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1 Introduction

Recently, non-isometric codes have become a fascinating avenue for exploring how black hole
interiors might be described by a theory of quantum gravity. The non-isometric holographic
maps proposed by Akers, Engelhardt, Harlow, Penington, and Vardhan (PHEVA1) use post-
selection to remove the extra degrees of freedom found in a semiclassical description of the
interior [1]. These codes have been successfully used to derive the quantum extremal surface
(QES) formula [2–6], obtain the Page curve [7], realize a construction of the Python’s lunch [8–
10], and provide a state-dependent reconstruction of interior operators [11], in a way consistent
with expectations for the role of computational complexity [12]. The non-isometric property
of these maps has also been observed in the context of two-dimensional conformal field
theories and random tensor networks [13], further motivating their utility in understanding
how semiclassical properties of black holes should be encoded in quantum gravity.

So far, realizations of non-isometric holographic maps — which take a black hole state in
the effective (interior observer) description and map it to a fundamental (exterior observer)
description — have been built on qudit toy models of black holes. Despite the inherent
assumptions and simplifications in these qudit models, it is encouraging that non-isometric
codes have been so successful even in these simplified contexts. The most detailed constructions

1We will continue to make use of this user-friendly permutation of the authors’ initials.
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involve building non-isometric maps out of the dynamics of the black hole itself. PHEVA
constructed the first such dynamical holographic map out of the black hole dynamics in the
fundamental description [1]. In doing so, they assumed that the effective dynamics were trivial

— once inside the interior, nothing would happen to an infalling observer. Since an observer
inside a large black hole should be able to do all sorts of physics experiments, it is natural to
generalize this construction to include non-trivial interactions in the effective description.

The first step in this direction was taken by Kim and Preskill [14]. Concerned by issues
surrounding post-selection that arose in the context of the final state proposal [15, 16],
namely the possibility that the post-selection involved in the map could lead to violations of
unitarity or to superpolynomial computational speedup violating the extended Church-Turing
thesis [17–19], they included interactions between an infalling robot and radiation modes
(both inside and outside the horizon) in the effective description and applied PHEVA’s
dynamical non-isometric map. Kim and Preskill found that the new interactions combined
with the post-selection in the non-isometric map to create small violations to the unitarity
of black hole evaporation, but that any computational speedups are limited by the size of
the infaller’s Hilbert space.

In a previous work [20], we took a further step by proposing that nontrivial interior
dynamics should be reflected in the holographic map itself. We took the perspective that a
holographic map from the effective to the fundamental description at a moment in time could
be regarded as a composition of backwards time dynamics in the effective description until
all infalling modes have been brought back outside the black hole, followed by forwards time
dynamics in the fundamental description bringing them back in again. In the perspective
of this “backwards-forwards” map, post-selection arises because Hawking pairs annihilate
and return to the vacuum during backwards effective time evolution. Because the map
incorporates effective dynamics directly, it restores unitarity of evaporation and as well as
avoiding computational speedup problems typically associated with post-selection.

Our previous work [20] focused on the action of the backwards-forwards map on dy-
namically generated states: black hole states formed by the unitary evolution of initial
configurations of non-singular infalling matter. These states form a subspace of the full
effective Hilbert space. On this subspace, we showed that the backwards-forwards map can
be transformed to a “post-selection version” which is equivalent to PHEVA’s dynamical
map when effective interactions are removed. All of the results in [20] are appropriate for
this dynamically generated subspace.

However, PHEVA’s non-isometric maps were applied to more than just the dynamically
generated subspace. In particular, their calculations [1] showing that non-isometric holographic
maps act isometrically on subexponentially complex states, and that their maps provide
state-dependent reconstruction of bulk operators, required the maps’ actions on generic
states — general linear combinations of the dynamically generated states and the null states
annihilated by the holographic map. These states cannot be reached by any dynamical
perturbation of a black hole state formed from unitary collapse — no observer or robot could
fall into the black hole and perform a unitary operation to take the black hole out of the
dynamically generated subspace. However, they are states in the effective description Hilbert
space, and a well-defined holographic map should have an action on all such states. Moreover,
they can be perceived by an interior observer’s measurement, considered as involving a
unitary operation that entangles an observer and their apparatus with the system they are
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measuring. This entangling unitary is dynamical and cannot take the black hole state out
of the dynamically generated subspace alone; however, the observer could (purposefully or
naively) choose a basis for their apparatus that involves null states outside of the dynamically
generated subspace. Thus when they observe their apparatus, the observer could see the
wavefunction collapse to a state inaccessible by dynamics alone.

Thus to demonstrate that the backwards-forwards holographic map is an appropriate
interacting generalization of the maps of [1], and can successfully reproduce properties
like isometry on subexponential states and bulk reconstruction, we must also investigate
its action on generic states. This action must be treated carefully; for a generic state of
the effective description, backwards time evolution will not return Hawking modes to the
expected maximally entangled states before they annihilate. Such a mismatch could lead
to singularities forming in the past.

We will see that when acting on generic states, the two presentations of the backwards-
forwards map that coincided on dynamically generated states are no longer equivalent. The
original formulation of the map involves post-selecting on the Hawking states as soon as they
return to the vacuum, while the other version saves post-selection for the end, more closely
analogous to the PHEVA map. The aim of this work is to determine which (if either) of
the two versions of the backwards-forwards map can work well on generic states. This will
involve making sure both maps are defined so as to avoid past singularities, and verifying
whether they satisfy two criteria established by PHEVA in [1]: that the holographic map
should act isometrically on generic states for Haar-typical fundamental dynamics, and that it
should provide a reconstruction of interior unitary operators in the effective description up to
exponentially small errors, in a fashion consistent with entanglement wedge reconstruction.
We will find that the first formulation of the backwards-forwards map — which we refer to
as the BF map — does not satisfy these criteria, while the alternate version — referred to
here as the backwards-forwards-post-selection (BFP) map — does. Reproducing a number
of calculations of [1], we see that while the derivation of the Page curve succeeds for both
maps, isometry on average and bulk reconstruction follow only for the BFP map, in a way
analogous to the original PHEVA calculations with generally small corrections.

This paper will be organized as follows. Section 2 will review the definitions of the
holographic maps proposed in both [1] and [20] and establish the notational conventions
taken here. We will also discuss how the backwards-forwards and BFP maps can avoid
the creation of a past singularity during the backwards evolution. For completeness, we
will demonstrate here that our maps can be used to obtain the same QES formula and
Page curve as PHEVA’s dynamical maps. Section 3 will review our results from [20] for
the action of our maps on the dynamically generated subspace and provide new clarifying
details. Section 4 will check the two criteria above for both the backwards-forwards and
BFP maps. Finally, we will conclude in section 5 where we will discuss the assumptions
made in this work and opportunities for future studies.

2 The backwards-forwards holographic maps

We begin by defining the black hole model, its effective description and fundamental description
time dynamics, and the backwards-forwards holographic maps that will be used throughout
the paper.
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2.1 Effective and fundamental descriptions and dynamics

The two descriptions of the black hole system are taken to be described by systems of qudits [1]
and thus are represented as finite-dimensional Hilbert spaces. The black hole degrees of
freedom in the effective description are divided into left-moving (radially ingoing) modes
ℓ and right-moving (radially outgoing) modes r. In the fundamental description, internal
black hole degrees of freedom are labeled by B. Both descriptions share the same exterior:
Rin describes infalling modes, and Rout contains the Hawking radiation. Thus we get the
following factorizations of the effective and fundamental Hilbert spaces,

Heff = Hℓ ⊗Hr ⊗HRin ⊗HRout , Hfun = HB ⊗HRin ⊗HRout . (2.1)

When needed, we will include a reference system HL in the effective description that keeps
track of (and purifies) the ℓ modes that fell into the black hole from Rin. When referring
to different Hilbert space factors we will often drop the H and just refer to them as ℓ, r
and so forth.

The fundamental description characterizes the point of view of the external observer,
who perceives the black hole as an object that accepts infalling degrees of freedom, scrambles
them, and re-radiates them as Hawking radiation. This is pictured on the left-hand-side of
figure 1; at time zero a set of modes falling in from Rin form the black hole, and are joined
by a set of fixed degrees of freedom |ψ⟩f coming down from high energies during the initial
collapse. These are together processed by a unitary transformation U0 into black hole modes
B. At each succeeding time step, another unitary transformation Ut processes the modes in
B and one new infalling degree of freedom from Rin, outputting two Hawking modes into
Rout while the rest remain in B. If m0 infallers from Rin are joined by n0 −m0 fixed degrees
of freedom f , the unitaries describing the fundamental dynamics are maps,

Ut :


R

(m0)
in f (n0−m0) → B(n0), t = 0

R
(1)
in B

(n0+1−t) → B(n0−t)R
(2)
out, t > 0

(2.2)

where parenthetical superscripts have been used to denote the number of qudits from each
factor. In [1], it was assumed that each Ut was drawn from the Haar measure. Recent
work by Kim and Preskill [14] suggests that pseudorandom unitaries could offer a more
realistic description of each Ut.

The effective description describes the semiclassical gravity picture seen by an observer
behind the black hole horizon. In this description, modes fall into the black hole and are
joined at each time step by the creation of Hawking pairs, one particle in the pair remaining
in r inside the horizon and the other escaping into Rout as Hawking radiation. These Hawking
pairs are created in the maximally entangled state,

|MAX⟩r,Rout = 1
√
q

q∑
j=1

|j⟩r|j⟩Rout , (2.3)

where q is the dimension of the qudits, reflecting the assumed smoothness of spacetime at
the horizon. Dealing with this pair creation backwards will be a subtlety for backwards
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Rin |ψ⟩f

U0t = 0

U1t = 1

U2t = 2

B Rout

Rin

Û0t = 0
|MAX⟩r,Rout

Û1t = 1

Û2t = 2

ℓ r Rout

Figure 1. An example of fundamental dynamics Ut (left) and effective dynamics Ût (right) until
t = 2 for n0 = 4 and m0 = 2. Lines are colored by qudit type: red for Rin, blue for Rout, black for B
and f , orange for ℓ, and green for r.

time evolution. In addition, our previous work [20] introduced new non-trivial dynamics
Û ≡ ÛtÛt−1 . . . Û0 for the interior of the black hole in the effective description. Each Ût

acts on effective degrees of freedom as

Ût :


R

(m0)
in → ℓ(m0), t = 0

R
(1)
in ℓ

(m0−1+t)r(2(t−1)) → ℓ(m0+t)r(2(t−1)), t > 0 .
(2.4)

An example of these dynamics is shown in the right panel of figure 1. The Ût represent the
semiclassical gravity interactions perceived by the infalling observer, but for this toy model
we have so far made no restrictions on their precise form; later on we will see that some
assumptions about their average properties will be useful.

