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Abstract There is no reason why the gauge symmetry
extension is family universal as in the standard model and
the most well-motivated models, e.g. left-right symmetry
and grand unification. Hence, we propose a simplest exten-
sion of the standard model – a flavor-dependent U (1) gauge
symmetry – and find the new physics insight. For this aim,
the U (1) charge, called X , is expressed as X = x B + yL
in which x and y are free parameters as functions of fla-
vor index, e.g. for a flavor i they take xi and yi respec-
tively, where B and L denote normal baryon and lepton num-
bers. Imposing a relation involved by the color number 3,
i.e. −x1,2,...,n = xn+1,n+2,...,n+m = 3y1,2,...,n+m ≡ 3z, for
arbitrarily nonzero z, we achieve a novel U (1) theory with
implied X -charge. This theory not only explains the origin
of the number of observed fermion families but also offers
a possible solution for both neutrino mass and dark matter,
which differs from B − L extension. Two typical models
based on this idea are examined, yielding interesting results
for flavor-changing neutral currents and particle colliders,
besides those of neutrino mass and dark matter.

1 Introduction

Although the standard model (SM) has been remarkably suc-
cessful in describing the fundamental particles and interac-
tions, it is known to be an incomplete theory and requires
extension. Problems considered as limitations/shortcomings
of the SM include the existence of dark matter which makes
up most mass of galaxies and galaxy clusters in our uni-
verse [1], neutrino oscillations which require non-zero neu-
trino masses and flavor mixing [2,3], and specially why there
are just three fermion families observed in the nature [4].
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One of the most interesting extensions of the SM is an
extra gauge symmetryU (1) with associated gauge boson Z ′.
Such extension is well motivated since it not only occurs in
grand unification and string theories but also supplies a new
gauge dynamics which accounts the SM issues and experi-
mental deviations [5], for instance, solution for dark matter
[6–16], neutrino mass generation [17–21], muon anomalous
magnetic moment [22–24], asymmetric matter production
[25], and fermion family number [26,27]. It is stressed that
this type of extension can be distinguished by Z ′ mass, Z ′-
fermion couplings, extended Higgs sector, possible couplings
to a hidden sector, and kinetic mixing effect, etc.

In this work, we propose a flavor-dependent U (1) exten-
sion of the SM, which has rarely been considered in the lit-
erature [28]. The U (1) charge, labeled as X , has the form,
X = x B + yL , where free parameters x and y take val-
ues xi and yi for flavor i , respectively, while B (L) denotes
baryon (lepton) number, as usual. For brevity, we restrict the
parameter space by assuming that only xi depends on fla-
vor i , whereas yi does not, i.e. yi = z for all N f families,
where z is arbitrarily nonzero. Additionally, the xi param-
eters are separated into two types of opposite signs, which
relate to the parameter z via the color number 3, namely,
xi = −3z for the first n families, while xi = 3z for the
remaining m families, where n + m = N f . Intriguingly, we
obtain a novelU (1) theory that not only requires the presence
of right-handed neutrinos due to the anomaly cancellation (a
framework for generating nonzero neutrino masses) but also
leads to the number of fermion families to be a multiple of the
color number, 3, i.e., N f = 3(n − m). It is noted that QCD
asymptotic freedom requires N f ≤ 8, which leads two solu-
tions N f = 3 and 6. Imposing the first solution N f = 3 as
observed, we obtain n = 2 and m = 1. Besides supplying a
potential explanation to existence of three fermion families,
this theory reveals possible answers for neutrino mass and
dark matter. We will consider two realistic models recogniz-
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ing this feature. The first model, called conventional U (1)X
model, predicts tiny neutrino masses via seesaw mechanism
as well as scenario of a single dark matter. The second model,
called alternative U (1)X model, provides a scenario of two-
component dark matter, by contrast, while nonzero neutrino
masses are induced by scotogenic mechanism. In addition,
we will discuss interesting implications of each model for
flavor-changing neutral currents (FCNCs) and particle col-
liders in detail.

The rest of this work is organized as follows: In Sect. 2,
we consider anomaly cancellation conditions for the new
gauge symmetry and arguments that lead to two realistic
models. The implications of each model for neutrino mass
and dark matter are presented in Sects. 3 and 4, respectively.
In Sect. 5, we obtain constraints for each model from flavor-
changing neutral currents and particle colliders. Dark matter
phenomenology in each model is presented in Sect. 6. Lastly,
we summarize the results and make conclusion in Sect. 7.

