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This is the first of two papers studying localization of massive bulk fields on a bane in 5D anti–de Sitter
spacetime, and some of their cosmological consequences. Here we focus on a massive 5D scalar, which is
known to lack a localized mode, and discuss how a seeming discontinuity between this theory and the
massless theory—known to support a localized zero mode—is resolved thanks to peculiar analytic
properties of the massive two-point amplitude. Furthermore, we propose a boundary term that leads to the
emergence of a massless localized mode in the massive theory. Last but not least, we consider the case
when the brane world volume is de Sitter spacetime, and prove the existence of a localized massive mode.
We discuss how these results, taken collectively, can be used to describe the accelerated expansion due to
the massive 5D scalar field in an early, or in a late-time universe.
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I. INTRODUCTION AND SUMMARY

Randall and Sundrum (RS) [1] have shown that a 5D
massless graviton yields a localized massless 4D graviton
in 5DAdS spacetime with a Z2 symmetric brane; the rest of
the Kaluza-Klein(KK) modes form a gapless continuum,
with the wave functions for the lighter KK modes sup-
pressed on the brane, leading to approximate recovery of
4D physics at low energies.1 The RS discovery has a
numerous physical and theoretical consequences, which are
well known.
It turns out that massless 5D scalar also yields a localized

massless 4D mode on the brane worldvolume [4], with the
gapless KK continuum and the KK wave functions iden-
tical to those of massless 5D graviton. However, massless
vectors and spinors do not produce localized massless
modes in the minimal setup.
Our goal is to consider whether massive spin-0, spin-1,

and spin-2 fields can be localized or quasilocalized on a
brane in AdS5. This is the first of the two papers on this
topic; here we focus on a 5D massive scalar field to

emphasize some of the subtleties which are independent of
the spin, but also to delineate cosmological scenarios
specific to such a massive 5D scalar.
The question of localization of a 5D massive field was

first studied in [5], where it was found that there is no
localized mode irrespective how small the 5D mass is. Yet,
there is a resonant mode, that can mimic physics of the zero
mode in a certain approximation [5].
Seemingly, there is discontinuity between the massless

and massive theory—the former has a massless 4D mode in
its spectrum while the latter does not, irrespective how
small the 5D scalar mass is. Indeed, this discontinuity is
real as long as the spectra of the modes are concerned—
the bulk mass makes the would-be localized mode non-
normalizable, for any nonzero value of the mass. However,
we will show that there is no discontinuity in the two-point
amplitude of the theory. This involves careful consideration
of the analytic properties of this amplitude, as it is done
in Sec. II.
In Sec. III we show how one can modify the brane world

volume theory by adding a simple 4D term for the scalar to
reinstate the massless 4D localized mode for a massive 5D
bulk scalar field. The new term is a “tachyonic” 4D world
volume mass for the scalar, which depends on the bulk
mass. We should note, however, that the 4D term is
overwhelmed by the positive 5D mass term and nowhere
one encounters any tachyonic instabilities in the theory.
The new term creates an additional “attraction” in a
potential for the spectral problem for the KK modes,
and this is enough to reinstate the massless mode.
In Sec. IV we consider 5D massive scalar in the back-

ground geometry with 4D de Sitter world volume. We
prove the existence of a localized massive mode in this case
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1Note that AdS5 refers to the universal cover of 5D AdS space-
time [2]. There exists a stable solitonic domain wall solution with
4D Poincare invariant worldvolume, and Z2 symmetry in the
direction transverse to the worldvolume [3]. This solution, in a
certain approximation, can be thought of as infinitely thin brane
with all its fluctuations becoming negligible for a low energy
brane observer.
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and a KK continuum starting above the gap determined
by the curvature of the 4D de Sitter spacetime. We then
outline how such a geometry can be an approximation to
the one on which 4D curvature is provided by a slowly
rolling 5D massive scalar field. We point out differences of
such a scheme from the one with 4D massive scalar slowly
rolling and providing inflation or late time acceleration
(quintessence).

II. MASSIVE SCALAR IN 5D

A. The setup

Following [5], we consider a massive scalar field in the
5-dimensional anti–de Sitter spacetime endowed with Z2

symmetry across its boundary, described by the following
interval

ds2 ¼ Ω2ðzÞηMNdxMdxN; ΩðzÞ ¼ L
Lþ jzj ; ð1Þ

where the mostly minus metric convention is assumed. The
coordinate z, parametrizing the fifth dimension ranges from
−∞ to þ∞ and the theory is constrained to be Z2 invariant
under the flip of sign z → −z, under which the scalar is
assumed to be even, ϕðx; zÞ ¼ ϕðx;−zÞ. We are interested
in the 4D effective theory on the physical brane, located at
z ¼ 0, where ϕ is additionally coupled to a 4D source jðxÞ.
The complete action thus reads

