 
SU(2)L ⊗ U(1). Naturally, they have masses of the order of g2u where g2 is the coupling 
constant associated with the groups SU(2)′L and SU(2)′R . Because the standard fermions 
are assumed to be charged only under SU(2)L (left-handed) and U(1) (left-handed and 
right-handed), the heavy vectors V +

L , V 0
L, V −

L and V 0
R couple to the standard fermions with 

coupling constants proportional to the (small) mixing angles. Notice that V +
R and V −

R do not 
couple to the standard fermions.

2. The standard electroweak gauge bosons: W±, Z, A.
3. Two heavy scalars: HL, HR . These scalars are supposed to have masses of the order of the u

scale. They correspond mainly to the original ρL and ρR fields, respectively, with and small 
mixing with ρU . Originally, the standard fermions can form Yukawa terms only with ρU due 
to the quantum numbers assigned to the fermions. This means that HL and HR coupling to 
the standard fermions is proportional to small mixing angles.

4. The standard-like Higgs boson: H which correspond mainly to the original ρU field.

The model has six free parameters, namely: the masses of the heavy vectors (MVL
and MVR

), the 
masses of the heavy scalar (MHL

and MHR
), the scale of the HLS breakdown (u) and a parameter 

governing a quartic interaction term between scalars (f ).
In what follows, we will assume that u, MHL

and MHR
are of the order of 3 TeV while 

the masses of the heavy vectors will be taken in the range of 2 to 4 TeV. The assumption of 
very massive scalars beside a light Higgs-like boson is well justified in this particular model (see 
equation (11) in the Appendix) and has also been found to be self-consistent in a similar effective 
model previously studied by our group [6].

3. Results

3.1. H → γ γ

The first process we consider is the Higgs boson decay into two photons. This is a 1-loop 
process which includes the contribution of the new charged states: in our case, the new charged 
vector bosons V ±

L and V ±
R . For heavy vector bosons with moderate coupling to the Higgs boson, 

it is expected that this process does not deviate significantly from the SM [6,7]. This is exactly 
our case: the new vector bosons, as described above, are considered in the 2–4 TeV mass range. 
On the other hand, the coupling between the Higgs and V ±

R originates from the mixing of the 
different scalar fields of the model. This mixing (and thus the referred coupling) is controlled 
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Fig. 1. Predicted values of Rγγ (continuous line), as a function of the f parameter, compared to the lower limit of the 
experimental value at 1σ (dashed line). The region above the dashed line is allowed.

by the f parameter of the scalar potential, which has to be positive. In fact, we found that this 
parameter is the only one sensible to the current data for this process. It is useful to define the 
ratio

Rγγ = σ (pp → H)�(H → γ γ )

σ (pp → H)SM �(H → γ γ )SM
= �(H → γ γ )

� (H → γ γ )SM
(1)

in order to quantify the departure of the model from the SM’s predictions. The second equality in 
(1) is due to the fact that the Higgs production mechanism is not modified by the LBESS model. 
The most recent measurement of Rγγ has been done by ATLAS and results to be Rγγ = 0.99 ±
0.14 [8]. In Fig. 1 we show the values of Rγγ predicted by the LBESS model as a function of the 
f parameter (continuous line). For comparison purpose, we also include the lowest limit (at 1σ ) 
of the experimental value. We can see that the model is in good agreement with experiment for 
f ∈ [0, 0.6].

3.2. Searching for resonances

We also consider the direct searches of resonances in the dijet and the dilepton channels. 
In the kinematic setup we have adopted (with very heavy non-standard scalars) only the spin-1 
particle V ±

L , V 0
L (assumed to be degenerated) and V 0

R can be produced in the s-channel by quark–
anti-quark annihilation. At this point, we recall that the fields V ±

R do not couple to the standard 
fermions. On the other hand, in the construction we are considering, VR cannot be heavier than 
VL (see equation (16)). Consequently, the model predicts that two resonances should appear in 
the dijet and the dilepton spectra with the lighter one corresponding to V 0

R.

3.2.1. Methodology
We implemented the model in CalcHEP [9] using the LanHEP package [10,11] and generated 

events for dijet and dilepton production at the 13 TeV LHC, considering only the contribution of 
the new particles, without background, for several values of MVL

and MVR
. As an example, in 

Fig. 2 we show two dijet spectra obtained in our simulations. In order to put constrains on the 
model parameter space, we count the events associated to the peaks, we compute a cross section 
for each resonance and we compare it with the experimental upper limits for dijet or dilepton 
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Fig. 2. Examples of resonances in the dijet invariant mass spectrum. In these simulations has been taken into account 
only the contribution of the non-standard sector of the LBESS model without background.