2 U(1)X anomaly cancellation

As stated, we extend the SM by adding an extraU (1)X gauge
symmetry, such as

SU (3)C ⊗ SU (2)L ⊗U (1)Y ⊗U (1)X . (1)

The new charge, labeled as X , combines lepton and baryon
numbers,

X = x B + yL , (2)

and depends on family. That said, when X acts on a flavor i , it
becomes Xi = xi B+ yi L , where xi and yi are functions of i
for i = 1, 2, . . . , N f , while B (L) denotes total baryon (lep-
ton) number. The standard model fermions transform under
the gauge symmetry (1) as

li L = (νi L , ei L)T ∼ (1, 2,−1/2, yi ), (3)

ei R ∼ (1, 1,−1, yi ), (4)

qiL = (uiL , diL)T ∼ (3, 2, 1/6, xi/3), (5)

ui R ∼ (3, 1, 2/3, xi/3), di R ∼ (3, 1,−1/3, xi/3). (6)

First, the anomaly [SU (2)L ]2U (1)X ∼ ∑
doublets X fL

vanishes if
∑

i (xi + yi ) = 0. This equation contains 2N f

unknowns because of i = 1, 2, . . . , N f and has an infinite
number of solutions. Different solutions can be derived by
imposing some suitable assumptions, which would lead to
distinct kinds of new physics. For example, the U (1)B−L

model with xi = −yi = 1 universally for every i makes
the anomaly vanishing within each family similar to the SM,
and in this case, both theU (1)B−L model and the SM cannot
explain the existence of just three fermion families. As the
perspective of this work, we assume that only xi parameters
depend on family, whereas yi parameters do not, i.e. yi = z

for every i , where z is arbitrarily nonzero. Additionally, the
xi parameters relate to the yi parameters via the color number
3, namely, x1,2,...,n = −3z and xn+1,n+2,...,n+m = 3z, where
n + m = N f . Hence, the anomaly cancellation becomes
3[n(−z) + mz] + N f z = 0, or equivalently

N f = 3(n − m). (7)

Since n and m are integer numbers, Eq. (7) implies the num-
ber of fermion families to be a multiple of the color number,
3. On the other hand, the QCD asymptotic freedom condition
requires the family number to be less than or equal to 8, thus
N f = 3 and 6. The realistic solution is N f = 3 as coinciding
with experiment [4], which implies n = 2 and m = 1. For
convenience in reading, we use two kinds of fermion family
indices, a, b = 1, 2, 3 according to N f = 3 and α, β = 1, 2
according to n = 2, hereafter.

With the fermion content as in Eqs. (3)–(6), the [Gravity]2

U (1)X and [U (1)X ]3 anomalies are not canceled, which are
given by

[Gravity]2U (1)X ∼
∑

fermions

(X fL − X fR ) = 3z, (8)

[U (1)X ]3 ∼
∑

fermions

(X3
fL − X3

fR ) = 3z3. (9)

Similar to theU (1)B−L extension, to cancel these anomalies,
right-handed neutrinos that transform nontrivially under the
gauge symmetry (1), i.e. νi R ∼ (1, 1, 0, Xνi R ) for Xνi R �=
0, are necessarily introduced as fundamental fields, where
i = 1, 2, . . . , NR with NR is the number of right-handed
neutrinos added. Additionally, their Xνi R charges must satisfy

NR∑

i=1

Xνi R = 3z,
NR∑

i=1

X3
νi R

= 3z3. (10)

Solving the equations in (10), we obtain the following results:
there is no solution when NR = 1; there are only complex
solutions when NR = 2, which are unacceptable; and there
is an infinite number of real solutions when NR ≥ 3. Note
that the νR results obtained here include those in the B − L
extension corresponding to the case of z = −1. Particularly
considering the case of NR = 3 and requiring that at least two
of three right-handed neutrinos be identical responsible for
neutrino mass generation, we obtain two definite solutions.
The first solution is Xν1,2,3R = z, called conventional solu-
tion. The second solution is Xν1,2R = 4z and Xν3R = −5z,
called alternative solution. Each of these solutions implies a
realistic model, which will be investigated in the subsequent
sections of the present work.

Last, but not least, for the remaining non-trivial anoma-
lies, the [SU (3)C ]2U (1)X anomaly is automatically canceled
because the left and right chiral quarks have the same X value,
and the anomalies [U (1)Y ]2U (1)X and [U (1)X ]2U (1)Y also
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automatically vanish due to right-handed neutrinos having
zero hypercharge.

3 Conventional U(1)X model

3.1 Particle content

In the conventional U (1)X model, three right-handed neu-
trinos are universal under U (1)X . The fermion and scalar
contents, as well as their quantum numbers under the gauge
symmetry (1), are presented in Table 1, in which z is arbitrar-
ily nonzero. In the scalar sector, besides the SM Higgs dou-
blet labeled as �, a scalar singlet χ is necessarily presented to
breakU (1)X , determining a residual symmetry Z2, as well as
generating appropriate right-handed neutrino masses through
the coupling νRνRχ . The scalar multiplets develop vacuum
expectation values (VEVs),

〈�〉 =
(

0
v√
2

)

, 〈χ〉 = �√
2
, (11)

satisfying � � v = 246 GeV for consistency with the SM.