Sϕ ¼
Z

d4x
Z

∞

−∞
dz

� ffiffiffiffiffiffi
−g

p �
1

2
gMN∂Mϕ∂Nϕ −

1

2
m2

5ϕ
2

�
þ LϕðxÞjðxÞδðzÞ

�

¼
Z

d4x
Z

∞

−∞
dzΩ3

�
1

2
∂μϕ∂μϕ −

1

2
ð∂zϕÞ2 −

1

2
Ω2m2

5ϕ
2

�
þ
Z

d4xLϕðxÞjðxÞ: ð2Þ

All 4D indices on the last line are assumed to be contracted with the flat 4D metric, and we do not distinguish between upper
and lower 4D components. Varying this action with respect to ϕ yields the following equation of motion

�
−□þ ∂2

z −
3sgnðzÞ
jzj þ L

∂z −
ðm5LÞ2

ðjzj þ LÞ2
�
ϕðx; zÞ ¼ −LjðxÞδðzÞ; ð3Þ

which, when integrated across the brane (that is, within the
interval z ∈ ½−ϵ; ϵ�, with ϵ → 0) implies the following
boundary condition for ϕ:

∂zϕjz¼0 ¼ −
L
2
jðxÞ: ð4Þ

In order to derive the 4D effective action on the brane, we
will need to solve the system (3) and (4). This is the subject
of the next subsection.

B. Kaluza-Klein modes

Consistently with the equation of motion (3) and
boundary condition (4), the 5D field ϕ can be decomposed
in terms of the 4D KK modes as follows:

ϕðx; zÞ ¼
Z

∞

0

dmLϕðmÞðxÞχðmÞ
ν ðzÞ; ð5Þ

where we have defined

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ðm5LÞ2

q
:

The KK wave functions χðmÞ
ν satisfy the following bulk

equation

�
∂2
z −

3sgnðzÞ
jzj þ L

∂z −
ðm5LÞ2

ðjzj þ LÞ2
�
χðmÞ
ν ðzÞ ¼ −m2χðmÞ

ν ðzÞ;

ð6Þ

complemented with the boundary condition at the brane

∂zχ
ðmÞ
ν ðzÞjz¼0 ¼ 0: ð7Þ

Explicitly, these KK wave functions read [5]

χðmÞ
ν ðzÞ ¼

ffiffiffiffiffiffiffi
mL
2

r �jzj þ L
L

�
2

½amJνðmðjzj þ LÞÞ þ bmYνðmðjzj þ LÞÞ�; ð8Þ

where the two coefficients am and bm are given by the following expressions
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am ¼ −
Yν−1ðmLÞ − ν−2

mL YνðmLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYν−1ðmLÞ − ν−2

mL YνðmLÞÞ2 þ ðJν−1ðmLÞ − ν−2
mL JνðmLÞÞ2

q

bm ¼ Jν−1ðmLÞ − ν−2
mL JνðmLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðYν−1ðmLÞ − ν−2
mL YνðmLÞÞ2 þ ðJν−1ðmLÞ − ν−2

mL JνðmLÞÞ2
q : ð9Þ

Importantly, for nonzero bulk massm5 there is no normalizable zero mode, that is, no mode withm ¼ 0 [5]. (Form5 strictly
zero, such a mode does exist and would correspond to the z-independent bulk profile χð0Þ ¼ const [4].) Nevertheless, even
for a nonzerom5, the spectrum features a gapless continuum of massive KK modes, whose wave functions satisfy the usual
orthonormality conditions

Z
∞

−∞
dz

�
L

jzj þ L

�
3

χðmÞ
ν ðzÞχðm0Þ

ν ðzÞ ¼ δðm −m0Þ ðm;m0 > 0Þ: ð10Þ

Plugging decomposition (5) into the original 5D action (2), one arrives at the 4D effective action for the KK continuum

Sϕ ¼ L
Z

d4x
Z

∞

0

dmL

�
1

2
ð∂ϕðmÞÞ2 −m2

2
ðϕðmÞÞ2 þ χðmÞð0ÞϕðmÞj

�
: ð11Þ

At each KK level, the canonically normalized 4D field ϕðmÞ=
ffiffiffiffi
L

p
couples to the brane source j with strength χðmÞð0Þ= ffiffiffiffi

L
p

.
This coupling weakens for higher KK modes.
The force due to the exchange of massive KK modes between two four-dimensional brane sources is determined by the

following amplitude (transformed to momentum space along the brane dimensions)

Δνðp2Þ ¼
Z

∞

0

dmL
jχðmÞ

ν ð0Þj2
p2 −m2 þ iϵ

¼ L2

2

�
ðpLÞH

ð1Þ
ν−1ðpLÞ

Hð1Þ
ν ðpLÞ

− ðν − 2Þ
�
−1

ðν > 2Þ; ð12Þ

where p≡ ffiffiffiffiffi
p2

p
. This formula, valid strictly for ν > 2, was

first derived in Ref. [5]. Addressing the case of ν ¼ 2, on
the other hand, is subtle and will be our focus in the
remainder of this section.