Fig. 3. Constrains to the (MVL
, MVR

) space by direct resonance searches in the dijets spectrum at the 13 TeV LHC. The 
region filled with black circles is the allowed one.

resonance cross-sections and we only accept a pair of MVL
and MVR

values if the cross-section 
associated to each resonance is smaller than the experimental limit.

3.2.2. Dijets
In the case of dijets, we use the limits provided by the ATLAS Collaboration based on data 

taken at 
√

s = 13 TeV [12]. Our results are shown in Fig. 3. The region filled with black circles 
is the accepted zone, that is, the set of points (MVL

, MVR
) which produce both resonances with a 

cross sections below the experimental limit. Notice that in the quasi-degenerated case, resonances 
with masses as light as 2000 or 2500 GeV are allowed. This is in agreement with previous studies 
on vector resonances [6,7,13].

3.2.3. Dileptons
More stringent constrains are obtained in the dilepton channel. In this case, we use the limits 

provided by the ATLAS Collaboration at 
√

s = 13 TeV and 36.1 fb−1 [14]. Again, the region 
filled by black circles is the accepted zone (Fig. 4). In this case, only resonances heavier than 
3.4 TeV are allowed. This improvement on the constrains is mainly due to the fact that the 
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Fig. 4. Constrains to the (MVL
, MVR

) space by direct resonance searches in the dilepton spectrum at the 13 TeV LHC. 
The region filled with black circles is the allowed one.

dilepton production is a cleaner channel than dijet production at a hadron collider and the higher 
luminosity of the dilepton set of data.

3.3. Precision tests

An indirect way to constrain extensions of the SM is to consider the contribution the 
new Physics provides to the electroweak radiative corrections. These effects are, in general, 
parametrized by the well known Peskin–Takeuchi parameters: S, T and U . An equivalent set 
of parameters, named ε1, ε2 and ε3, is also used in the literature [15] and is related to the former 
one by the following expressions:

ε1 = αT

ε2 = − α

4s2
Z

U (2)

ε3 = α

4s2
Z

S

where α is the electromagnetic coupling constant at the scale of MZ and s2
Z is the sin2 θW in the 

MS scheme at the same scale. In Ref. [4], the following tree level expressions are provided for 
the εi parameters in the context of the LBESS model:

ε1 = −rs2
ϕ

c4
θ + s4

θ

c4
θ

ε2 = −rs2
ϕ (3)

ε3 = − rs2
ϕ

c2
θ

where cθ = cos θW , sθ = sin θW , while r and sϕ can be expressed in terms of MVL
and MVR

as 
shown in the Appendix.
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Fig. 5. Constrains to the (MVL
,MVR

) space by the electroweak precision tests. The black region is the allowed one.

We use the values S = 0.05 ± 0.10, T = 0.08 ± 0.12 and U = 0.02 ± 0.10 found in [16], 
and the expressions above to select the combination of MVL

and MVR
which reproduce simulta-

neously the experimental values of ε1, ε2 and ε3 (using equations (3)) within 1σ . The result is 
shown in Fig. 5. The black region is the zone allowed by the precision variables. As we can see, 
the restrictions are not as stringent as the ones obtained using dilepton data.

4. Conclusions

We have studied the LBESS model in the context of recent data obtained at the 13 TeV LHC 
in the regime where the non-standard scalars are heavy with masses of the order of 3 TeV. We 
found that the value the f parameter of the scalar potential has to belong to the interval [0, 0.6]. 
Additionally, we have found that the model is consistent with current experimental data provided 
that the spin-1 resonances are heavier than 3.4 TeV. This limit is higher than the ones obtained 
in previous studies of models with vector resonances. The main restrictions come from recent 
searches of resonances in the dilepton spectrum.
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Appendix

The LBESS model is based on the global symmetry SU(2)L ⊗ SU(2)R ⊗ SU(2)′L ⊗ SU(2)′R
from which the subgroup SU(2)L ⊗ U(1) ⊗ SU(2)′L ⊗ SU(2)′R is made local. The matter con-
tent consists of three scalars (�U, �L and �R) which we are supposed to be composite and the 
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Table 1
Representations of the scalar fields under the full global group.

Fields SU(2)L SU(2)R SU(2)′
L

SU(2)R

�U 2 2̄ 1 1
�L 2 1 2 1
�R 1 2 1 2

Table 2
Representations of the fermion fields under the full global group.

Fermion SU(2)L SU(2)R SU(2)′
L

SU(2)′
R

�iL 2 1 1 1
�iR 1 2 1 1

Table 3
Representations of the fermion fields under the full gauge group. Here Y ′ = B − L with B and L being the baryon and 
lepton numbers.

Fermion SU(2)L U(1) SU(2)′
L

SU(2)′
R

�iL 2 Y ′ 1 1
�iR 1 Y ′ 1 1

standard fermions (plus a right-handed neutrino). These fields transform under the global sym-
metry following the representation assignment showed in Tables 1 (scalars) and 2 (fermions). 
The representation assignment for fermions under the local symmetry is shown in Table 3.