2.2 Non-isometric codes for the black hole interior

At any moment in time t, we expect there to be a holographic map Vt:

Vt : Heff → Hfun (2.5)

carrying a configuration in the effective description to a configuration in the fundamental
description, and acting as the identity on Rin ⊗ Rout. The generic non-isometric map
V : ℓr → B defined in [1] takes the form

V =
√
|P |⟨ϕ|PUH|ψ⟩f , (2.6)

where UH is a typical block unitary drawn from the Haar measure with no additional structure,
|ψ⟩f is the insertion of fixed degrees of freedom, and ⟨ϕ|P represents post-selecting a subsystem
P (the complement of B in the output of UH) on some specified state. The prefactor

√
|P |

is included to ensure correct normalization of the state after post-selection.
The authors of [1] further provided a realization of a map of the form (2.6) constructed

out of the fundamental description dynamics: modes in ℓ are fed into fundamental time
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VPHEVA =

|ψ⟩f

U

|r|⟨MAX|r,R′
out

Figure 2. A schematic representation of the PHEVA dynamical holographic map for the black hole
interior [1]. Unlike in figure 1, each line here represents all qudits in that factor of the Hilbert space.

evolution, while modes in r are post-selected together with the Rout modes coming out of
the fundamental dynamics, giving a map of the form

VPHEVA = |r|⟨MAX|r,R′
out
U |ψ⟩f . (2.7)

Here there are two copies of the Hawking radiation Rout, and we label the one that is output
of the fundamental dynamics as R′

out. When the input rRout modes are in the maximally
entangled state |MAX⟩r,R′

out
, the map functions as a teleportation protocol, transferring the

state of the degrees of freedom in R′
out to those in Rout. Figure 2 gives a circuit representation

of PHEVA’s dynamical holographic map.
The PHEVA map was possible for a case with no effective description dynamics, where

each mode in ℓ can be identified uniquely with a mode in Rin; but in general, it is unnatural
to use the state of the ℓ modes existing well beyond the horizon as an input to fundamental
dynamics, which expects modes just crossing the horizon. The “backwards-forwards” map
of [20] was designed to generalize VPHEVA and resolve this issue, functioning as a holographic
map taking into account effective description dynamics.

2.3 The backwards-forwards (BF) map

The philosophy of the backwards-forwards (BF) map is that the holographic map is a
composition of backwards time dynamics in the effective description, followed by forward
time dynamics in the fundamental description. Beginning with a state on ℓrRout at some
time step t, the map first evolves these effective degrees of freedom backwards in the effective
description using Û †. At each time step in the backwards evolution, one qudit from ℓ leaves
the black hole and rejoins Rin. Furthermore, at each time-step two Hawking pairs in the
maximally entangled state disappear. Once the backwards evolution is complete and there
are no more black hole degrees of freedom, the map performs forwards fundamental time
evolution U on Rin to bring the black hole into the fundamental description. Thus the map
is aware of both kinds of dynamics.

Since the forward time evolution of the effective description is Û |MAX⟩r,Rout where we
have concatenated the Ût at each time step to a single Û , and the forward time evolution
of the fundamental description is U |ψ⟩f with the Ut concatenated into U , we obtain the
backwards-forwards (BF) map [20],

VBF = U |ψ⟩f ⟨MAX|r,RoutÛ
† . (2.8)
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VBF =

Û †

⟨MAX|r,Rout

|ψ⟩f

U

Figure 3. A schematic representation of the backwards-forwards (BF) map defined in equation (2.8).
Unlike in figure 1, each line here represents all qudits in that factor of the Hilbert space.

VBFP =

Û †

|ψ⟩f

U

|r|⟨MAX|r,R′
out

Figure 4. A schematic representation of the backwards-forwards-post-selection (BFP) map defined in
equation (2.9). Unlike in figure 1, each line here represents all qudits in that factor of the Hilbert space.

Inverting the effective dynamics in this way has produced a post-selection ⟨MAX|r,Rout that
removes the Hawking pairs as we evolve back to their moment of creation. Equivalently, we can
imagine decoupling each pair from the dynamics as we get back to its time of creation, and then
post-selecting on all of them at t = 0. The backwards-forwards map is presented in figure 3.

2.4 The backwards-forwards-post-selection (BFP) map

The backwards-forwards map presented in equation (2.8) and figure 3 is not obviously a
generalization of the PHEVA map VPHEVA (2.7), which involves post-selection on the output
of the fundamental dynamics. However, when the state acted on by the BF map (2.8) is a
dynamically generated state — a state that evolved from non-singular initial conditions of
matter infalling into the black hole — the BF map can be recast in another form which is
of the PHEVA type. For such a dynamically generated state, the backwards time evolution
simply follows the state’s original generation in reverse, and each Hawking pair is guaranteed
to be in the maximally entangled state at the time-step it disappears. Thus if we think of
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decoupling and freezing each Hawking pair at the appropriate time-step, when we get to t = 0
the rRout factor of the Hilbert space will indeed be in the state |MAX⟩r,Rout . Rather than
post-selecting on it, we can keep it hanging around (we can imagine storing it in a “quantum
memory”) while the forwards time evolution of the fundamental description takes place. Since
the fundamental dynamics also has output Hawking radiation, we will have two factors of
Rout, and we label the one coming from the fundamental dynamics as R′

out. Finally after the
fundamental dynamics is complete, we post-select on r which has remained in our quantum
memory with R′

out, rather than with Rout. As with the PHEVA map (2.7), this functions as
a teleportation protocol, transferring the state of the degrees of freedom in R′

out to those in
Rout. This defines the backwards-forwards-post-selection (BFP) version of the map,

VBFP = |r|⟨MAX|r,R′
out
U |ψ⟩f Û

†, (2.9)

where again the factor of |r| is included for normalization, as illustrated in figure 4. It is of
the general PHEVA form (2.6), and when the effective dynamics is trivial Û = 1, it reduces
to the dynamical holographic map VPHEVA (2.7).

2.5 Action of the maps on non-dynamically generated states

When we are imagining acting the maps VBF and VBFP on states that were created by
forward time evolution from non-singular initial configurations of matter, the backwards time
evolution acts in a straightforward way that just reverses this evolution, and the two maps
are equivalent. However, it is well-known that the Hilbert space of the effective description
after the Page time will obtain many more degrees of freedom than exist in the fundamental
description. Many of these states are null states, expected to be annihilated by the holographic
map. A generic state will be a linear combination of dynamically generated states and null
states. We need to be somewhat careful about the definition of the backwards evolution on
one of these generic states, due to the Hawking modes coming into and out of the spectrum.

One way to think about the generation of the Hawking pairs is the following. The
interior of a black hole grows as it evolves in time, and as it does, spacetime near the horizon
expands. Similar to adiabatically increasing the width of a square well, the energy levels
of quantum fields on this expanding spacetime will be red-shifted, bringing field modes
down from high energies. These new modes may be occupied, which we interpret as the
generation of Hawking radiation.2

During the backwards evolution of a black hole state in the effective description, radiation
modes will be blue-shifted back to high energy scales. We assume that if these radiation
modes are occupied in the particular way that they are generated (i.e. maximally entangled)
they will disappear nicely at high energies, exiting smoothly from the effective theory and
no longer participating in interactions with modes remaining at lower energies. However,
if we begin with a generic configuration in the effective description, radiation modes may
approach high energy scales in the wrong state during the backwards evolution. One may

2In principle, a well-defined theory of semiclassical gravity requires an ultraviolet cutoff to keep fluctuations
of the stress-energy tensor (and therefore the metric) finite when including backreaction [21]. We will not
need an explicit ultraviolet cutoff here, but having such a cutoff in mind may be conceptually useful when
considering these Hawking modes descending from high energies.
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anticipate this could cause some catastrophe in the UV, creating a singularity (or white
hole) in the past [1, 21, 22].

Let us consider how to properly implement the two maps to avoid such singularities. The
BF map is more straightforward: it involves post-selection on each Hawking pair being in
the correct maximally entangled state that it would be generated in. Thus if a particular set
of Hawking modes is in the “wrong” state as they are lifted back up out of the spectrum,
post-selection simply annihilates the state.

For the BFP map, however, we do not immediately post-select on the Hawking modes as
they leave the spectrum; we wish to keep them around to post-select after the fundamental
dynamics. Thus, we define the BFP map such that as each set of Hawking modes is lifted out
of the spectrum, it is frozen (stored in our “quantum memory”) and undergoes no further
evolution. We may think of this memory as a record of the occupation of the various modes
as they leave the effective theory. Since the modes are frozen at this point, they do not
evolve to arbitrary high energies and no singularity will form. We keep these degrees of
freedom until they are needed for the post-selection at the end of the BFP map. Since we
found in [20] that exterior interactions drop out of the backwards-forwards map, we can
also freeze out modes that leave the black hole when they are converted from ℓ back to
Rin during the backwards evolution.

The backwards effective evolution portion of the BFP map is completed once all modes
have been frozen as either infalling matter Rin or radiation rRout. At this point, we feed Rin
into the fundamental dynamics at the appropriate time-steps. The fundamental dynamics
should be performed for a length of time given by the size of radiation modes frozen out
during the backwards evolution, t = (1/2) logq |Rout|. The fundamental dynamics will produce
black hole degrees of freedom B and radiation R′

out. The backwards-forwards map then
performs post-selection on the stored r qudits and the radiation output of the fundamental
dynamics R′

out.
Once we are considering the action of the BF and BFP maps on generic states, it is

not obvious that they are equivalent. Indeed, we will find that they are not. In the next
section, we consider the action of the maps on dynamically generated states in more detail,
and show that they both can be used to derive the Page curve. In the section following the
next, we consider their action on generic states and show that only the BFP map successfully
reproduces isometry on average and state-dependent reconstruction of bulk states.