C. Continuity in the bulk mass

The main task of the present subsection is demonstrating
continuity of the physical predictions of the theory in the
m5 → 0 limit. This limit is nontrivial: as we have remarked
above, depending on whether the parameter m5 is strictly
zero or not, there is an extra zero mode present in the KK
spectrum, leading to a discontinuity in the degrees of
freedom in the 4D theory on the brane.
Reference [5] has demonstrated how exactly continuity

occurs for nonzero, but small m5 at the level of the
Newtonian potential, experienced by brane sources due
to the exchange of the scalar’s KK modes. The crucial
role is played by a special resonant mode, composed of the
KK modes of the 4D theory. This resonance, which only
exists for m5 ≠ 0 (or ν ≠ 2), is characterized by mass and
width, given by

m2
0 ≈

m2
5

2
; Γ ≈

π

16
ffiffiffi
2

p
L
ðm5LÞ3: ð13Þ

(Notice that for reasonable values of the bulk mass,
m5 ≲ 1=L, the resonance’s width is parametrically smaller
than its mass.) The presence of the pole corresponding to
the resonance (13) can be readily established by studying
the analytic structure of the amplitude (12), see Ref. [5] for
details. The negative imaginary part of the pole tends to
zero as m5 → 0, or equivalently as ν → 2 (of course, in this
limit the real part vanishes as well and the pole asymp-
totically merges with the origin of the complex plane).
Therefore, in the limit ν → 2 one can conveniently write
Eq. (12) as

Δνðp2Þjν→2 ¼ P:V:

�
L2

2

Hð1Þ
2 ðpLÞ

ðpLÞHð1Þ
1 ðpLÞ

�
− iπδðp2Þ; ð14Þ

where P:V:ð…Þ in the first term denotes the principal value
of the expression in the parentheses, while the second term
essentially provides the iϵ-prescription for the pole at
p2 ¼ 0, corresponding to the m5 → 0 limit of the reso-
nance. To summarize, the analytic structure of the expres-
sion in (14) features the pole, corresponding to the m5 → 0

limit of the 4D resonance scalar (responsible for the r−1

piece in the static potential), as well as a branch cut,
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corresponding to the entire gapless KK continuum (which
leads to the r−3 piece in the static potential).
We’d like to compare the above expression for the

amplitude with its counterpart in the theory with strictly
zero bulk scalar mass. To that end, one can study the KK
spectrum just like we did for the massive bulk theory. As
remarked above, in addition to the KK continuum there is
now the true zero mode in the spectrum, and the amplitude
becomes:

Δν¼2ðp2Þ ¼ 1

p2 þ iϵ
þ
Z

∞

0

dmL
jχðmÞ

2 ð0Þj2
p2 −m2 þ iϵ

¼ 1

p2 þ iϵ
þ L2

Z
∞

0

dx
1

ðpLÞ2 − x2 þ iϵ

×
2

π2xðY1ðxÞ2 þ J1ðxÞ2Þ
; ð15Þ

where the first term on the right-hand side of the first line
comes from the m ¼ 0 zero mode exchange, while the
second term—from the exchange of the m > 0 KK modes.
With the help of a few identities involving Bessel/Hankel
functions, the second line of (15) can be massaged into an
integral over (almost) the entire real axis

Δν¼2ðp2Þ ¼ 1

p2 þ iϵ
þ L2

2πi
lim
δ→0þ

�Z
−δ

−∞
dxþ

Z þ∞

δ
dx

�

×
1

ðpLÞ2 − x2 þ iϵ
Hð1Þ

2 ðxÞ
Hð1Þ

1 ðxÞ
: ð16Þ

The integrand on the right-hand side of this expression has
3 poles, those at x ¼ �ðpLþ iϵÞ and at x ¼ 0. The last of
these poles is avoided by the δ-prescription in the integral
(16) (that is, by the fact that we are integrating up to−δ, and
from þδ). The way we traverse the former two poles is
determined by the standard Feynman iϵ prescription.
Closing the integration contour by the large semicircle at
infinity, as well as the small semicircle between −δ andþδ,
the integral can be readily computed. The integrand decays
sufficiently fast at infinity so that the large semicircle
contributes nothing. The small semicircle, on the other
hand, does give a nonzero contribution, which has to be

substracted to get the desired term in (16). This situation is
schematically depicted in Fig. 1, where we chose to close
the contour in the upper half of the complex plane—closing
it in the lower half would lead to the same result, as can be
straightforwardly checked. The contour on the left picks up
the single pole at x ¼ pLþ iϵ. Computing the contribution
of this pole and substracting from it the contribution of the
semicircle on the right of Fig. 1, we finally get:

Δν¼2ðp2Þ ¼ 1

p2 þ iϵ
þ L2

2

Hð1Þ
2 ðpLÞ

ðpLÞHð1Þ
1 ðpLÞ

−
1

p2

¼ P:V:

�
L2

2

Hð1Þ
2 ðpLÞ

ðpLÞHð1Þ
1 ðpLÞ

�
− iπδðp2Þ; ð17Þ

where the second and the third terms in the first line stem
from the left and the right contours in Fig. 1 respectively,2

while the first term in the second line emerges from the
three terms in the first line. Equation (17) gives the final
form of the m5 ¼ 0 amplitude, which exactly agrees with
the m5 → 0 limit (14) of its counterpart in the theory
with nonzero m5. Since the considered scalar has no self
interactions, and its interactions with the 5D graviton
fluctuations are neglected, the above-established continuity
of a two-point amplitude establishes continuity of the
theory in the bulk scalar mass.