3.2 Matter parity and implication for single-component
dark matter

With the assumption � � v, the gauge symmetry is broken

as SU (3)C ⊗ SU (2)L ⊗ U (1)Y ⊗ U (1)X
�−→ SU (3)C ⊗

SU (2)L ⊗ U (1)Y ⊗ R
v−→ SU (3)C ⊗ U (1)Q ⊗ R, where

Q = T3 + Y is as usual, while R is a residual symmetry
of U (1)X that conserves the χ vacuum. As being a U (1)X
transformation, we have R = eiδX , where δ is a transforming
parameter. The vacuum conservation condition R〈χ〉 = 〈χ〉
implies eiδ(−2z) = 1, or equivalently δ = kπ/z for k integer.
Hence, the residual symmetry is

R = eikπX/z = (−1)kX/z . (12)

It is clear that if k = 0, then R = 1 for all fields and
every z, which is the identity transformation. Additionally,
for k �= 0, the relevant transformation R = 1 is valid for
all fields, given the minimal value of |k| = 2. Hence, the
residual symmetry R is automorphic to a discrete group, such
as Z2 = {1, g} with g = (−1)X/z and g2 = 1. Because the
spin parity, ps = (−1)2s , is always conserved by the Lorentz
symmetry, we conveniently multiply the discrete group with
the spin parity group S = {1, ps} with p2

s = 1, to perform a
new group Z2 ⊗ S, which has an invariant discrete subgroup
to be

Z2 = {1, p} (13)

with p = g × ps = (−1)X/z+2 s and p2 = 1. There-
fore, we decompose Z2 ⊗ S ∼= [(Z2 ⊗ S)/Z2] ⊗ Z2. Since

[(Z2 ⊗ S)/Z2] = {{1, p}, {g, ps}} is conserved if Z2 is con-
served, we consider Z2 to be a residual symmetry alterna-
tive to Z2. As usual, Z2 has two one-dimensional irreducible
representations, 1 according to p = 1 and 1′ according to
p = −1. All the SM fields and new scalar singlet χ transform
trivially under Z2, indicated in the last column of Table 1.

That said, the conventionalU (1)X model implies exactly a
matter parity, Z2. Because of the Z2 conservation, the model
can contain several scenarios for single-component dark mat-
ter, such as a single dark field to be either a dark (vectorlike)
fermion, labeled ξ , or a dark scalar singlet, labeled η, which
all transform nontrivially under Z2, i.e., p = −1. In what
follows, we extend the present model to include both ξ and η

candidates. These fields and their simplest quantum numbers
are collected to the last two rows of Table 1. Note that the
candidate ξ is vectorlike, and thus does not contribute to any
gauge anomalies, while the candidate η possesses vanishing
VEV, i.e. 〈η〉 = 0, due to the conservation of Z2.

3.3 Fermion mass and seesaw mechanism

The spontaneous symmetry breaking will generate fermion
masses through the Yukawa interactions, such as

L ⊃ heabl̄aL�ebR + hν
abl̄aL�̃νbR + 1

2
f ν
abν̄

c
aRνbRχ

+hdαβ q̄αL�dβR + huαβ q̄αL�̃uβR

+hd33q̄3L�d3R + hu33q̄3L�̃u3R

+hdα3

M
q̄αL�χd3R + hu3α

M
q̄3L�̃χ∗uαR

+hd3α

M
q̄3L�χ∗dαR + huα3

M
q̄αL�̃χu3R

+ya ξ̄LηνaR − mξ ξ̄LξR + H.c., (14)

where we have labeled �̃ = iσ2�
∗ with σ2 to be the second

Pauli matrix, and M is a new physics (or cutoff) scale that
defines the effective interactions. Note that the couplings h,
f ν , and y are dimensionless, whereas mξ has a mass dimen-
sion.

From the above interactions, we obtain mass matrices
for charged leptons, down-type quarks, and up-type quarks,
which are given by

[Me]ab = −heab
v√
2
, (15)

[Md ]αβ = −hdαβ

v√
2
, [Md ]33 = −hd33

v√
2
, (16)

[Md ]α3 = −hdα3
v�

2M
, [Md ]3β = −hd3β

v�

2M
, (17)

[Mu]αβ = −huαβ

v√
2
, [Mu]33 = −hu33

v√
2
, (18)

[Mu]α3 = −huα3
v�

2M
, [Mu]3β = −hu3β

v�

2M
. (19)
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Table 1 Matter content in the conventional U (1)X model

Multiplets SU (3)C SU (2)L U (1)Y U (1)X Z2

laL = (νaL , eaL )T 1 2 − 1
2 z +

νaR 1 1 0 z +
eaR 1 1 −1 z +
qαL = (uαL , dαL )T 3 2 1

6 −z +
uαR 3 1 2

3 −z +
dαR 3 1 − 1

3 −z +
q3L = (u3L , d3L )T 3 2 1

6 z +
u3R 3 1 2

3 z +
d3R 3 1 − 1

3 z +
� = (�+

1 ,�0
2)

T 1 2 1
2 0 +

χ 1 1 0 −2z +
ξ 1 1 0 2z −
η 1 1 0 z −

Therefore, the small mixing between the third quark family
and the first two quark families can be understood by either
hα3, h3β < hαβ, h33 or � < M . Diagonalizing these mass
matrices, we get the masses of the relevant particles and the
Cabibbo–Kobayashi–Maskawa matrix, as expected.