Let us make a few remarks before turning to the next section. We note that this
implementation of freezing out the Hawking modes during the holographic map is suitable for
this kind of toy model of the black hole, but a deeper description would involve understanding
the effective description degrees of freedom as modes in semiclassical gravity and understanding
the role of backreaction on the geometry. Additionally, we emphasize that these holographic
maps are just maps between two different descriptions of the black hole at a moment in
time. While they are constructed using time evolution unitaries, they do not represent the
dynamics or experiences of any observer. In particular, post-selection is not part of the
effective dynamics of the black hole.

The color scheme for labeling different factors of the Hilbert space in our circuit diagrams
is summarized in figure 5. In addition, we will denote density matrices and pure states
in the fundamental description with an uppercase Ψi, |Ψi⟩, with the index i labeling an
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B, f
Rout
r

ℓ
Rin
L

Ut Fundamental dynamics

Ût Effective dynamics

Figure 5. The color scheme used to identify qudits and dynamics in circuit diagrams.

orthonormal basis {|Ψi⟩} of Hfun,

⟨Ψj |Ψi⟩ = δij . (2.10)

States in the effective description will be distinguished with a hat: Ψ̂i, |Ψ̂i⟩. Again, i labels
an orthonormal basis {|Ψ̂i⟩} of Heff. We will leave hats off of states of Rin since they are
shared by both descriptions.

3 Action on the dynamically generated subspace

Now that we have defined our holographic maps, we begin with the action of VBF and VBFP
on dynamically generated states. Here we will review essential results from our previous work
in [20] and present new results to help clarify other properties of these maps.

We will show that both the VBF and VBFP act isometrically on dynamically generated
states. This fact has important consequences. Work by Kim and Preskill [14] brought forward
concerns that the post-selection present in the dynamical holographic map proposed by [1]
might lead to superpolynomial computational complexity, violating the quantum extended
Church-Turing thesis [17–19]. Post-selection has also been shown to lead to undesirable
artifacts such as superluminal signaling and speedups to Grover’s algorithm [23]. By including
non-trivial effective dynamics in the backwards-forwards map directly, we have shown that
these maps do act isometrically on dynamically generated states despite the presence of
post-selection in the map. Therefore, both backwards-forwards maps avoid these issues
typically associated with post-selection.

While both maps VBF and VBFP act isometrically on dynamically generated states of the
effective description, only VBF acts unitarily. We show that V †

BFP in general maps dynamically
generated states of the fundamental description to generic states of the effective description,
and thus is not itself an isometry. Projecting the result of V †

BFP on the dynamically generated
subspace restores unitarity, however. We also show that both VBF and VBFP are equivariant,
commuting with time evolution for the two descriptions. We conclude the section with a
demonstration that both maps successfully reproduce the Page curve.
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In this section we will always assume that black hole states are generated from unitary
dynamics and are a part of the dynamically generated subspace. In the effective description,
we define a dynamically generated state using the effective dynamics,

|Ψ̂i(t)⟩ℓrRout ≡ Û |Ψi⟩Rin |MAX⟩r,Rout , (3.1)

where we’ve included (t) in the ket to indicate this state is an element of the dynamically
generated subspace and to emphasize the time dependent nature of these states. Dynamically
generated states in the effective description are characterized by the initialization of the
Hawking pairs rRout in the maximally entangled state. Thus |Ψ̂(t)⟩ lives in a subspace
of dimension |Rin|.

We also define a dynamically generated subspace of the fundamental description. We
imagine that the fixed states f are completely determined by the conditions of the collapse
that formed the black hole; therefore, they carry no additional information than what is
already in Rin. We define a dynamically generated state of the fundamental description
using the fundamental dynamics,

|Ψi(t)⟩BRout ≡ U |Ψi⟩Rin |ψ⟩f . (3.2)

The dynamically generated subspace of the fundamental description defined by these states
has dimension |Rin|, the same size as the dynamically generated subspace of the effective
description.

It will be useful to define projectors onto these dynamically generated subspaces. For
the effective description, we define

P̂t ≡
∑

i

|Ψ̂i(t)⟩⟨Ψ̂i(t)|, (3.3)

with the sum ranging over an orthonormal basis {|Ψ̂i(t)⟩} of the dynamically generated
subspace. Similarly, we define a projector onto the dynamically generated subspace of the
fundamental description,

Pt ≡
∑

i

|Ψi(t)⟩⟨Ψi(t)|, (3.4)

with the sum ranging over a similar orthonormal basis {|Ψi(t)⟩}. We note that both of these
projectors are time dependent since the dynamically generated states they are constructed
from depend on the unitary dynamics Ut and Ût.

3.1 The BF map acts unitarily

We begin with the action of the backwards-forwards map VBF (2.8) on the dynamically
generated states (3.1) of the effective description. Recall that the backwards-forwards map
begins by performing backwards effective evolution. This backwards evolution includes
the annihilation of Hawking pairs to the vacuum, which we interpret as post-selection on
⟨MAX|r,Rout . Thus acting on (3.1) with VBF, we find

VBF|Ψ̂i(t)⟩ℓrRout =
(
U |ψ⟩f ⟨MAX|r,RoutÛ

†
)
Û |Ψi⟩Rin |MAX⟩r,Rout

= U |Ψi⟩Rin |ψ⟩f

= |Ψi(t)⟩BRout . (3.5)

– 11 –



J
H
E
P
0
6
(
2
0
2
4
)
1
2
6

VBF maps a dynamically generated state of the effective description to a dynamically generated
state of the fundamental description. Similarly, we can ask how the adjoint of the backwards-
forwards map,

V †
BF = Û |MAX⟩r,Rout⟨ψ|fU † (3.6)

acts on dynamically generated states of the fundamental description. V †
BF acts on states in

the fundamental description, first evolving them backwards using fundamental dynamics.
Post-selection is performed on f being in the fixed state ⟨ψ|f as they are blue-shifted to high
energies in the backwards evolution. Maximally entangled radiation is then inserted on rRout
before forwards effective dynamics are applied. Acting on (3.2), the adjoint gives

V †
BF|Ψi(t)⟩BRout =

(
Û |MAX⟩r,Rout⟨ψ|fU †

)
U |Ψi⟩Rin |ψ⟩f

= Û |Ψi⟩Rin |MAX⟩r,Rout

= |Ψ̂i(t)⟩ℓrRout . (3.7)

V †
BF then maps a dynamically generated state of the fundamental description to a dynamically

generated state of the effective description. We see that the backwards-forwards map and
its adjoint take states back and forth between the dynamically generated subspaces of both
descriptions; it never maps a dynamically generated state to a generic state of the other
Hilbert space. Furthermore, inner products between states in each dynamically generated
subspace are preserved, and VBF acts unitarily on the dynamically generated subspace of both
descriptions. We express this fact as operator equations using the projectors (3.3) and (3.4),

P̂tV
†

BFVBFP̂t = P̂t (3.8)

PtVBFV
†

BFPt = Pt (3.9)

It is good that VBF acts unitarily, since the backwards-forwards map is constructed directly
from backwards and forwards unitary evolution. Furthermore, the above results are exact

— no averaging over U or Û was needed to find them.
We also note that the backwards-forwards map is equivariant: effective description time

evolution followed by the holographic map is equivalent to the holographic map followed
by fundamental description time evolution,

Vt+1Ût+1 = Ut+1Vt. (3.10)

This was an important property of the dynamical non-isometric code first proposed by PHEVA
in [1]. VBF is manifestly equivariant, as can be seen by substituting (2.8) into (3.10).

3.2 The BFP map acts isometrically

We now turn to the action of the backwards-forwards-post-selection (BFP) map (2.9) on
the dynamically generated subspace. The fact that the post-selection acts at the end of the
map on rR′

out, instead of earlier on rRout, will have interesting consequences for the action
of the BFP map on dynamically generated states.

First, we check the action of VBFP on dynamically generated states of the effective
description (3.1),

VBFP|Ψ̂i(t)⟩ℓrRout = |r|
(
⟨MAX|r,R′

out
U |ψ⟩f Û

†
)
Û |Ψi⟩Rin |MAX⟩r,Rout

= |r|⟨MAX|r,R′
out

|Ψi(t)⟩BR′
out

|MAX⟩r,Rout . (3.11)
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Using a circuit representation,

VBFP|Ψ̂i(t)⟩ℓrRout =

|Ψ⟩Rin |ψ⟩f
|MAX⟩r,Rout

U

|r|⟨MAX|r,R′
out

, (3.12)

we see that VBFP maps a dynamically generated state of the effective description to a
dynamically generated state of the fundamental description followed by a teleportation
protocol acting on the radiation degrees of freedom. We can remove the teleportation by
unbending the radiation lines, finding

VBFP|Ψ̂i(t)⟩ℓrRout = |Ψi(t)⟩BRout . (3.13)

VBFP indeed maps states in the dynamically generated subspace of the effective description
to dynamically generated states of the fundamental description. Furthermore, inner products
of these states are preserved. Taking an inner product of (3.12) with itself gives

⟨Ψ̂j(t)|V †
BFPVBFP|Ψ̂i(t)⟩ = |r|2

|Ψi⟩Rin |ψ⟩f

U

⟨MAX|r,R′
out

|MAX⟩r,R′
out

|MAX⟩r,Rout

⟨MAX|r,Rout

U †

⟨Ψj |Rin ⟨ψ|f

(3.14)

Straightening the green and blue lines adds a factor of 1/|r|2, which cancels with the factor
of |r|2 inserted to maintain normalization after post-selection. Thus, (3.14) reduces to(

⟨Ψj |Rin⟨ψ|f
)
U †U

(
|Ψi⟩Rin |ψ⟩f

)
= δij . (3.15)

Indeed, the BFP map acts isometrically on dynamically generated states in the effective
description, as would be expected from a generic teleportation protocol. In fact, this result
did not require any averaging over U or Û — inner products of states given by (3.1) are
preserved exactly.