D. The static potential

It is instructive to understand continuity of the theory in
the limit m5 → 0 on a simple physical observable—the
static Newtonian potential between brane sources. We will
start with looking at the large-distance limit of the ampli-
tude (12), corresponding to pL ≪ 1. Furthermore, we will
also assume that the bulk mass is small compared to AdS
curvature, ν − 2 ≪ 1. One can then expand Δνðp2Þ as
follows

FIG. 1. A contour for computing the second term in Eq. (16).

2It is straightforward to see that the semicircle on the right
panel of Fig. 1 provides a finite contribution to the integral.
To that end, note that Hð1Þ

2 =Hð1Þ
1 ∝ x−1 in the limit x → 0, and

the integral over the small semicircle s1 is proportional toR
s1
dx=x ¼ −iπ.
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Δνðp2Þ≈ L2

ðpLÞ2ð1− ðν− 2ÞÞ− 2ðν− 2Þ− ðpLÞ4
2

lnðpL=2iÞ
;

ð18Þ

where the corrections to the denominator are of order
ðpLÞ6; ðν − 2Þ2ðpLÞ2 and ðν − 2ÞðpLÞ4. Keeping only
terms of order pL and ν − 2 in (18), this gives rise to
the Yukawa potential

V1ðrÞ ¼
Z

d3p
ð2πÞ3 e

ip⃗·r⃗ L2

−ðpLÞ2− 2ðν− 2Þ≈−
e−m0r

4πr
: ð19Þ

In general, the correction V2 to this expression depends on
the relative magnitude of the two expansion parameters. In
what follows, we will focus on deriving two different limits
of this correction.3

1. Large distances: r ≫ m− 1
5

At large distances, momentum transfer is the smallest
scale in the problem, in particular pL ≪ ν − 2, and
expanding the amplitude (18) in momentum yields:

Vðr ≫ m−1
5 Þ ¼ V1 þ

Z
d3p
ð2πÞ3 e

ip·r L
2ðpLÞ4 lnðjpjL=2Þ

8ðν − 2Þ2

¼ V1 −
45L5

4πðν − 2Þ2r7 : ð20Þ

At distances under consideration, r ≫ m−1
5 , the Yukawa

potential V1 is contributed mainly by modes with m≳m5

and is exponentially suppressed. The leading contribution
to the potential is thus given by the second term in (20), as
discussed in Ref. [5].

2. Small bulk mass: m5 → 0

The previous, large distance limit r ≫ m−1
5 is obviously

not consistent with the massless limit of the bulk scalar. This
limit, not considered in [5], is our main focus in the present
section. When m5 is sent to zero (that is, when m5 is the
smallest scale in the problem, but not strictly zero), both the
mass and the width of the 4D resonance tend to zero as well,
the latter vanishing faster than the former. The Yukawa
potential of Eq. (19) therefore turns into the Newtonian one:

V1ðrÞjm5→0 ¼ −
1

4πr
: ð21Þ

While this visually resembles the potential due to the
exchange of a 4D massless scalar, it is important to stress

that in the setup under consideration there is no localized
massless mode in the problem. The bulk mass m5 is far
smaller than any other scale, but it is still not strictly zero—
the KK spectrum therefore does not possess a massless
state (zero mode), and the potential (21) is due to a linear
combination of KK modes with m > 0. The correction to
the Newtonian potential V1 can be found by expanding the
ν → 2 limit of the amplitude (18)

V2ðrÞ ¼
L2

2

Z
d3p
ð2πÞ3 e

ip·r lnðjpjL=2Þ ¼ −
L2

8πr3
: ð22Þ

Summing up the two limiting contributions in (21) and (22)
yields the expression, equivalent to what one would get for
the static potential in the case of a strictly massless bulk
scalar. As we have remarked above, in the latter case there
does exist a zeromode in the four-dimensional spectrum, and
it leads to theNewtonian force, equivalent to (21).Moreover,
in the m5 ¼ 0 theory, the gapless continuum of KK modes
works exactly as it does in the case of a small but nonzerom5,
providing a correction, equivalent to (22).We have therefore
established continuity between the two theories with
strictly vanishing m5 and however small, but nonzero m5:
the physical spectra of these theories are somewhat different,
but all observables—in particular the gravitational potential
between brane sources—are perfectly continuous.