Concerning neutrinos, νaL ,R achieve a Dirac mass via hν

coupling, [MD]ab = −hν
ab

v√
2

, while νaR obtains a Majorana

mass via f ν coupling, [MM ]ab = − f ν
ab

�√
2

. Thus, the total
mass matrix of neutrinos takes the form,

LYukawa ⊃ −1

2
(ν̄L , ν̄cR)

(
0 MD

MT
D MM

)(
νcL
νR

)

+ H.c. (20)

Because of � � v, i.e. MM � MD , the active neutrinos
∼ νL acquire a small mass via the canonical seesaw to be

[mν]ab = −[MDM
−1
M MT

D]ab = (hν)2( f ν)−1v2/
√

2�, (21)

whereas the heavy neutrinos ∼ νR obtain a large mass at
the new physics scale �. Additionally, if hν is very small,
hν ∼ 10−5, similar to electron Yukawa coupling, while fixing
f ν ∼ 0.6, the observed value mν ∼ 0.1 eV requires � ∼
15 TeV. Alternatively, given that (hν)2/ f ν ∼ 1, the model
predicts � ∼ 1014 TeV close to the grand unification scale.

Lastly, since the VEV of dark scalar singlet vanishes due
to Z2 conservation, the dark fermion does not mix with right-
handed neutrinos despite the term ya ξ̄LηνaR . Therefore, the
dark fermion ξ is a physical field by itself, with an arbitrary
mass, mξ .

3.4 Gauge sector

When the gauge symmetry breaking takes place, the gauge
bosons acquire masses via the kinetic terms of scalar fields,
∑

S(D
μS)†(DμS), where S runs over scalar multiplets. The

covariant derivative is defined as

Dμ = ∂μ + igs tpG pμ + igTj A jμ + igY Y Bμ + igX XCμ,

(22)

in which (gs, g, gY , gX ), (tp, Tj ,Y, X), and (Gpμ, A jμ,

Bμ,Cμ) denote coupling constants, generators, and gauge
bosons of (SU (3)C , SU (2)L ,U (1)Y ,U (1)X )groups, respec-
tively.

The charged gauge bosons, W±, take the form with cor-
responding mass,

W± = 1√
2
(A1 ∓ i A2), mW = g2v2

4
, (23)

which implies v = 246 GeV. Because the SM scalar doublet
� is not charged under U (1)X , while the new scalar singlet
χ is not charged under the SM gauge group, there is no mass
mixing between the SM neutral gauge boson Z and the new
gauge boson Z ′ coming from gauge symmetry breaking.1 It
is straightforward to define the photon field A, the SM neutral
gauge boson Z , and the new neutral gauge boson Z ′, with
their corresponding masses, as

A = sW A3 + cW B, mA = 0, (24)

Z = cW A3 − sW B, m2
Z = g2v2

4c2
W

, (25)

Z ′ = C, m2
Z ′ = 4g2

X z
2�2, (26)

where the Weinberg’s angle is defined by tW ≡ tan(θW ) =
gY /g, as usual.

1 Kinetic mixing term between the two U (1) gauge fields if imposed
would cause a small effect, as suppressed.
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3.5 Scalar sector

In presence of two scalar singlets χ and η as well as the SM
scalar doublet �, the total scalar potential is given by

V = μ2
1�

†� + μ2
2χ

∗χ + μ2
3η

∗η + λ1(�
†�)2 + λ2(χ

∗χ)2

+λ3(η
∗η)2 + λ4(�

†�)(χ∗χ)

+λ5(�
†�)(η∗η) + λ6(χ

∗χ)(η∗η), (27)

where λ’s is dimensionless, whereas μ’s has a mass dimen-
sion. Necessary conditions for this potential to be bounded
from below as well as to yield desirable vacuum structure are

λ1,2,3 > 0, μ2
1,2 < 0, μ2

3 > 0, |μ1| � |μ2|. (28)

To obtain the potential minimum and physical scalar spec-
trum, we expand

� =
(

�+
1

1√
2
(v + S1 + i A1)

)

, (29)

χ = 1√
2
(� + S2 + i A2), η = 1√

2
(S3 + i A3). (30)

Substituting them to the scalar potential (27), we get the
potential minimum conditions,

�2 = 2(λ4μ
2
1 − 2λ1μ

2
2)

4λ1λ2 − λ2
4

, v2 = 2(λ4μ
2
2 − 2λ2μ

2
1)

4λ1λ2 − λ2
4

. (31)

Further, we obtain physical scalar fields, such as

� �
(

G+
W

1√
2
(v + H + iGZ )

)

,

χ � 1√
2
(� + H ′ + iGZ ′), (32)

where the mixing between two CP-even scalars H = S1 and
H ′ = S2 is suppressed by v/�, which has been neglected
for simplicity. That said, H is identical to the SM Higgs
boson, while H ′ is a new Higgs boson associated withU (1)X
breaking. Their masses are

m2
H � 2λ1v

2, m2
H ′ � 2λ2�

2. (33)

The CP-odd fields GW , GZ , and GZ ′ are massless Goldstone
bosons, which are absorbed by W , Z , and Z ′ gauge bosons,
respectively.