We now turn to the action of the adjoint of the BFP map,

V †
BFP = |r|Û⟨ψ|fU †|MAX⟩r,R′

out
(3.16)
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on dynamically generated states of the fundamental description (3.2). The adjoint of the
BFP map differs from the adjoint of the backwards-forwards map in an important way:
instead of using radiation Rout from the dynamically generated fundamental state in the
backwards evolution of the fundamental description, V †

BFP applies U † to the maximally
entangled radiation R′

out inserted at the beginning of the map. The remainder of the adjoint
map works similarly, with post-selection on the backwards evolved fixed states ⟨ψ|f . Acting
on (3.2), the adjoint gives

V †
BFP|Ψi(t)⟩BRout =

(
|r|Û⟨ψ|fU †|MAX⟩r,R′

out

)
U |Ψi⟩Rin |ψ⟩f = |r|

Û

⟨ψ|f

U †

|MAX⟩r,R′
out

U

|Ψi⟩Rin |ψ⟩f

(3.17)
We see that r will not be in the maximally entangled state with Rout before the application of
Û (as is required of a dynamically generated state) because it was inserted in the maximally
entangled state with R′

out instead. Therefore, V †
BFP does not produce a state with support

only in the dynamically generated subspace,

V †
BFP|Ψi(t)⟩BRout ̸= |Ψ̂i(t)⟩ℓrRout . (3.18)

Instead, V †
BFP maps dynamically generated states of the fundamental description to generic

states of the effective Hilbert space. Furthermore, VBFP does not even preserve the inner
product of dynamically generated fundamental states. Taking the inner product of (3.17)
with itself and averaging over U using (A.3), we find∫

dU ⟨Ψj(t)|VBFPV
†

BFP|Ψi(t)⟩= |r|2

|B|2|r|2−1

(
|B|·|ℓ|·|r|+|B|2−1− |B|·|ℓ|

|r|

)
δij , (3.19)

which generically deviates from unit norm. V †
BFP does not act isometrically on dynamically

generated states of the fundamental description, and therefore VBFP cannot act as a unitary
on the dynamically generated subspaces of both descriptions. This emphasizes the fact that
the BFP map does not represent time dynamics in either description. As before, we can
summarize these results as operator equations:

P̂tV
†

BFPVBFPP̂t = P̂t (3.20)∫
dU PtVBFPV

†
BFPPt = |r|2

|B|2|r|2 − 1

(
|B| · |ℓ| · |r| + |B|2 − 1 − |B| · |ℓ|

|r|

)
Pt (3.21)
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VBFPÛ =

|MAX⟩r,Rout

Û

Û †

|ψ⟩f

U

|r|⟨MAX|r,R′
out

|ψ⟩f
|MAX⟩r,Rout

U

|r|⟨MAX|r,R′
out

|ψ⟩f

U

Figure 6. Demonstrating equivariance is satisfied by VBFP. The left figure shows time evolution in
the effective description composed with the BFP map.

While the result of V †
BFP is not a dynamically generated state, it does have non-zero overlap

with the dynamically generated subspace. We could force the result of V †
BFP into the

dynamically generated subspace of the effective description by applying the projector (3.3),

P̂tV
†

BFP|Ψi(t)⟩BRout = |Ψ̂i(t)⟩ℓrRout . (3.22)

In fact, adding the projector restores preservation of the inner product without the need
for averaging,

⟨Ψj(t)|VBFPP̂tV
†

BFP|Ψi(t)⟩ = δij , (3.23)

where we used P̂ †
t = P̂ 2

t = P̂t. Therefore P̂tV
†

BFP acts isometrically, whereas V †
BFP alone

does not,

PtVBFPP̂tV
†

BFPPt = Pt. (3.24)

The BFP map is also equivariant, although demonstrating that it satisfies (3.10) is not
as straightforward as it was for the backwards-forwards map. Figure 6 demonstrates that
composing effective dynamics with VBFP indeed gives fundamental dynamics, proving equiv-
ariance.3 Our work in [20] went further to show that equivariance still holds for VBFP
in the presence of exterior interactions between Rin and Rout, even though these exterior
interactions drop out of the holographic map.

3.3 Relationship between BF and BFP

Before turning to the derivation of the Page curve, we compare the two maps VBF and
VBFP on dynamically generated states. One of the most important results in our previous
work [20] demonstrated the equivalence of VBF and VBFP on dynamically generated states of
the effective description. The transformations relating the two are reproduced in figure 7,
and we can represent the result as an operator equation:

VBFP̂t = VBFPP̂t. (3.25)
3This result is essentially the same as the result of (3.12), but we repeat it here for clarity.
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VBF =

Û †

⟨MAX|r,Rout

|ψ⟩f

U

Û †

⟨MAX|r,Rout

|ψ⟩f

U

|r|⟨MAX|r,R′
out

|MAX⟩r,Rout

Û †

|ψ⟩f

U

|r|⟨MAX|r,R′
out

= VBFP

Figure 7. The transformations used in [20] to equate VBF and VBFP on the dynamically generated
subspace of the effective description.

V †
BF =

Û

|MAX⟩r,Rout

⟨ψ|f

U †

Û

|MAX⟩r,Rout

⟨ψ|f

U †

|r||MAX⟩r,R′
out

⟨MAX|r,Rout

Û

⟨ψ|f

U †

|r||MAX⟩r,R′
out

= V †
BFP

Figure 8. The transformations of figure 7 cannot relate the adjoints of the backwards-forwards map
(left) and the BFP map (right) since fundamental dynamics do not guarantee that the Hawking pairs
rRout will be in the maximally entangled state.

We note that the second transformation in figure 7 — replacing the projector |MAX⟩⟨MAX|
with the identity 1 — is only possible because we are restricting to the dynamically generated
subspace. This restriction guarantees that the Hawking pairs rRout will be returned to the
maximally entangled state by the backwards effective dynamics Û †, on which the projector
acts trivially.

We interpret the inverse transformations (going from right to left in figure 7) as the analog
of the “straightening procedure” of [1] that relates PHEVA’s dynamical holographic map to the
fundamental dynamics. When interior interactions in the effective description were included
by [14] without adjusting the map, this straightening procedure led to partially transposed
unitaries in the fundamental dynamics that spoiled the unitarity of black hole evaporation. By
including interior interactions in our maps directly, we have demonstrated that the isometric
BFP map can be related to unitary backwards-forwards map in a way that does not lead to
partially transposed unitaries. The unitarity of black hole evaporation is preserved.

However, it is not possible to relate the adjoints V †
BF and V †

BFP with similar
transformations,

V †
BFPt ̸= V †

BFPPt, (3.26)

since (3.17) demonstrated that V †
BFP maps fundamental dynamically generated states outside

of the dynamically generated subspace of the effective description. This is further demon-
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strated by figure 8; the projector onto the maximally entangled state cannot be replaced
with the identity since fundamental dynamics do not guarantee that the Hawking pairs rRout
will be in the maximally entangled state.

Instead, we found that it is P̂tV
†

BFP that acts isometrically on the dynamically generated
subspace of the fundamental description. Therefore we expect

P̂tV
†

BFPt = P̂tV
†

BFPPt (3.27)

to be true. Indeed, projecting (3.25) onto the dynamically generated subspace of the
fundamental description and taking the overall adjoint gives exactly this relation between
the adjoints of the two maps.

3.4 Page curve

The work of [1] goes further to derive the QES formula for the entropy of the radiation with
their dynamical map, obtaining the Page curve. We show here that both the BF and BFP
maps also reproduce the same QES formula and Page curve.

First, we note that the effective dynamics we presented in [20] don’t involve a mechanism
that allows information to escape the black hole. Because the horizon causally separates
the interior and exterior of the black hole, we don’t include any unitaries Ût in the effective
description that connects ℓr modes with Rout. Thus each Ût only keeps information behind
the horizon. A naive calculation of the radiation’s entropy shows that it can only increase,
giving the Hawking curve.

Holographic maps provide a proxy for these missing dynamics to calculate the correct
entropy of the radiation. Applying either holographic map to the effective dynamics, we
map to the fundamental description where the calculation of the radiation’s entropy does
give the Page curve. Calculating the fine-grained entropy S2(Ψ̂Rout) of the radiation after
application of the VBF or VBFP requires an average over U . We will perform this integration
using the spin network method described in appendix A. Figure 9 shows the leading two
contributions to the average over U of e−S2(Ψ̂Rout ) using VBFP for n0 = 4 and m0 = 2 up until
t = 2. The result for VBF is the same and can be found by straightening the bent radiation
lines. Generalizing to arbitrary n0, m0, and t, these evaluate to

q−2t and q−(n0+t)e−S2(Ψ̂Rin ) (3.28)

respectively, where we’ve used the large q approximation. These terms will dominate at
different times; taking a logarithm, we find the same Page curve as in [1],

S2(Ψ̂Rout) = min
[
2t log q, (n0 − t) log q + S2(ΨRin)

]
. (3.29)

Assuming for the moment that ΨRin is pure, the first term in (3.29) dominates for |Rout| < |B|
and the second dominates for |Rout| > |B|. The dominance of the terms will switch when
|Rout| ∼ |B|, and we define this to be the Page time,

tPage ∼
n0
3 . (3.30)

Using a mixed state for ΨRin will only push the Page time later. If we also consider a more
general set of effective dynamics where I qudits fall in and O qudits are radiated at each
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⟨Ψ, ↑|Rin ⟨ψ, ↑|f

|↑⟩B |↓⟩B

⟨Ψ, ↑|Rin ⟨ψ, ↑|f

|↑⟩B |↓⟩B

Figure 9. The two dominant contributions in the calculation of the fine-grained entropy of Rout
using the BFP holographic map. Green dots indicate the insertion of a ↑ state; red dots indicated the
insertion of a ↓ state.

time step, the Page time is given by4

tPage ∼
n0 + S2(ΨRin)

2O − I
. (3.31)

Choosing I = 1 and O = 2 gives the dynamics shown in figure 1 and reproduces (3.30) above.
Had we instead chosen I = 0 and O = 1 (letting one qudit escape as radiation per time step
and none fall in) we would’ve found the usual tPage ∼ n0/2.