III. MASSIVE SCALAR WITH A ZERO MODE

Formally, even for nonvanishing bulk mass m5, the bulk
equation (6) for the scalar’s 4D KK modes admits a would-
be (normalizable) zero mode solution with the z-profile
proportional to ðjzj þ LÞ−νþ2. As already remarked in
Sec. II, however, this solution is incompatible with the
boundary condition (7), which effectively removes it from
the physical KK spectrum. This observation suggests that
the entire theory may be made compatible with the
existence of the zero mode—even for nonzero bulk mass
—by modifying the boundary part of the original scalar
action (a similar mechanism has been considered for the
case of a massive bulk vector in [6]).
In what follows, we will show that modifying the theory

by an extra scalar mass term, localized at z ¼ 0 does the job
of reintroducing the zero mode on the brane. Indeed,
consider the following theory

S ¼ Sϕ þ
ν − 2

2L

Z
z¼0

d4xϕ2; ð23Þ

where Sϕ denotes the action of the “minimal” massive
theory (2). Notice also, that the new boundary term has a
“tachyonic” sign, which, however, does not lead to incon-
sistency of the theory—indeed, we will show that the
effects of the “wrong” sign boundary mass will be over-
whelmed by the effects of the “correct” sign bulk mass in
Sϕ. Physically, the tachyonic mass can be thought of as
giving an additional attractive contribution to the effective

3It is important to note that the term “correction” for the extra
term will not be adequate at distances r ≫ m0 at which the
Yukawa potential is exponentially suppressed. In such a regime,
the extra term V2 ∝ r−7 provides the leading contribution, as
stressed in the discussion to follow.
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(“volcano”) potential that traps the scalar zero mode on
the brane.
With the additional boundary term, the dynamics is

governed by the modified equation of motion�
−□þ ∂2

z −
3sgnðzÞ
jzj þ L

∂z −
ðm5LÞ2

ðjzj þ LÞ2 þ
ν − 2

L
δðzÞ

�
ϕðx; zÞ

¼ −LjðxÞδðzÞ; ð24Þ
which yields the following boundary condition on the brane

�
∂z þ

ν − 2

L

�
ϕjz¼0 ¼ −

L
2
jðxÞ: ð25Þ

The KK mode wave functions can be found by solving the
system (24) and (25) in the absence of sources, which
establishes that the 4D spectrum of the theory indeed
consists of the zero mode scalar, in addition to the
continuum of massive KK states. The bulk profiles for
these modes read

χð0Þν ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ν − 1

p �
L

jzj þ L

�
ν−2

;

χðmÞ
ν ðzÞ ¼

ffiffiffiffiffiffiffi
mL
2

r �jzj þ L
L

�
2
�
Jν−1ðmLÞYνðmðjzj þ LÞÞ − Yν−1ðmLÞJνðmðjzj þ LÞÞ

Yν−1ðmLÞ2 þ Jν−1ðmLÞ2
�
; ð26Þ

where, to avoid notational clutter, we have kept the same notation for the KK wave functions as in the previous section,
although the corresponding functions are of course different in the modified theory at hand. Plugging the KK decomposition

ϕðx; zÞ ¼ ϕð0Þχð0Þν ðzÞ þ R∞
0 dmLϕðmÞðxÞχðmÞ

ν ðzÞ into the original action (23) and using the standard orthonormality
properties of the KK wave functions, we arrive at the 4D effective theory of the following form

S ¼ L
Z

d4x

�
1

2
ð∂ϕð0ÞÞ2 þ

ffiffiffiffiffiffiffiffiffiffiffi
ν − 1

p
ϕð0Þj

þ
Z

∞

0

dmL

�
1

2
ð∂ϕðmÞÞ2 −m2

2
ðϕðmÞÞ2 þ χðmÞ

ν ð0ÞϕðmÞj:
��

; ð27Þ

One can see, that all modes are well-behaved despite the “wrong” sign of the brane mass term in (23). Moreover, the
canonically normalized zero mode and the massive KK modes couple to brane sources with strength, set by the quantitiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðν − 1Þ=Lp

and χðmÞð0Þ= ffiffiffiffi
L

p
respectively. Exchange of these modes between brane sources gives rise to the following

amplitude

Δðp2Þ ¼ ν − 1

p2 þ iϵ
þ
Z

∞

0

dmL
jχðmÞð0Þj2

p2 −m2 þ iϵ

¼ ν − 1

p2 þ iϵ
þ 2L2

π2

Z
∞

0

dx
1

ðpLÞ2 − x2 þ iϵ
1

xðYν−1ðxÞ2 þ Jν−1ðxÞ2Þ
: ð28Þ

By performing manipulations on the second term, very similar to the ones discussed in the previous section, one can
integrate over x thereby arriving at the final, closed-form expression for the amplitude

Δðp2Þ ¼ P:V:

�
L2

2

Hð1Þ
ν ðpLÞ

ðpLÞHð1Þ
ν−1ðpLÞ

�
− iπðν − 1Þδðp2Þ: ð29Þ

This expression differs by the order of the Hankel functions
involved, as well as by the strength of the massless pole,
from its counterpart (17) in the massless bulk theory,
described in the previous section.
This setup is fundamentally different from the previous

setup in that the number of degrees of freedom is continu-
ous in the massless limit. There is a proper zero mode all
along and therefore, no puzzle to resolve regarding the

question of why the physical amplitudes are continuous.
However, we include a discussion of this setup for a couple
of reasons. The first is that when looked at from the
perspective of the analogue Schrodinger potential as was
originally done for the RS scenario [1], it is interesting to
see how a bound state arises at the top of the “volcano”
even for nonzero bulk mass. Second, we will find that in
the follow up to this paper when we consider the warped
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geometry scenario for higher spin fields, this toy model will
be quite helpful in understanding the tensor case.