The dark scalars S3 and A3 do not mix with the other
scalars, because of the Z2 conservation, and they are degen-
erate in mass. Therefore, they define a physical complex field
η with an arbitrary mass to be

m2
η = μ2

3 + 1

2
λ5v

2 + 1

2
λ6�

2. (34)

4 Alternative U(1)X model

We would like to remind the reader that this model and the
previous model share many common notations, which have
similar properties and should be understood.

4.1 Particle content

In the alternative U (1)X model, only two right-handed neu-
trinos are universal under U (1)X , which is different from
the previous model. The particle content and their quantum
numbers under the gauge symmetry in (1) are presented in
Table 2. Concerning the scalar sector, in addition to the SM
scalar doublet �, the two scalar singlets χ1,2 are necessarily
included to break U (1)X , determining a residual symme-
try Z2 as well as generating appropriate Majorana masses
for right-handed neutrinos through couplings ναRναRχ1 and
ν3Rν3Rχ2. The scalar multiplets develop VEVs, such as

〈�〉 =
(

0
v√
2

)

, 〈χ1〉 = �1√
2
, 〈χ2〉 = �2√

2
, (35)

satisfying �1,2 � v = 246 GeV for consistency with the
SM.

It is stressed that since the charge assignment of U (1)X ,
the neutrino mass is forbidden at tree level. We thus introduce
two more scalars, namely, a doublet φ linking laL to ναR and
a singlet η linking φ to �χ1 as well as to χ2. It is noted
that both φ and η are odd under a residual gauge symmetry
Z2 of U (1)X (see below) and cannot develop VEV due to
the conservation of this Z2. This implements a scotogenic
mechanism for generating appropriate neutrino masses, as
shown in Fig. 1 [29].

4.2 Matter parity and implication for two-component dark
matter

The spontaneous symmetry breaking of the gauge symmetry
(1) down to SU (3)C ⊗ SU (2)L ⊗U (1)Y ⊗R is implemented
by the new scalar singlets, χ1,2. Then, the SM gauge group
is spontaneously broken to the low energy theory by the SM
Higgs doublet, �, as usual. Because R is a residual sym-
metry of U (1)X that conserves both the vacua of χ1 and
χ2, the transformation R = eiδX satisfies simultaneously
R〈χ1,2〉 = 〈χ1,2〉, where δ is a transforming parameter. This
leads to eiδ(−8z) = 1 and eiδ(10z) = 1, implying δ = kπ/z for
k integer, thus R = eikπX/z = (−1)kX/z . Similar to the pre-
vious model, the residual symmetry R is automorphic to the
discrete group Z2 = {1, g} with g = (−1)X/z and g2 = 1.
Also, since the spin parity ps = (−1)2s is always conserved,
we multiply ps with g to form p = g × ps = (−1)X/z+2s ,
which performs a discrete group Z2 = {1, p} with p2 = 1
to be a residual symmetry instead of Z2, for convenience.
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Table 2 Matter content in the alternative U (1)X model

Multiplets SU (3)C SU (2)L U (1)Y U (1)X Z2

laL = (νaL , eaL )T 1 2 − 1
2 z +

ναR 1 1 0 4z −
ν3R 1 1 0 −5z +
eaR 1 1 −1 z +
qαL = (uαL , dαL )T 3 2 1

6 −z +
uαR 3 1 2

3 −z +
dαR 3 1 − 1

3 −z +
q3L = (u3L , d3L )T 3 2 1

6 z +
u3R 3 1 2

3 z +
d3R 3 1 − 1

3 z +
� = (�+

1 ,�0
2)

T 1 2 1
2 0 +

χ1 1 1 0 −8z +
χ2 1 1 0 10z +
φ = (φ0

1 , φ−
2 )T 1 2 − 1

2 −3z −
η 1 1 0 −5z −

Under Z2, all the SM fields, ν3R , and χ1,2 are even, whereas
ναR , φ, and η are all odd, as presented in the last column of
Table 2.

The model under consideration is of particular interest,
with a novel implication for two-component dark matter.
Indeed, because of the conservation of Z2, the lightest field
of odd fields ναR, φ, η is stabilized, impossibly decayed to
normal fields, providing a dark matter candidate. In addition,
the third right-handed neutrino ν3R with charge X = −5z do
not couple to any SM particles due to the gauge invariance
and hence it reveals accidentally an alternative candidate for
dark matter. In other words, a promising scenario for two-
component dark matter, which consists of the lightest odd-
field and ν3R , is hinted.

4.3 Gauge sector

In the current model, since the SM scalar doublet � does not
transform under U (1)X and that the new scalar singlets χ1,2

do not transform under SU (2)L ⊗ U (1)Y , there is no tree-
level mixing between the gauge bosons Z and Z ′, similar to
the previous model. The SM gauge bosons W±, A, Z and
new gauge boson Z ′ with their masses are given by

W± = 1√
2
(A1 ∓ i A2), m2

W = g2v2

4
, (36)

A = sW A3 + cW B, mA = 0, (37)

Z = cW A3 − sW B, m2
Z = g2v2

4c2
W

, (38)

Z ′ = C, m2
Z ′ = g2

X z
2(64�2

1 + 100�2
2), (39)

where the Weinberg’s angle is defined by tW = gY /g, as
usual.