4 Action on generic states

Now that we have reviewed the successes of the backwards-forwards and BFP maps on
the dynamically generated subspace, we turn to generic states of the effective Hilbert
space. The first dynamical holographic map proposed by PHEVA was shown to satisfy two
important criteria demonstrating its effectiveness on generic states: (1) it acts isometrically
on average with exponentially small fluctuations, and (2) it provides a good state-dependent
reconstruction of unitary operators in the effective description on BRout in the fundamental
description. We show here that the BFP map also satisfies these criteria, continuing to
demonstrate that it is a proper generalization of PHEVA’s work to include non-trivial interior
interactions, while the BF map does not.

For the remainder of this work, we drop the assumption that black hole states are in the
dynamically generated subspaces of either description. In particular, we will not assume r
and Rout will return to a maximally entangled state after backwards evolution in the effective
description. Similarly, we will not assume that a state in the fundamental description was
obtained by fundamental dynamics applied to a particular fixed state on f . Any state on the
full effective or fundamental Hilbert spaces can be used as an input to the backwards-forwards
or BFP maps in what follows.

4In [1], the Page time was identified as the time when |ℓ| · |r| ∼ |B|; at this time, the holographic map
transitions from an approximate isometry to non-isometric. For general I and O, this time is t ∼ (n0−m0)/(2O).
Since both Page times are linear in n0, we take their difference to be insignificant.
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4.1 Failure of the BF map

We begin by showing that the backwards-forwards map does not even satisfy the first criterion
for acting on generic states: it does not act isometrically on average. Performing an average
over U and Û of V †

BFVBF acting on generic states, we find

∫
dÛdU ⟨Ψ̂j |ℓrRoutV

†
BFVBF|Ψ̂i⟩ℓrRout =

∫
dÛdU

|Ψ̂i⟩ℓrRout

Û †

⟨MAX|
|ψ⟩f

U

⟨Ψ̂j |ℓrRout

Û

|MAX⟩
⟨ψ|f

U †

=
∫
dÛ

|Ψ̂i⟩ℓrRout

Û †

⟨MAX|
|MAX⟩

Û

⟨Ψ̂j |ℓrRout

(4.1)
where we used the unitarity of U to remove it in the second equality without a need for
averaging. Averaging over Û using (A.2) gives a factor of 1/|r|, and straightening the now
connected radiation lines gives a second factor of 1/|r|. Together, we find

∫
dÛ⟨Ψ̂j |ℓrRoutV

†
BFVBF|Ψ̂i⟩ℓrRout = 1

|r|2
δij . (4.2)

Therefore VBF does not preserve the inner product of generic effective description states
on average. Instead, it tends to decrease the inner product, indicating that the backwards-
forwards map is annihilating too many generic states.

We can intuitively understand this failure of the backwards-forwards map as follows.
Consider a state |Ψ⟩Rin that collapses unitarily into a black hole and begins evaporating
by the effective dynamics. A naive measurement of the interior will perturb the state in
a way that cannot be undone by the backwards evolution in the backwards-forwards map.
Therefore, the state that comes out of the black hole after backwards evolution could be
in some state |Ψ′⟩Rin not equal to the original. Instead, the original state |Ψ⟩ would now
be shared between the Rin and radiation r modes stored after the backwards evolution. If
we were to follow the backwards-forwards map and post-select on rRout at this point, the
information now stored in the radiation would be lost. In this way, the backwards-forwards
map annihilates too many generic states.

4.2 Deviation of BFP from isometry

Following the failure of the backwards-forwards map on generic states, we test the BFP
map against the two criteria introduced in [1]. First, we check the action of V †

BFPVBFP on

– 19 –



J
H
E
P
0
6
(
2
0
2
4
)
1
2
6

generic states of the effective Hilbert space,∫
dÛdU ⟨Ψ̂j |ℓrV

†
BFPVBFP|Ψ̂i⟩ℓr

=
∫
dÛdU |r|2

|Ψ̂i⟩ℓr

Û †

|ψ⟩f

U

⟨MAX|

⟨Ψ̂j |ℓr

Û

⟨ψ|f

U †

|MAX⟩ =
∫
dÛ |r|2 |B|

|B| · |R′
out|

|Ψ̂i⟩ℓr

Û †

⟨MAX|
|MAX⟩

Û

⟨Ψ̂j |ℓr

, (4.3)

where we’ve temporarily dropped the Rout factor since VBFP acts trivially on the outgoing
radiation. Since we aren’t assuming that rRout began in the maximally entangled state, we
cannot simply get rid of post-selection by straightening lines as we did in (3.14). Instead,
we integrate U over the Haar measure using equation (A.2); the result of this integration
is shown in the second equality of (4.3). We can now straighten the connected radiation
lines, contributing another factor of 1/|r|; this allows the effective dynamics to reduce to the
identity without any need for integration. Recalling that |R′

out| = |Rout| = |r|, we find∫
dU ⟨Ψ̂j |ℓrV

†
BFPVBFP|Ψ̂i⟩ℓr = δij . (4.4)

For Haar average fundamental dynamics U , the BFP map acts isometrically on generic
states of the effective Hilbert space.

It is not enough to only act isometrically on average; PHEVA demonstrated that
holographic maps for the black hole interior must have fluctuations around this average that
are exponentially small in the black hole’s entropy. In calculating the fluctuations, it will be
useful to consider overlaps between non-orthogonal states; for this we define

|Ψ̂α⟩ℓrRout =
∑

i

αi|Ψ̂i⟩ℓrRout , (4.5)

such that 0 ≤ ⟨Ψ̂β |Ψ̂α⟩ ≤ 1. As in [1], we quantify the fluctuations of VBFP about isom-
etry using ∫

dÛdU
∣∣∣⟨Ψ̂β |ℓrRoutV

†
BFPVBFP|Ψ̂α⟩ℓrRout − ⟨Ψ̂β |Ψ̂α⟩ℓrRout

∣∣∣2
=

∫
dÛdU ⟨Ψ̂β |⟨Ψ̂α|

(
V †

BFPVBFP
)⊗2|Ψ̂α⟩|Ψ̂β⟩ −

∣∣⟨Ψ̂β |Ψ̂α⟩
∣∣2, (4.6)
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where we have dropped the ℓrRout subscripts in the second line for ease of reading. Equa-
tion (A.3) is required to integrate over the two copies of V †

BFPVBFP in the first term. Integrating
over U and straightening any bent radiation lines gives

∫
dÛdU |r|4

|Ψ̂α⟩ℓrRout

Û †

|ψ⟩f

U

⟨MAX|

⟨Ψ̂β |ℓrRout

Û

⟨ψ|f

U †

|MAX⟩

|Ψ̂β⟩ℓrRout

Û †

|ψ⟩f

U

⟨MAX|

⟨Ψ̂α|ℓrRout

Û

⟨ψ|f

U †

|MAX⟩

=
∫
dÛ

|r|2

|B|2|r|2 − 1
[
|B|2|⟨Ψ̂α|Ψ̂β⟩ℓrRout |2 + |B| tr

(
(Ψ̂α)Rout(Ψ̂β)Rout

)]

− |r|2

|B| · |r|(|B|2|r|2 − 1)


|B|

|Ψ̂α⟩ℓr |Ψ̂β⟩ℓr

Û † Û †

Û Û

⟨Ψ̂β |ℓr ⟨Ψ̂α|ℓr

+ |B|2

|Ψ̂α⟩ℓr |Ψ̂β⟩ℓr

Û † Û †

Û Û

⟨Ψ̂β |ℓr ⟨Ψ̂α|ℓr


(4.7)

where (Ψ̂α)Rout = trℓr |Ψ̂α⟩⟨Ψ̂α|ℓrRout . Integrating the last two terms of (4.7) over Û using (A.3)
and plugging the result in (4.6), we find the fluctuations of the BFP map around isometry:∫

dÛdU
∣∣∣⟨Ψ̂β |ℓrRoutV

†
BFPVBFP|Ψ̂α⟩ℓrRout − ⟨Ψ̂β |Ψ̂α⟩ℓrRout

∣∣∣2
= (|B| · |ℓ| · |r| − 1)(|r|2 − 1)

(|B|2|r|2 − 1)(|ℓ|2|r|2 − 1)

[
|ℓ| · |r| tr

(
(Ψ̂α)Rout(Ψ̂β)Rout

)
−

∣∣⟨Ψ̂β |Ψ̂α⟩ℓrRout

∣∣2].
(4.8)

To determine the strength of these fluctuations, we find an upper bound of (4.8). We can
maximize over the choice of Ψ̂α and Ψ̂β by setting

tr
(
(Ψ̂α)Rout(Ψ̂β)Rout

)
= 1,

∣∣⟨Ψ̂β |Ψ̂α⟩ℓrRout

∣∣2 = 0. (4.9)
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Applying the inequality
1

x− 1 ≤ 2
x
, x ≥ 2, (4.10)

on the overall prefactor twice gives an upper bound on the fluctuations of V †
BFPVBFP as∫

dÛdU
∣∣∣⟨Ψ̂β |ℓrRoutV

†
BFPVBFP|Ψ̂α⟩ℓrRout − ⟨Ψ̂β |Ψ̂α⟩ℓrRout

∣∣∣2 ≤ 4
|B|

. (4.11)

For average U and Û , the fluctuations of the BFP map around isometry are indeed expo-
nentially small in the black hole’s entropy, thanks to the factor of |B| in the denominator.
Therefore, the backwards-forwards map preserves the inner product of all generic states on
the effective Hilbert space with exponentially small errors. Furthermore, this upper bound
differs from the upper bound on fluctuations of PHEVA’s dynamical model by only a factor
of 2; for convenience, we reproduce their exact result and bound here,5∫

dÛdU
∣∣∣⟨Ψ̂β |ℓrRoutV

†
PHEVAVPHEVA|Ψ̂α⟩ℓrRout − ⟨Ψ̂β |Ψ̂α⟩ℓrRout

∣∣∣2
= |r| − 1

|B|2|r|2 − 1

[
|B| · |r| tr

(
(Ψ̂α)Rout(Ψ̂β)Rout

)
−

∣∣⟨Ψ̂β |Ψ̂α⟩ℓrRout

∣∣2] ≤ 2
|B|

. (4.12)

Figure 10 compares the exact fluctuations for the BFP map in (4.8) with those for PHEVA’s
dynamical map in (4.12) as a function of time using

|B| = qn0−t, |r| = q2t, |ℓ| = qm0+t. (4.13)

The parameters q = 2, n0 = 10, m0 = 1, and tr((Ψ̂α)Rout(Ψ̂β)Rout) = 1 were used for both
plots. We see that fluctuations of both models behave similarly, getting larger at late times.
With these choices of parameters, the fluctuations of the BFP map are slightly larger than
PHEVA’s dynamical map, but their agreement strengthens as the black hole continues to
evaporate. We note that the BFP map does have smaller fluctuations than PHEVA’s map
for other choices of parameters. Agreement between the two strengthens as q is increased
since both expressions have the same large q approximation,∫

dÛdU
∣∣∣⟨Ψ̂β |ℓrRoutV

†V |Ψ̂α⟩ℓrRout − ⟨Ψ̂β |Ψ̂α⟩ℓrRout

∣∣∣2
≈ q−n0+t tr

(
(Ψ̂α)Rout(Ψ̂β)Rout

)
, large q. (4.14)

We’ve now seen that the BFP map satisfies the first criterion for a holographic map acting
on generic states: it preserves the inner product of generic states on average with exponentially
suppressed fluctuations. Furthermore, it does so in a way comparable to the dynamical
holographic maps proposed by PHEVA in [1]. We note that unlike previous results, this did
require averaging Û over the Haar measure. We do not expect each Ût, which are determined
by the dynamics of semiclassical gravity, to be strongly scrambling or complex enough to be
well modeled by Haar random unitaries. Instead, we expect unitary k-designs could be used
to achieve the above integrals without making the dynamics too scrambling or complex.