IV. DE SITTER BRANE AND COSMOLOGY

The above discussion has exclusively concerned the case
of a flat brane, which requires tuning the brane tension λ
against the bulk cosmological constant Λ. It is known due
to Kaloper [7] and Nihei [8], that upon detuning these two
quantities, one can end up with an inflating (de Sitter)
brane, instead of a flat one. The metric of the corresponding
spacetime reads [7,8]:

ds2 ¼
�
cosh

y
L
− q sinh

y
L

�
2

ð−dt2 þ e2Htdx⃗2Þ þ dy2;

�
q≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðHLÞ2

q �
; ð30Þ

where the brane is located at y ¼ 0 in the given coordinates,
L is the curvature radius of the bulk and H is the (constant)
Hubble rate on the dS4 spacetime on the brane world
volume, determined by Λ and λ—the precise relation will
not be important for our purposes.
It will prove convenient to perform a change of coor-

dinates

ey=L ¼ qþ 1

HL
eHðzþz0Þ − 1

eHðzþz0Þ þ 1
; z0 ≡H−1 ln

qþHLþ 1

q −HLþ 1
;

ð31Þ

which removes the coordinate singularity in the line
element (30), putting it into the following form

ds2 ¼ ðHLÞ2
sinh2Hðzþ z0Þ

ð−dt2 þ e2Htdx⃗2 þ dz2Þ: ð32Þ

In the new coordinates, the brane is located at z ¼ 0, and
we will assume that the theory is invariant under reflections
of this coordinate, z → −z, so (32) should be viewed as
describing the brane’s “positive side,” which we will
exclusively work with in the following discussion. On this
side of the brane, the z coordinate ranges from 0 to ∞ as y
ranges from zero to a finite value, determined by the
location of the coordinate singularity in (30), the Rindler
horizon. Hence, the z coordinate does not cover the entire
space covered by the y coordinate, but only its patch
ranging from the origin to the Rindler horizon.

While we could continue the spacetime past the horizon
to values of y > L lnðqþ1

HL Þ, anything happening beyond this
region would not effect the observers on the brane. While
a signal sent from the brane to the horizon would take a
finite proper time to arrive, it would take an infinite amount
of time according to an observer on the brane. Furthermore,
the boundary conditions for the KK modes are already
completely determined at the horizon by the condition
of normalizability so we set aside the question of any
extension of this spacetime beyond the horizon as irrelevant
for our purposes.
Consider the Euler-Lagrange equation of motion for a

massive, z-reflection-even bulk scalar ϕðx; zÞ ¼ σðxÞχðzÞ
in the background (32):

d2χ
du2

− 3
cosh u
sinh u

dχ
du

þ
�
m2

H2
−

m2
5L

2

sinh2 u

�
¼ 0; ð33Þ

where, with the Kaluza-Klein decomposition in mind,
we have defined □4σ ¼ m2σ, as well as z̄≡ zþ z0 and
u≡Hz̄. To further simplify notation, we will also define

A2 ¼ m2

H2
; B2 ¼ m2

5L
2; ð34Þ

so that the equation of interest (33) becomes

χ00 − 3
coshðuÞ
sinhðuÞ χ

0 þ
�
A2 −

B2

sinh2ðuÞ
�
χ ¼ 0; χ0j ¼ 0:

ð35Þ

Here, the last equation—the boundary condition on the
brane—can be obtained by integrating the bulk equation
across the brane and keeping in mind that χ is a
z-reflection-even field (again, the vertical stroke denotes
evaluation at u ¼ Hz0). A solution to this equation with
givenm2 (that is, given value of the parameter A2) describes
a localized, normalizable mode if it satisfiesZ

∞

0

dz
ffiffiffi
g

p
g00χ2 ¼ finite: ð36Þ

This imposes a second boundary condition, this time at
u → ∞, on normalizable modes. In what follows, we will
be looking for precisely such localized modes.
A general solution to (35) reads

χðuÞ ¼ coshðuÞ12ð3−
ffiffiffiffiffiffiffiffiffiffi
9−4A2

p
Þðtanh uÞ2−

ffiffiffiffiffiffiffiffi
4þB2

p

× ½C2 · 2F1ða1; b1; c1; tÞ − C1 · ðtanh uÞ2
ffiffiffiffiffiffiffiffi
4þB2

p
· 2F1ða2; b2; c2; tÞ�; ð37Þ

where C1 and C2 are the two integration constants and the coefficients a1;2; b1;2, and c1;2, together with the u-dependent
quantity t have been defined as follows
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a1 ¼
1

4
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4A2

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p
Þ; b1 ¼

1

4
ð3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4A2

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p
Þ; c1 ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p
;

a2 ¼
1

4
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4A2

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p
Þ; b2 ¼

1

4
ð3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4A2

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p
Þ; c2 ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p
;

and t ¼ tanh2 u. In order to fix the integration constants C1

and C2, we will need to study the behavior of the solution
(37) for both large and small values of u—something we
will turn to next.