4.4 Scalar sector relevant for symmetry breaking

As shown above, two new scalar singlets χ1,2 breakU (1)X to
Z2, and then the SM scalar doublet � breaks the SU (2)L ⊗
U (1)Y electroweak symmetry down to U (1)Q , as usual. The
scalar potential consisting of �,χ1,2 is given by

V ⊃ μ2
0�

†� + μ2
1χ

∗
1 χ1 + μ2

2χ
∗
2 χ2 + λ0(�

†�)2

+λ1(χ
∗
1 χ1)

2 + λ2(χ
∗
2 χ2)

2 + (�†�)[λ3(χ
∗
1 χ1)

+λ4(χ
∗
2 χ2)] + λ5(χ

∗
1 χ1)(χ

∗
2 χ2). (40)

The necessary conditions for this potential to be bounded
from below as well as yielding a desirable vacuum structure
are

λ0,1,2 > 0, μ2
0,1,2 < 0, |μ0| � |μ1,2|. (41)

Note that the scalar potential in Eq. (40) actually has a global
U (1) symmetry in addition to the gauge symmetry. Conse-
quently, there is a physical Goldstone boson in the particle
spectrum after the spontaneous symmetry breaking, which
was discussed in [30].

Expanding the scalar fields around their VEVs as

� =
(

�+
1

1√
2
(v + S1 + i A1)

)

, (42)

χ1 = 1√
2
(�1 + S2 + i A2), χ2 = 1√

2
(�2 + S3 + i A3),

(43)
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and substituting these expressions into the scalar potential
(40), we obtain the following potential minimum conditions:

2μ2
0 + 2λ0v

2 + λ3�
2
1 + λ4�

2
2 = 0, (44)

2μ2
1 + λ3v

2 + 2λ1�
2
1 + λ5�

2
2 = 0, (45)

2μ2
2 + λ4v

2 + λ5�
2
1 + 2λ2�

2
2 = 0. (46)

Further, we obtain physical scalar fields, such as

� �
(

G+
W

1√
2
(v + H + iGZ )

)

, (47)

χ1 � 1√
2
(�1 + H1 + iA),

χ2 � 1√
2
(�2 + H2 + iGZ ′), (48)

where we have assumed �2 � �1 � v and neglected the
mixing among three CP-even scalars for simplicity. That said,
the assumption �2 � �1 would lead to an attractive scenario
of two-component fermion dark matter (cf. Sect. 6.2 below).
Above, H is identical to the SM Higgs boson, whereas H1,2

are the new Higgs bosons. Their masses are approximately
given by

m2
H � 2λ0v

2, m2
H1

� 2λ1�
2
1, m2

H2
� 2λ2�

2
2. (49)

Additionally, GW , GZ , and GZ ′ are the massless Goldstone
bosons absorbed by W , Z , and Z ′ gauge bosons, respectively,
whereas A is a physical Goldstone boson as predicted.

The presence of a physical Goldstone boson, in princi-
ple, poses some issues for the model. However, the phys-
ical Goldstone boson A here is probably safe because it
does not directly couple to the SM particles except for the
Higgs boson whose couplings are well controlled by the
parameters in the potential, and it decouples from the ther-
mal bath in the early universe. Indeed, the λ3(�

†�)(χ∗
1 χ1)

term allows the SM Higgs to decay into a pair of Gold-
stone bosons, inducing a tree-level contribution to partial
width as �H→AA ∼ λ2

3v
2/32πmH . Taking mH � 125.25

GeV, the full width of the Higgs boson to be 3.2 MeV, and
the branching ratio for invisible decay models must be less
than 13% [4], we obtain a constraint on the coupling to be
|λ3| � 0.009. On the other hand, following the discussion
in Ref. [31], since the H1,2 and Z ′ bosons that couple to
A are heavy, their interactions with A decouple at suffi-
ciently high temperature in the early universe. Concerning
the interaction between A and the SM fermions, the ratio
R between the rate of collisions of A with fermion f and
the expansion rate of the universe, at a temperature T , is
roughly given by R ∼ λ2

3 m
2
f (kT )5mP/(mH1mH )4 [31],

where m f is the mass of the fermion f , mP is the Planck
mass, and k is the Boltzmann constant. The decoupling of A
from thermal equilibrium occurs when the ratio is equal to
unity, i.e. R ∼ 1. Taking mP � 1.22 × 1019 GeV [4], and

assuming m f = mτ = 1.77686 GeV (the tauon mass), we
obtain a decoupling temperature as Td ∼ 9.54 GeV, which
is consistent with the condition T > mτ , given that k ∼ 1,
|λ3| ∼ 0.009, and mH1 = 1 TeV. In addition, it is clear
that this decoupling temperature is far above the neutrino
decoupling temperature approximately a few MeV, as well
as the QCD phase transition temperature about 200 MeV.
Therefore, the contribution of A to the density of radiation
in the Universe that is usually parametrized by the effective
neutrino number Neff is given by

�Neff = 4

7

(
hBBN

γ

hdec
γ

)4/3

� 4

7

(
10.75

60

)4/3

� 0.06, (50)

where hBBN
γ and hdec

γ are the entropy degrees of freedom of
the plasma at the time of big bang nucleosynthesis and of
the A decoupling, respectively. This result is in agreement
with the current bound on Neff , i.e. Neff = 2.99 ± 0.17 [1].
All imply that if |λ3| � 0.009, A decouples from the thermal
bath in the early universe aroundO(1) GeV temperature, and
this does not cause serious problems in particle physics or
cosmology.