Before continuing to reconstruction using the BFP map, we comment on the relationship
between the BFP map and the backwards-forwards map. As described in section 3.3,

5PHEVA found fluctuations in equation (2.7) of [1] for their generic holographic map defined in equation (2.6)
of this work. The result quoted here applies to their dynamical holographic map defined here in (2.7).
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Figure 10. Plots comparing the fluctuations around isometry as a function of time for VBFP and
VPHEVA using q = 2, n0 = 10, and m0 = 1. The left panel plots the exact expressions for the BFP
map (4.8) in blue and PHEVA’s dynamical map (4.12) in dashed red. The right panel shows the
fractional difference between the two, (BFP − PHEVA)/PHEVA. tr((Ψ̂α)Rout(Ψ̂β)Rout) was set to 1
in all plots; the color shade indicates the value of |⟨Ψ̂β |Ψ̂α⟩ℓrRout |2, with 0 being the darkest, and 1
being the lightest.

the transformations relating the two allowed us to argue that the unitarity of black hole
evaporation was preserved by the map, since they connect the BFP map to the unitarity of the
backwards-forwards map on dynamically generated states. However, these transformations
are no longer valid for generic states. We can no longer guarantee that radiation modes in
the effective description will backwards evolve to the maximally entangled state, so we cannot
replace the projector |MAX⟩⟨MAX|r,Rout with the identity in the second step of figure 7.
Even so, we’ve seen that the backwards-forwards map no longer acts isometrically on generic
states, let alone unitarily. Therefore, we cannot claim unitarity of black hole evaporation
for the full effective Hilbert space.

However, there is no issue here — generic states can only be reached by a measurement
performed by an interior observer. Since an observer cannot force themselves to forget the
result of their measurement, there is no reason to expect unitarity from their perspective. A
second observer who hasn’t learned the result of the measurement would see no violation of
unitarity; all that’s occurred from their perspective is a dynamical unitary entangling the
first observer with the black hole interior. This keeps the interior state in the dynamically
generated subspace, where both the transformations of figure 7 and unitarity still hold.

4.3 Reconstruction using BFP

We now check the second criterion for a holographic map to work properly on generic
states: the BFP map must be able to reconstruct non-dynamical effective description unitary
operators in the fundamental description. It was shown in [1] that PHEVA’s holographic maps
provided a state-dependent reconstruction somewhere on BRout at all times. Furthermore,
reconstruction on B and Rout separately implied the appropriate bounds for entanglement
wedge reconstruction:

Reconstruction on B =⇒ S(Ψ̂Rout) ≪ S(Ψ̂L) + log |B| (4.15)
Reconstruction on Rout =⇒ S(Ψ̂Rout) ≫ S(Ψ̂L) + log |B|. (4.16)
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The ability of their holographic maps to reconstruct measurements performed by an observer
in the black hole interior then follows from their ability to reconstruct unitary operators
entangling the observer and their measurement apparatus with the interior state.

Here, we demonstrate that the BFP map provides an equally good state-dependent
reconstruction of interior unitaries W in the fundamental description. To do so, we follow
the ideas laid out by theorem 3.7 of [11] and theorem 5.2 of [1]. In our current notation,
these state that if the action of W ∈ Heff on the effective Hilbert space decouples from
a reference system L,∥∥ trBRout

(
VBFPW |Ψ̂⟩⟨Ψ̂|W †V †

BFP
)
− trBRout

(
VBFP|Ψ̂⟩⟨Ψ̂|V †

BFP
)∥∥

1 ≤ ϵ2, (4.17)

then there exists some unitary operator W̃ ∈ Hfun acting on the complement of L in the
fundamental Hilbert space such that∥∥W̃VBFP|Ψ̂⟩ − VBFPW |Ψ̂⟩

∥∥ ≤ ϵ1 (4.18)

with ϵ1 ≤ √
ϵ2. In other words, if the reference system L cannot be used to discern whether

or not W was applied inside the interior, then there exists some unitary acting somewhere
on BRout in the fundamental Hilbert space that serves as the reconstruction of W . We
will consider this reconstruction to be “good” if ϵ2 (and therefore ϵ1) is exponentially small
in the black hole’s entropy.

We emphasize that this state-dependent reconstruction is only needed for non-dynamical
W . Because the BFP map acts isometrically on dynamically generated states, reconstruction
in the dynamical subspace is exact and state-independent. Therefore, if W were a dynamical
unitary, it would be undone by the backwards evolution and there would exist a state-
independent reconstruction in the fundamental description. However, these nice properties
do not apply to non-dynamical unitaries since they cannot be undone by backwards dynam-
ics. In this case, VBFP acts only isometrically on average; therefore no state-independent
reconstruction is guaranteed to exist. (See theorem 5.1 of [1] for more details.) In what
follows, we will always assume W is a non-dynamical unitary.

We begin by checking the reconstruction of WℓrRout on BRout through decoupling from
L. This calculation is essentially a repeat of that done by PHEVA in [1] for their generic
holographic map, here applied to the BFP map. As in [1], we first define a W -dependent
state in the fundamental description for notational convenience:

ΨLBRout(W ) ≡
(
VBFP ⊗ 1L

)
W |Ψ̂⟩⟨Ψ̂|LℓrRoutW

†(V †
BFP ⊗ 1L

)
(4.19)

Introducing Haar integration over fundamental dynamics U and effective dynamics Û , the
left hand side of the decoupling inequality (4.17) becomes∫

dÛdU
∥∥ΨL(WℓrRout) − ΨL(1)

∥∥
1 ≤

√
|L|

∫
dÛdU

∥∥ΨL(WℓrRout) − ΨL(1)
∥∥2

2, (4.20)

where the right hand side of (4.20) is the upper bound of the L1 norm given (as in [1]) by
the L2 norm and Jensen’s inequality. Our task is then to compute the radicand of (4.20),∫

dÛdU
∥∥ΨL(WℓrRout) − ΨL(1)

∥∥2
2

=
∫
dÛdU tr

[
ΨL(WℓrRout)2 − 2ΨL(WℓrRout)ΨL(1) + ΨL(1)2

]
. (4.21)
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All three terms in the right hand side of (4.21) involve essentially the same integration,
differing only by whether or not W is acting on ℓrRout. We will demonstrate the calculation
of the first term explicitly; the remaining two will follow naturally from the first. Represented
as a circuit diagram, this term is

∫
dÛdU tr ΨL(WℓrRout)2 = |r|4 |Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

U

|ψ⟩f

⟨MAX|

W †

Û

U †

⟨ψ|f

|MAX⟩

|Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

U

|ψ⟩f

⟨MAX|

W †

Û

U †

⟨ψ|f

|MAX⟩

(4.22)

We first integrate over the four factors of fundamental dynamics U using equation (A.3)
from appendix A. This generates four terms,

|r|2

|B|2|r|2 − 2



|B|2 |Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

W †

Û

|Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

W †

Û

+ |B| |Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

W †

Û

|Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

W †

Û



− |r|2

|B| · |r|(|B|2|r|2 − 1)



|B|2 |Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

W †

Û

|Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

W †

Û

+ |B| |Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

W †

Û

|Ψ̂⟩⟨Ψ̂|ℓrRoutL

W

Û †

W †

Û


(4.23)
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Thanks to the cyclic property of the trace, Û disappears from the first and second terms
of (4.23) without the need for integration. W then also disappears in the first term to
give tr Ψ̂2

L, while the second reduces to tr(trRout W |Ψ̂⟩⟨Ψ̂|W †)2. However, we are not so
fortunate with the third and fourth terms, and we must integrate over the effective dynamics
using (A.3) from appendix A. The resulting integrations also give contributions of tr Ψ̂2

L

and tr(trRout W |Ψ̂⟩⟨Ψ̂|W †)2, but with additional factors of |ℓ| and |r|; combining with the
first two, we find∫

dÛdU trΨL(WℓrRout)2

=
[

|B|2|r|2

|B|2|r|2−1−
|B|·|ℓ|·|r|(|r|2−1)+|r|2(|ℓ|2−1)

(|B|2|r|2−1)(|ℓ|2|r|2−1)

]
trΨ̂2

L

+
[

|B|·|r|2

|B|2|r|2−1−
|B|·|r|2(|ℓ|2−1)+|ℓ|·|r|(|r|2−1)

(|B|2|r|2−1)(|ℓ|2|r|2−1)

]
tr
(
trRout W |Ψ̂⟩⟨Ψ̂|W †)2

. (4.24)

This completes the integration over the first term in the right hand side of (4.21). The result for
the second and third terms are similar — we only need to replace tr(trRout W |Ψ̂⟩⟨Ψ̂|W †)2 with

tr(trRout W |Ψ̂⟩⟨Ψ̂|W †)(trRout |Ψ̂⟩⟨Ψ̂|) and tr(trRout |Ψ̂⟩⟨Ψ̂|)2, (4.25)

respectively. The tr Ψ̂2
L term in (4.24) has no W dependence and is the same for all three

terms in (4.21); it therefore cancels in the sum. The final result for the integration over
the squared L2 norm is then given by∫

dÛdU
∣∣∣∣ΨL(WℓrRout) − ΨL(1)

∣∣∣∣2
2

=
[

|B| · |r|2

|B|2|r|2 − 1 − |B| · |r|2(|ℓ|2 − 1) + |ℓ| · |r|(|r|2 − 1)
(|B|2|r|2 − 1)(|ℓ|2|r|2 − 1)

]

× tr
[(

trRout W |Ψ̂⟩⟨Ψ̂|W †)2 − 2
(

trRout W |Ψ̂⟩⟨Ψ̂|W †)( trRout |Ψ̂⟩⟨Ψ̂|
)

+
(

trRout |Ψ̂⟩⟨Ψ̂|
)2]
.