A. Large u

For large u (corresponding to t ¼ tanh2 u → 1−), and for
c − a − b < 0 which is the case for the solution (37),4 the
relevant limit of the hypergeometric function reads

lim
t→1−

2F1ða; b; c; tÞ ¼ ð1 − tÞc−a−b ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ ; ð38Þ

which gives in our case:

lim
u→∞2F1ða1;2; b1;2; c1;2; tanh2ðuÞÞ

¼ ðcosh uÞ
ffiffiffiffiffiffiffiffiffiffi
9−4A2

p Γðc1;2ÞΓð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4A2

p
=2Þ

Γða1;2ÞΓðb1;2Þ
: ð39Þ

Plugging this expression into the general solution then
yields

χðu ≫ 1Þ ≃ Γð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4A2

p
=2Þðcosh uÞ12ð3þ

ffiffiffiffiffiffiffiffiffiffi
9−4A2

p
Þ

×

�
C2

Γðc1Þ
Γða1ÞΓðb1Þ

− C1

Γðc2Þ
Γða2ÞΓðb2Þ

�
: ð40Þ

This correctly reproduces one of the growing modes at
large u. To see this, we note that when u → ∞, the two
independent solutions have the form expðk1;2xÞ, where k1
and k2 are the two solutions of the quadratic equation
k2 − 3kxþ A2 ¼ 0; explicitly, k1;2 ¼ ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4A2

p
Þ=2

and one can see that (40) reproduces the k1-mode, while
the k2-mode corresponds to the other, subleading solution.
The latter solution describes a localized, normalizable
mode [with our proper definition of normalizability, given
in Eq. (36)], while the former corresponds to a non-
normalizable mode and should thus be removed. To that
end, we need to tune C1 and C2 as follows:

C2 ¼ C1

Γða1Þ
Γða2Þ

Γðb1Þ
Γðb2Þ

Γðc2Þ
Γðc1Þ

: ð41Þ

With this tuning at hand, one can go ahead and study the
behavior of the solution in the opposite limit—the one
corresponding to u ≪ 1.

B. Small u

Let us now try to understand whether one can satisfy the
boundary condition in Eq. (35)

χ0j≡ χ0ðϵÞ ¼ 0: ð42Þ

Note, importantly, that the value of u on the brane is small

ϵ≡Hz0 ∼HL ≪ 1;

and let us first try to understand the solution analytically.
For x ≪ 1 our equation becomes

χ00 −
3

u
χ0 −

B2

u2
χ ¼ 0; ð43Þ

which is solved by

χðu ≪ 1Þ ≃ C̃1u2−
ffiffiffiffiffiffiffiffi
4þB2

p
þ C̃2u2þ

ffiffiffiffiffiffiffiffi
4þB2

p
; ð44Þ

where C̃1;2 will be expressed in terms of C1;2 for our
particular solution of interest—we will give the explicit
expressions for these coefficients below. Importantly,
neither of the C̃1;2 automatically vanish for our solution,
and the (derivatives of the) two terms can balance each
other to satisfy the boundary condition (42) at u ¼ ϵ.
Taylor-expanding the solution (37) and using (41), we have

C−1
1 χ0ðϵÞ

¼ ð2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p
ÞΓða1ÞΓðb1ÞΓðc2Þ
Γða2ÞΓðb2ÞΓðc1Þ

ϵ−
ffiffiffiffiffiffiffiffi
4þB2

p
ðϵþOðϵ3ÞÞ

− ð2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p
Þϵ

ffiffiffiffiffiffiffiffi
4þB2

p
ðϵþOðϵ3ÞÞ: ð45Þ

(The precise expression for C1—not important for the
discussion to come—can be found from orthonormality of
the AdS mode functions.) Examining this expression, one
can see that there certainly exist possibilities for it to vanish,
one of which can be understood as follows: the two terms
balance each other for

ϵ2
ffiffiffiffiffiffiffiffi
4þB2

p
¼ 2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p Γða1ÞΓðb1ÞΓðc2Þ
Γða2ÞΓðb2ÞΓðc1Þ

; ð46Þ

under our assumptions, ϵ is small, and so should be the
right-hand side of this expression. There seems to be at
least the following possibility for this: 2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ B2

p
is

small if B is small and on top of that Γðc1Þ is large, which4Note that c1 − a1 − b1 ¼ c2 − a2 − b2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4A2

p
=2.