4.5 Fermion mass and scotogenic mechanism

When the scalar multiplets develop VEVs, the fermions
acquire masses through Yukawa interactions, such as

L ⊃ heabl̄aL�ebR + hdαβ q̄αL�dβR + huαβ q̄αL�̃uβR

+hd33q̄3L�d3R + hu33q̄3L�̃u3R

+hdα3

M2 q̄αL�χ∗
1 χ∗

2 d3R + hu3β

M2 q̄3L�̃χ1χ2uβR

+hd3β

M2 q̄3L�χ1χ2dβR + huα3

M2 q̄αL�̃χ∗
1 χ∗

2 u3R

+hν
aβ l̄aLφνβR + 1

2
f ν
αβ ν̄cαRνβRχ1

+1

2
f ν
33ν̄

c
3Rν3Rχ2 + H.c. (51)

The right-handed neutrinos capture large Majorana masses
at �1,2 scales,

mν1R = − f ν
11

�1√
2
, mν2R = − f ν

22
�1√

2
,

mν3R = − f ν
33

�2√
2
, (52)

assuming that f ν
αβ is flavor diagonal, without loss of gener-

ality, i.e. ν1,2,3R are physical fields by themselves. Whereas,
the charged leptons, down-type quarks, and up-type quarks
obtain mass matrices at the weak scale, namely

[Me]ab = −heab
v√
2
, (53)
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Fig. 1 Radiative generation of neutrino mass through dark matter

[Md ]αβ = −hdαβ

v√
2
, [Md ]33 = −hd33

v√
2
, (54)

[Md ]α3 = −hdα3
v�1�2

2
√

2M2
, [Md ]3β = −hd3β

v�1�2

2
√

2M2
,

(55)

[Mu]αβ = −huαβ

v√
2
, [Mu]33 = −hu33

v√
2
, (56)

[Mu]α3 = −huα3
v�1�2

2
√

2M2
, [Mu]3β = −hu3β

v�1�2

2
√

2M2
.

(57)

These mass matrices provide appropriate masses for the
corresponding particles after diagonalization, given that
hα3, h3β < hαβ, h33 and/or �1,2 < M .

Differing from the previous model, the active neutrinos in
the current model obtain radiative Majorana masses through
the scotogenic mechanism with the Z2-odd fields ναR, φ, and
η, as described in Fig. 1. To get the relevant physical scalars,
we consider the scalar potential related to φ and η, which is
given by

V ⊃ μ2
3φ

†φ + μ2
4η

∗η + λ6(φ
†φ)2 + λ7(η

∗η)2

+(�†�)[λ8(φ
†φ) + λ9(η

∗η)]
+(χ∗

1 χ1)[λ10(φ
†φ) + λ11(η

∗η)] + (χ∗
2 χ2)[λ12(φ

†φ)

+λ13(η
∗η)] + λ14(φ

†φ)(η∗η)

+λ15(�
†φ)(φ†�) + μ(χ2ηη + H.c.)

+λ(�φηχ∗
1 + H.c.). (58)

The necessary conditions for this potential to be bounded
from below as well as yielding the trivial vacua for both φ

and η ensuring the Z2 symmetry are μ2
3,4 > 0 and λ6,7 > 0.

Expanding φ = ((S4 + i A4)/
√

2, φ−
2 )T and η = (S5 +

i A5)/
√

2, then substituting them into the scalar potential,
we obtain

V ⊃ 1

2

(
S4 S5

)
(

M2
1 − 1

2λv�1

− 1
2λv�1 M2

2 + √
2μ�2

) (
S4

S5

)

+1

2

(
A4 A5

)
(

M2
1

1
2λv�1

1
2λv�1 M2

2 − √
2μ�2

) (
A4

A5

)

, (59)

where M2
1 = (2μ2

3 + λ10�
2
1 + λ12�

2
2 + λ8v

2)/2 and M2
2 =

(2μ2
4 + λ11�

2
1 + λ13�

2
2 + λ9v

2)/2. Defining two mixing
angles θR,I via the tan functions as

t2θR = λv�1

M2
1 − M2

2 − √
2μ�2

,

t2θI = λv�1

M2
2 − M2

1 − √
2μ�2

, (60)

we get the physical fields

S1 = cθR S4 − sθR S5, S2 = sθR S4 + cθR S5, (61)

A1 = cθI A4 − sθI A5, A2 = sθI A4 + cθI A5, (62)

with respective masses,

m2
S1

� M2
1 −

1
4λ2v2�2

1

M2
2 − M2

1 + √
2μ�2

,

m2
S2

� M2
2 + √

2μ�2 +
1
4λ2v2�2

1

M2
2 − M2

1 + √
2μ�2

, (63)

m2
A1

� M2
1 −

1
4λ2v2�2

1

M2
2 − M2

1 − √
2μ�2

,

m2
A2

� M2
2 − √

2μ�2 +
1
4λ2v2�2

1

M2
2 − M2

1 − √
2μ�2

, (64)

in which the approximations come from the conditions
�1,2 � v. Lastly, the radiative neutrino mass matrix is given
by [32]