(4.26)

To check that the action of W decouples to exponential precision in the black hole’s entropy,
we upper bound this function. We first maximize over choices of the initial state |Ψ̂⟩ in the
effective description; since tr(ρ)2 ≤ 1 for any density matrix ρ, the state dependent portion
of (4.26) takes a maximum value of 2. Applying (4.10) multiple times, we find∫

dÛdU
∣∣∣∣ΨL(WℓrRout) − ΨL(1)

∣∣∣∣2
2 ≤ 4

|B|

(
1 + 2

|ℓ|2|r|2
+ 2

|B| · |ℓ| · |r|3
)
. (4.27)

Plugging into (4.20), we find the upper bound for the average decoupling from L,

∫
dÛdU

∣∣∣∣ΨL(WℓrRout) − ΨL(1)
∣∣∣∣

1 ≤ 2
√

|L|
|B|

(
1 + 2

|ℓ|2|r|2
+ 2

|B| · |ℓ| · |r|3
)
. (4.28)

Indeed, the factor of 1/
√
|B| ensures that the information about W decouples from L to a

precision exponentially small in the black hole’s entropy. According to the theorems discussed
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earlier, this implies that the BFP map does indeed provide a good reconstruction of interior
operators W in the effective description on BRout in the fundamental description. In fact,
the first term in the upper bound (4.28) is exactly the same upper bound found by PHEVA
in [1] for their generic holographic map (2.6). The second two terms arise from the inclusion
of non-trivial effective dynamics. They are small compared to the first term (particularly at
late times) and we consider them to be “corrections” to the PHEVA result.

We also compare our reconstruction with the BFP map against reconstruction using
PHEVA’s dynamical map. The exact result for their squared L2 norm is given by,∫

dU
∣∣∣∣ΨPHEVA

L (WℓrRout) − ΨPHEVA
L (1)

∣∣∣∣2
2

= |r|2

|B|2|r|2 − 1

[
|B|DRout −

|B|
|r|

DrRout −
1
|r|
DℓRout

]
, (4.29)

where

DA ≡ tr
[(

trAW |Ψ̂⟩⟨Ψ̂|W †)2 − 2
(

trAW |Ψ̂⟩⟨Ψ̂|W †)( trA |Ψ̂⟩⟨Ψ̂|
)

+
(

trA |Ψ̂⟩⟨Ψ̂|
)2]
. (4.30)

We note that our result for the BFP map (4.26) also depends on DRout , but DrRout and
DℓRout contribute to the decoupling for PHEVA’s dynamical map only. The upper bound
on the L1 norm for PHEVA’s dynamical map is then∫

dU
∣∣∣∣ΨPHEVA

L (WℓrRout) − ΨPHEVA
L (1)

∣∣∣∣
1 ≤ 2

√
|L|
|B|

(
1 − 1

|r|
− 1

|B| · |r|

)
, (4.31)

which also has the same leading term as the generic map accompanied by small corrections
from the fundamental dynamics alone. We note that the corrections appearing in (4.28)
involve additional factors of |ℓ| and |r| thanks to the effective dynamics.

Figure 11 compares the exact expressions for the squared L2 decoupling using the BFP
map (4.26) and PHEVA’s dynamical map (4.29) as a function of time during evaporation.
Common parameters were set to q = 2, n0 = 10, m0 = 1, and DRout = 2. The full range
of (4.29) from the maximum at DrRout = DℓRout = 0 to the minimum at DrRout = DℓRout = 2
is shaded in both plots. We see that the BFP map always falls within the range of possible
values for PHEVA’s dynamical map, performing better for certain choices of |Ψ̂⟩. Stronger
agreement can be seen at later times.

Reconstruction on B. Now that we have verified that the BFP map can be used to
reconstruct W anywhere on BRout, we check that the reconstructions on B and Rout separately
satisfy the requirements of entanglement wedge reconstruction. Many of the details involved
in these calculations are similar to those above for the reconstruction on BRout, so we will
suppress them and focus on the relevant differences.

Generalizing the above theorems, our ability to use VBFP to reconstruct Wℓr on B depends
on the decoupling of Wℓr from both L and Rout,∫

dÛdU
∥∥ΨLRout(Wℓr) − ΨLRout(1)

∥∥
1

≤
√
|L| · |Rout|

∫
dÛdU

∥∥ΨLRout(Wℓr) − ΨLRout(1)
∥∥2

2. (4.32)
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Figure 11. Plots comparing the squared L2 decoupling from the reference system L for the BFP
map (4.26) in blue and PHEVA’s dynamical map (4.29) in dashed red. The right panel shows the
fractional difference between the two, (BFP − PHEVA)/PHEVA. DRout was set to 2 in all plots, with
the full range of possible values with this choice for PHEVA’s dynamical map shaded.

We again bound the L1 decoupling using the L2 decoupling, here given by∫
dÛdU

∣∣∣∣ΨLRout(Wℓr) − ΨLRout(1)
∣∣∣∣2

2

=
[

|B| · |r|2

|B|2|r|2 − 1 − |B| · |r|2(|ℓ|2 − 1) + |ℓ| · |r|(|r|2 − 1)
(|B|2|r|2 − 1)(|ℓ|2|r|2 − 1)

]

×
[
2 − 2 tr

(
Wℓr|Ψ̂⟩⟨Ψ̂|W †

ℓr|Ψ̂⟩⟨Ψ̂|
)]
. (4.33)

To find an upper bound on the L2 decoupling, we maximize over choice of |Ψ̂⟩ by setting

tr
(
Wℓr|Ψ̂⟩⟨Ψ̂|W †

ℓr|Ψ̂⟩⟨Ψ̂|
)

= 0. (4.34)

Applying (4.10) and substituting into (4.32), we find∫
dUdÛ

∣∣∣∣ΨLRout(Wℓr)−ΨLRout(1)
∣∣∣∣

1 ≤ 2
√

|L|·|Rout|
|B|

(
1+ 2

|ℓ|2|r|2
+ 2
|B|·|ℓ|·|r|3

)
. (4.35)

Again, the first term is exactly what was found by PHEVA in [1] for their upper bound for
reconstruction on B. The second and third terms are the same corrections as we found in (4.28)
for the reconstruction on BRout. Requiring that the upper bound on the L1 decoupling be
exponentially small in the black hole’s entropy implies

|L| · |Rout|
(

1 + 2
|ℓ|2|r|2

+ 2
|B| · |ℓ| · |r|3

)
≪ |B| =⇒ |L| · |Rout| ≪ |B|, (4.36)

which is true for times earlier than the Page time. Therefore interior operators Wℓr can be
reconstructed on B to exponential precision before the Page time, reminiscent of entanglement
wedge reconstruction. Indeed, taking a logarithm of (4.36) gives the condition for entanglement
wedge reconstruction on B,

S2(Ψ̂Rout) ≪ log |B| + S2(Ψ̂L), (4.37)

just as was found for PHEVA’s generic holographic map in [1].
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Reconstruction on Rout. Similarly, reconstruction of Wℓr on Rout depends on the de-
coupling of both L and B,∫

dÛdU
∥∥ΨLB(Wℓr) − ΨLB(1)

∥∥
1 ≤

√
|L| · |B|

∫
dÛdU

∥∥ΨLB(Wℓr) − ΨLB(1)
∥∥2

2, (4.38)

which is upper bounded by the L2 norm,∫
dÛdU

∣∣∣∣ΨLB(Wℓr) − ΨLB(1)
∣∣∣∣2

2

=
[

|B|2|r|2

|B|2|r|2 − 1 − |r|2(|ℓ|2 − 1) + |B| · |ℓ| · |r|(|r|2 − 1)
(|B|2|r|2 − 1)(|ℓ|2|r|2 − 1)

]

×
[
2e−S2(Ψ̂Rout ) − 2 tr

(
WℓrΨ̂LℓrW

†
ℓrΨ̂Lℓr

)]
. (4.39)

This L2 norm is maximized when

tr
(
WℓrΨ̂LℓrW

†
ℓrΨ̂Lℓr

)
= 0, (4.40)

which bounds the L1 decoupling of LB as∫
dUdÛ

∣∣∣∣ΨLB(Wℓr)−ΨLB(1)
∣∣∣∣

1 ≤ 2
√

|L|·|B|
eS2(Ψ̂Rout )

(
1+ 2

|B|·|ℓ|·|r|3
+ 2
|B|2|ℓ|2|r|2

)
. (4.41)

As before, the first term agrees exactly with [1]. The second term appears as a correction in
both the reconstruction on BRout from (4.28) and the reconstruction on B from (4.35), but
the third is a new correction further suppressed by an additional factor of 1/|B|2. Requiring
the right hand side of (4.41) to be small implies

|L| · |B|
(

1 + 2
|B| · |ℓ| · |r|3

+ 2
|B|2|ℓ|2|r|2

)
≪ eS2(Ψ̂Rout ) =⇒ |L| · |B| ≪ eS2(Ψ̂Rout ).

(4.42)
Again, taking a log gives the condition for entanglement wedge reconstruction on Rout,

S2(Ψ̂Rout) ≫ log |B| + S2(Ψ̂L). (4.43)

Thus Wℓr can be reconstructed on Rout with exponential precision at times much later
than the Page time.