GABADADZE, OLDER, and PIRTSKHALAVA PHYS. REV. D 104, 104031 (2021)

104031-8



makes the left-hand side small for a generic choice of A. Of
course, for this to be true, one has to check that there are no
surprises at higher orders in Taylor expansion in ϵ. We can
prove the absence of such surprises numerically by exam-
ining how the exact (unexpanded) C−1

1 χ0ðxÞ behaves for
different A and B.

C. (Numerical) study of the exact expression for y0ðxÞ
The closed-form expression for C−1

1 χ0ðxÞ is quite cum-
bersome and we will not reproduce it here. Instead, let us
choose a representative value for ϵ, such as ϵ ¼ 10−4, and
numerically explore the dependence of this expression on A
and B.
This dependence is shown, in the form of a 3D plot, on

Fig. 2 (where irregularities arise whenever a1 or b1 cross
negative integers). One can see that the function of interest
comes close to zero for small B, but it is not clear enough
whether it actually crosses zero. To see whether C−1

1 χ0ðxÞ
crosses zero, let us choose a particular value B ¼ 10−4 and
see if a value for A exists such that this function vanishes.
The dependence of C−1

1 χ0ðxÞ on A for ϵ ¼ B ¼ 10−4 is
shown on Fig. 3. It is clear that a value of A exists, such that
the desired function smoothly crosses zero—exactly like
we predicted from the Taylor expansion argument, given
above. (We emphasize again that the present argument is
not using any approximation—we are working with exact
expressions here.)
This establishes the presence of a localized mode for the

case of a de Sitter brane. It is straightforward to see that the
continuum of the KK excitations in this case starts above a
gap determined by the 4D curvature scale:

m2
KK ≥

9H2

4
; ð47Þ

and the localized mode resides within the gap. It is difficult
to calculate the mass of the localized mode. However, one
can deduce scaling dependence of the mass of this mode on
other parameters by approximately matching asymptotic
solutions. Doing so, one obtains for the mass of the
localized mode, m� ∼m=ðHLÞ, in the approximation when
HL ≪ 1 andm� ≪ 3H=2. Thus, in the above regime of the
parameter space the mass of the localized mode is signifi-
cantly larger than the mass of the bulk mode, m, but is
smaller than the curvature scale H.

D. Comments on cosmology

We will outline here how the 5D massive scalar in
AdS5=Z2 can be used to describe an accelerated expansion
of the universe. The rate of the acceleration will depend on
the scalar mass, and therefore, choosing the value of the
mass one can either make the expansion suitable for
inflation, or for the late time acceleration.
To begin with consider the 5D massive scalar embedded

in the geometry with a tuned brane and bulk, as in Sec. II, so
that the 4D brane world-volume spacetime is flat. It remains
flat as long as the scalar is in its vacuum state, ϕ ¼ 0.
Let us now imagine that at some earlier time the initial

value of the scalar was nonzero, ϕ ¼ ϕ0, with its time
derivative being negligible. At that initial moment the
scalar would add to the bulk energy density a positive
quantity

ΔE ¼ 1

2
m2

5ϕ
2
0: ð48Þ

For simplicity, we will assume that this energy density is
less in its magnitude than the bulk AdS negative energy
density; thus, the quadratic scalar potential will lead to a
reduction of the magnitude of the negative energy density
in the bulk. As a result, the bulk energy density and the
brane tension will no longer be tuned, and the brane world
volume will at that time moment acquire a positive space-
time curvature [7,8]

FIG. 2. The dependence of C−1
1 y0ðxÞ on the parameter A for

B ¼ ϵ ¼ 10−4.

FIG. 3. The dependence ofC−1
1 y0ðxÞ on the parameters A and B.
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H ¼
ffiffiffiffiffiffiffi
ΔE
M3

5

s
; ð49Þ

where M5 denotes the (specifically normalized) Planck
mass of the 5D theory. Let us furthermore assume that after
the initial moment the 5D scalar field is going to roll down
its quadratic potential slowly during some reasonable
classical interval of time. As a result of the slow, roll the
curvature of the 5D spacetime will change slowly too, and
so will the curvature of the 4D (quasi) de Sitter universe.
This expansion can potentially describe either inflation in
the early universe, or the dark energy driven acceleration,
depending on the values of the scalar mass and ϕ0.
While we will not pursue the detailed studies of these

cosmologies here, we point out two peculiarities of the
proposed scheme: first the 4D Planck constant will also be

changing in time as the 5D scalar rolls down its slope.
Second, the 4D fluctuations, as shown in Sec. IV, will
consist of one localized massive mode below the gap and
the KK continuum above a gap. If applied to inflation, The
localized mode will then be responsible for density per-
turbations; its mass is parametrically different from the
mass of the 5D field that is rolling down. Thus, it might be
interesting to work out the details of such a cosmologi-
cal model.
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