The full Lagrangian of model can be written down as:

L = 1

2
Tr[Fμν(W̃ )Fμν(W̃ )] + 1

2
Tr[Fμν(B̃)Fμν(B̃)]

+1

2
Tr[Fμν(AL)Fμν(AL)] + 1

2
Tr[Fμν(AR)Fμν(AR)]

+1

4

[
Tr[(Dμ�U)†(Dμ�U)] + Tr[(Dμ�L)†(Dμ�L)] + Tr[(Dμ�R)†(Dμ�R)]

]
−μ2(Tr[�†

L�L] + Tr[�†
R�R]) − λ

4
([Tr(�†

L�L)]2

+[Tr(�†
R�R)]2) − m2Tr(�†

U�U) − h

4
[Tr(�†

U�U)]2

−f3

2
Tr(�†

L�L)Tr(�†
R�R) − f

2
[Tr(�†

L�L)Tr(�†
U�U) + Tr(�†

R�R)Tr(�†
U�U)]

+i�̄iLγ μDμ�iL + i�̄iRγ μDμ�iR + �̄iL�Uϒ�jR + h.c. (4)

where W̃μ, B̃μ, ALμ and ARμ are the gauge bosons associated to SU(2)L, U(1), SU(2)′L and 
SU(2)′R , respectively and ϒ is a matrix containing the Yukawa coupling constants. On the other 
hand, the strength tensors are defined as usual:

Fμν(W̃ ) = ∂μW̃ν − ∂νW̃μ + g0[W̃μ, W̃ν]
Fμν(B̃) = ∂μB̃ν − ∂νB̃μ

Fμν(AL) = ∂μALν − ∂νALμ + g2[ALμ,ALν]
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Fμν(AR) = ∂μARν − ∂νARμ + g2[ARμ,ARν] (5)

The covariant derivatives in the kinetic terms for the scalars and fermions in equation (4), are 
given by:

Dμ�L = ∂μ�L + ig0
τa

2
W̃ a

μ�L − ig2�L
τa

2
Aa

Lμ

Dμ�R = ∂μ�R + ig1
τ3

2
B̃μ�R − ig2�R

τa

2
Aa

Rμ

Dμ�U = ∂μ�U + ig0
τa

2
W̃ a

μ�U − ig1�U
τ3

2
B̃μ (6)

Dμ�iL = (∂μ + ig0W̃
a
μ

τa

2
+ i

2
g1Y

′B̃μ)�iL

Dμ�iR = (∂μ + ig1B̃μ

τ 3

2
+ i

2
g1Y

′B̃μ)�iR (7)

where g0, g1 and g2 are the coupling constants associated to the groups SU(2)L, U(1) and 
SU(2)′L ⊗ SU(2)′R respectively.

For the aim of simplicity, it has been assumed an interchange symmetry between �L and 
�R in the potential and in the kinetic terms. Writing the scalars in “polar parametrization”, i.e.
�L = ρLL, �R = ρRR and �U = ρUU where L, R and U are unitary matrices, the potential 
gets a simpler form:

V (ρU ,ρL,ρR) = 2μ2
[
(ρL + u)2 + (ρR + u)2

]
+ λ

[
(ρL + u)4 + (ρR + u)4

]
+2m2(ρU + v)2 + h(ρU + v)4 + 2f3(ρL + u)2(ρR + u)2

+2f (ρU + v)2
[
(ρL + u)2 + (ρR + u)2

]
(8)

The scalar fields acquire a vacuum expectation value (vev): 〈ρU 〉 = v and 〈ρL〉 = 〈ρR〉 = u

which spontaneously break the original gauge symmetry down to U(1)em.
In the true vacuum, nontrivial mass matrices appear in the scalar and the vector sectors im-

plying that the mass eigenstates are different from the “flavor” ones. In the case of scalars, the 
relationship between flavor and mass eigenvectors is given, in the limit u 
 v, by:

⎡
⎣ρL

ρR

ρU

⎤
⎦ =

⎡
⎢⎢⎢⎣

1√
2

1√
2

− q2

s2
ϕ
r − q

sϕ

√
r

− 1√
2

1√
2
(1 − q2

s2
ϕ
r) − q

sϕ

√
r

0 q
sϕ

√
2r 1 − q2

s2
ϕ
r

⎤
⎥⎥⎥⎦

⎡
⎣HL

HR

H

⎤
⎦ (9)

where the variables r and q are

r = v2

u2

g2

g2
2

q = f

f3 + λ
, (10)

sϕ = sin(ϕ) = g0√
g2

0 + g2
2

and, HL and HR are the physical heavy scalar while H denotes the standard-like Higgs boson.
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The mass eigenvalues for the scalar fields, in the limit u 
 v, are given by:

M2
H = 8v2(h − 2

f 2

f3 + λ
)

M2
HL

= 8u2(λ − f3)

M2
HR

= 8u2(λ + f3) (11)

Similarly, in the vector sector, the relationship between flavor and mass eigenvectors is given 
by: [

W̃±
A±

L

]
=

[
cϕ(1 − s2

ϕr) −sϕ(1 + c2
ϕr)

sϕ(1 + c2
ϕr) cϕ(1 − s2

ϕr)

][
W±
V ±

L

]
(12)

⎡
⎢⎢⎢⎢⎣

W̃3

B̃

A3
L

A3
R

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cϕsθ cϕ(cθ − s2
ϕ

cθ
r) −sϕ(1 + c2

ϕr)
cϕsϕs4

θ

√
P

c3
θ (1−2c2

θ )
r

√
P − sθ

cθ

√
P(1 − s2

ϕs2
θ

c4
θ

r) − cϕsϕsθ
√

P

1−2c2
θ

r − sϕsθ
cθ

(1 + s2
θ P

c4
θ

r)

sϕsθ sϕcθ (1 + c2
ϕ

c2
θ

r) cϕ(1 − s2
ϕr) − s2

θ P 3/2

c3
θ (1−2c2

θ )
r

sϕsθ − sϕs2
θ

cθ
(1 + P

c4
θ

r)
c3
ϕs2

θ

1−2c2
θ

r
√

P
c θ

(1 − s2
ϕs4

θ

c4
θ

r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

A

Z

V 0
L

V 0
R

⎤
⎥⎥⎥⎦

(13)

Where, as usual A,W± and Z represent the photon and the standard weak gauge bosons while 
V

±,0
L and V ±,0

R are the physical heavy vector bosons and θ represents the Weinberg angle.
The mass eigenvalues of the vector sector are:

M2
A = 0

M2
Z = v2

4

g2

c2
θ

(1 − rs2
ϕ

1 − 2c2
θ + 2c4

θ

c4
θ

+ · · · )

M2
V 0

L

= v2

4
g2(

1

rc2
ϕ

+ s2
ϕ

c2
ϕ

− rs2
ϕ

c2
θ

1 − 2c2
θ

+ · · · )

M2
V 0

R

= v2

4

g2

c2
θ

(
1

r

c4
θ

P
+ s2

ϕs4
θ

P
+ r

s2
ϕs8

θ

c4
θ (1 − 2c2

θ )
+ · · · )

M2
VR

= 1

4
g2

2u2

M2
W = v2

4
g2(1 − rs2

ϕ + · · · )

M2
VL

= v2

4
g2(

1

r

1

c2
ϕ

+ s2
ϕ

c2
ϕ

+ rs2
ϕ + · · · )

(14)

From the equations above it is easy to see that, when u 
 v, it is possible to write the r
parameter and cϕ in the convenient form:

r ≈
M2

W

M2 (15)

VR
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Table 4
Summary of the free parameters of the model.

Parameters Meaning

u Scale at which the extended symmetry breaks down
f Parameter of quartic interactions in the potential
MHL

Mass of the heavy scalar HL

MHR
Mass of the heavy scalar HR

MVL
Mass of the heavy vector V ±

L
, V 0

L

MVR
Mass of the heavy vector V ±

R
, V 0

R

cϕ ≈ MVR

MVL

(16)

Notice that due to the representation assignments, the fermions only couple to the gauge 
bosons W̃ and B so their coupling to the heavy vector mass eigenstates arise only through mixing 
terms.

In this model, as shown in the Lagrangian, Yukawa terms involving only the fermions and the 
scalar field �U are allowed by the global symmetry. The Yukawa Lagrangian can be expanded 
as follows:

LY =
3∑
i.j

[yd
ij (L̄

q
i �U)Rd

j + yu
ij (L̄

q
i �̃U )Ru

j + y
ld
ij (L̄l

i�U)R
ld
j + y

lu
ij (L̄l

i�U)R
lu
j + h.c.] (17)

where the components of the scalar field are:

�U =
[

iw+
(v+ρU)+iz√

2
,

]
(18)

and

ρU = (1 − q2

s2
ϕ

r)H + q

sϕ

√
2rHR. (19)

It is important to note that the parameters of the scalar potential have theoretical restrictions, 
which are described below:

μ2 < 0 m2 < 0 f > 0

λ − f3 > 0 h > f
m2

μ2 λ + f3 > 2f
μ2

m2 (20)

The restrictions for μ2 and m2 are imposed so that the potential acquires a vacuum expectation 
value other than zero. On the other hand the restriction for f comes from the decoupling of the 
model to the standard model with Higgs. The remaining restrictions in equation (20) derive from 
the positivity of the mass spectrum of the scalar fields.

Finally, we offer in Table 4 a summary of the free parameters of the model.
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