5 Conclusion

In this work, we have further investigated properties of the backwards-forwards and BFP
maps for encoding black hole interiors with non-trivial interior dynamics first proposed
in [20]. Restricting to the subspace of dynamically generated states, VBF acts unitarily, VBFP
acts isometrically, and both reproduce the same QES formula and Page curve as found by
PHEVA in [1]. On generic states of the effective Hilbert space, we have shown that only
the BFP map satisfies all of the same criteria as PHEVA’s dynamical map to be a “good”
holographic map: it acts isometrically on average (with exponentially small fluctuations)
and provides a exponentially precise state-dependent reconstruction on BRout that implies
entanglement wedge reconstruction.
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Furthermore, the BFP map acts as an exact isometry on dynamically generated states.
Thus the set of dynamically generated states forms a unique subspace of the effective Hilbert
space. This has two consequences. First, reconstruction of dynamical unitaries is exact
and state-independent on this subspace. Second, dynamically generated states must be
subexponentially complex according to the measure concentration results of [1]. If we take the
reference state to be the state of Rin as it crosses the horizon, this is ensured by the limited
lifetime of a black hole — only a number of gates polynomial in n0 can be applied before the
black hole evaporates. This choice of reference state is supported by the independence of
the BFP map from external interactions (as demonstrated in [20]) since any external unitary
of exponential depth will drop out of the BFP map.

It is important to note that many of the calculations in this work depend on averaging the
effective dynamics Û over the Haar measure. We find it unlikely that the interactions present
in semiclassical gravity will be strongly scrambling or complex enough to be truly modeled by
Haar random unitaries. Instead, we might opt to model the effective dynamics with a unitary
k-design that can reproduce the above integrals without being too strongly scrambling or
complex. The BFP map would then involve unitary k-designs for the effective dynamics and
pseudorandom unitaries for the fundamental dynamics (following the suggestions of [14]). We
further assume that the combination of these is random enough for the measure concentration
results of [1] to apply. So long as they do, we may continue claiming that the BFP map
acts isometrically on subexponentially complex generic states of the effective description,
just as PHEVA’s dynamical map does.

Future work is also needed to better understand how to generalize the toy models of black
holes considered here to more realistic scenarios. For example, the treatment of Hawking
modes entering and exiting the model relied on a model of modes coming down from high
energy to motivate the “freezing out” of radiation modes as they are blue-shifted towards
some ultraviolet scale during the backwards evolution in the effective description. It would
be interesting to place this within a more realistic model of effective field theory with a cutoff
interacting within, and backreacting upon, semiclassical gravity. We also did not need to
assume very much about the unitaries Û used to model interior interactions in the effective
description beyond that they are well-modeled by a unitary k-design, but one might hope that
a more realistic model incorporating more of bulk locality would constrain these further; some
progress could potentially be made using well understood models such as tensor networks
and JT gravity. There is still much work to be done in this area.

A Integration over the Haar measure

Here we review some techniques for integrating over the Haar measure. We will only cover
those formulas that are needed for the computations performed in this work; for a more
general review, see for example [24].

Haar measure integration of a quantum circuit allows us to understand the behavior of
the circuit for “typical” unitaries. The Haar measure dU is normalized such that∫

dU = 1. (A.1)

There are generic formulas for integrals over arbitrary combinations of unitaries, but we
only need two specific integrations for this work. The first involves a unitary U and its
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∫
dU

j′
1

U †

i′1

i1

U

j1

= 1
q

j′
1

i′1

i1

j1

Figure 12. A pictorial representation of equation (A.2) for the Haar integration over U involving a
single copy of U and its Hermitian conjugate.

Hermitian conjugate, ∫
dU U †

j′
1i′

1
Ui1j1 = 1

q
δi1i′

1
δj1j′

1
, (A.2)

where q is the dimension of each index. A pictorial representation of (A.2) is shown in
figure 12. The legs i1, i′1, j1, j′1 can be connected in any way by inserting delta functions and
summing over contracted indices. For example, if we connect legs i1 and i′1 with δi1i′

1
, the

completed loop gives a contribution of q and the integral reduces to the identity 1j′
1j1 .

The second integral involves two copies of a unitary and its Hermitian conjugate,∫
dU U †

j′
1i′

1
U †

j′
2i′

2
Ui1j1Ui2j2 = 1

q2 − 1
[
δi1i′

1
δi2i′

2
δj1j′

1
δj2j′

2
+ δi1i′

2
δi2i′

1
δj1j′

2
δj2j′

1

]
− 1
q(q2 − 1)

[
δi1i′

1
δi2i′

2
δj1j′

2
δj2j′

1
+ δi1i′

2
δi2i′

1
δj1j′

1
δj2j′

2

]
. (A.3)

A pictorial representation of (A.3) is shown in figure 13. We note that connecting i1, i′1 via
δi1i′

1
and i2, i′2 via δi2i′

2
again reduces the integral to the identity.

It is sometimes convenient to re-express (A.3) as a partition function over a spin system [1,
25]. Notice that all of the delta functions in (A.3) connect i to i′ (we will refer to these
as “internal” indices) and j to j′ (referred to as “external” indices). There are only two
ways to connect each set of i and j indices, leading to the four terms in (A.3). The first
connects indices of the same number, such as δi1i′

1
δi2i′

2
. These are the vertically contracted

indices in figure 13. We will denote such contractions using a spin in the ↑ state; | ↑⟩ for
the internal i indices and ⟨↑ | for the external j indices. The second class of delta functions
connects indices of different number, such as δi1i′

2
δi2i′

1
, shown by swapped contractions in

figure 13. These contractions will be denoted by a spin in the ↓ state; again |↓⟩ for internal
i indices and ⟨↓ | for external j indices.

We use the delta functions to define inner products between the “spin” basis |↑, ↓⟩ and
the “index” basis |i1i′1i2i′2⟩ as

⟨i1i′1i2i′2|↑⟩ = 1
q
δi1i′

1
δi2i′

2
, ⟨i1i′1i2i′2|↓⟩ = 1

q
δi1i′

2
δi2i′

1
. (A.4)

We can then rewrite (A.3) using the spin basis as∫
dU U † ⊗ U † ⊗ U ⊗ U = q2

q2 − 1
(
|↑⟩⟨↑ | + |↓⟩⟨↓ |

)
− q

q2 − 1
(
|↑⟩⟨↓ | + |↓⟩⟨↑ |

)
. (A.5)
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∫
dU

j′
1

U †

i′1

i1

U

j1

j′
2

U †

i′2

i2

U

j2

= 1
q2−1

i′1

i1

i′2

i2

j′
1

j1

j′
2

j2

+
i′1

i1

i′2

i2

j′
1

j1

j′
2

j2

− 1
q(q2−1)

i′1

i1

i′2

i2

j′
1

j1

j′
2

j2

+
i′1

i1

i′2

i2

j′
1

j1

j′
2

j2

Figure 13. A pictorial representation of equation (A.3) for the Haar integration over U involving
two copies of U and its Hermitian conjugate.

Taking the expectation value of (A.5) with states in the index basis reproduces (A.3). In
the spirit of (A.5), we associate two spins with the unitary U we are integrating over. The
first |↑, ↓⟩ indicates how to contract the internal indices i of U and its Hermitian conjugate;
the second ⟨↑, ↓| indicates how to contract the outer indices j. The full integration is given
by a sum over all states on these two spins, analogous to a partition function.

This technique is most effective when integrating over many different unitaries U . Con-
tracting indices between different unitaries requires an inner product on the spin basis,

⟨↑ | ↓⟩ = 1
q

(A.6)

which can be found by inserting an identity as a complete set of states in the index basis
and using (A.4). Multiple integrations can then be performed by taking products of the
right hand side of (A.5) for each unitary being averaged, with the “innermost” unitary
being the leftmost product.

This permits a useful graphical interpretation for integrating over multiple unitaries
in two copies of a quantum circuit and its hermitian conjugate. We may construct a spin
network by replacing every unitary in the circuit with two spins: one connected to all outgoing
indices, the other connected to all ingoing. Then the integration is found by summing over
all configurations of these spins. The weights of each term in the sum are seen in (A.5) and
are found as follows. A unitary with k indices and two matching spins gives a contribution of

. . .

. . .

|↑⟩

⟨↑|
=

. . .

. . .

|↓⟩

⟨↓|
= q2k

q2k − 1 (A.7)
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while the same unitary with two mismatching spins gives

. . .

. . .

|↑⟩

⟨↓|
=

. . .

. . .

|↓⟩

⟨↑|
= qk

q2k − 1 (A.8)

These simplify in a large q approximation to 1 and 1/q, respectively. Connecting legs give a
contribution according to the inner product (A.6): a leg connecting two matching spins gives
a contribution of 1, while a leg connecting two mismatching spins gives 1/q.

Dangling legs can be given a single ↑ or ↓ spin to perform certain computations. As an
example relevant to section 3.4, consider computing the average second Renyi entropy of
subsystem A for a density matrix ρAB after processing by a Haar random unitary U . We
can take the logarithm to perform the average:

∫
dU tr

(
trB UρABU

†)2 =
∫
dU

U

A B

ρ
A B

U †

U

A B

ρ
A B

U †

(A.9)

Instead of the circuit diagram on the right hand side of (A.9), we can use a spin state
representation to integrate over the two copies of U and its Hermitian conjugate:

∫
dU tr

(
trB UρABU

†)2 =
∑

s1,s2=↑,↓
|s2⟩

⟨s1|

|↓⟩ |↑⟩

⟨ρ, ↑|

(A.10)

The B subsystem is traced over by a vertical contraction in (A.9), so we fix the upper right
leg in the ↑ state. The A subsystem is left take the product (ρA)2 and is then traced over,
represented by a swapped contraction in (A.9), so we fix the A spin in the ↓ state. Since
the state ρ connects the internal legs of U and U †, we’ve inserted it into the bottom of the
spin network in the ↑ state as ⟨ρ, ↑ |. Here, the contractions give

⟨ρ, ↑|↑⟩ = tr ρ, ⟨ρ, ↓|↓⟩ = tr ρ2 = − lnS2(ρ). (A.11)

The full integration is then performed by summing over the two spins s1 and s2 for the
unitary U and using the rules described above.
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