(mν)ab = hν
aαh

ν
bαmναR

32π2

(
c2
θR
m2
S1

m2
S1

− m2
ναR

ln
m2
S1

m2
ναR

− c2
θI
m2
A1

m2
A1

− m2
ναR

ln
m2
A1

m2
ναR

+ s2
θR
m2
S2

m2
S2

− m2
ναR

ln
m2
S2

m2
ναR

− s2
θI
m2
A2

m2
A2

− m2
ναR

ln
m2
A2

m2
ναR

)

. (65)

With the assumption �2 � �1 � v, both the S1,A1 mass
splitting (m2

S1
−m2

A1
)/m2

S1,A1
and the mixing angles θ2

R,I are

proportional to λ2v2�2
1/�

4
2. Hence, the observed neutrinos

obtain small Majorana masses,mν ∼ (hν)2λ2v2�3
1/32π2�4

2,
as expected. For example, if hν ∼ 0.01, λ ∼ 0.1, the
observed value mν ∼ 0.1 eV requires �1 ∼ 1 TeV and
�2 ∼ 6.5 TeV.

In the subsequent sections, we will give a combined anal-
ysis of phenomenology of both the models in the question.
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5 FCNC and collider bounds

5.1 FCNCs

In both models under consideration, the quark families trans-
form differently under U (1)X . This causes the FCNCs at
the tree level, which are mediated only by the new neu-
tral gauge boson Z ′. Indeed, from the fermion kinetic terms,
∑

F F̄iγ μDμF , where F runs over fermion multiplets, we
extract the couplings of Z ′ to quarks induced by X -charge,

L ⊃ −gX Xqa q̄aγ
μqa Z

′
μ

= zgX (q̄1γ
μq1 + q̄2γ

μq2 − q̄3γ
μq3)Z

′
μ, (66)

where qa labels quarks of either up-types (ua) or down-
types (da), and note that all the quarks are vector-like under
X . Let us change to the mass basis by the transformation,
qaL ,R = [VqL ,R]aiqi L ,R , where qi denotes mass eigen-
states of either up-types, ui = (u, c, t), or down-types,
di = (d, s, b), and VqL ,R are the unitary matrices satis-
fying V †

uLMuVuR = diag(mu,mc,mt ) and V †
dLMdVdR =

diag(md ,ms,mb). We rewrite (66) as

L ⊃ zgX q̄iγ
μqi Z

′
μ − 2zgX [V ∗

qL ]3i [VqL ]3 j q̄i Lγ μq j L Z
′
μ

+(L → R), (67)

where i, j are summed. It is easy to see that the last two
terms give rise to FCNCs for i �= j . Integrating Z ′ out, we
get related effective interactions,

Heff
FCNC = L2

i j

m2
Z ′

(q̄i Lγ μq j L)2 + 2(LR) + (RR), (68)

where Li j = −2zgX [V ∗
qL ]3i [VqL ]3 j , and the last two terms

differ from the first one only in chiral structures. Further, the
above effective couplings are approximated as

L2
i j

m2
Z ′

� 1

�̄2
([V ∗

qL ]3i [VqL ]3 j )
2, (69)

where we have defined �̄2 ≡ �2 for the conventionalU (1)X
model, while �̄2 ≡ 16�2

1 + 25�2
2 for the alternative U (1)X

model.
The effective interactions in (68) contribute to the rele-

vant neutral-meson mixing amplitudes. Assuming the new
physics effects dominantly comes from the first term in (68),
the existing data imply corresponding bounds,

L2
12

m2
Z ′

<

(
1

104 TeV

)2

,
L2

13

m2
Z ′

<

(
1

500 TeV

)2

,

L2
23

m2
Z ′

<

(
1

100 TeV

)2

, (70)

according to K 0-K̄ 0 mixing, B0
d -B̄0

d mixing, and B0
s -B̄0

s mix-
ing, respectively [33,34]. Additionally, aligning quark mix-
ing to the down sector, i.e. VuL = 1, the CKM matrix is

given by VCKM = V †
uLVdL = VdL , thus [VdL ]31 = 0.00857,

[VdL ]32 = 0.04110, and [VdL ]33 = 0.999118 [4], which
lead to the constraints,

�̄ � 3.52 TeV, �̄ � 4.28 TeV, �̄ � 4.11 TeV, (71)

corresponding to the mentioned meson mixing systems.
Generically, the last two terms of (68) also contribute to

the neutral-meson mixing amplitudes through switching on
the right-handed quark mixing matrix, VqR . Since VqR is
left arbitrarily as in the standard model, we assume VqR �
VqL for simplicity and also the reason that the current gauge
symmetry that contains B, L may obey a left-right symmetry
at high energy. The contribution arising from all effective
interactions in (68) to the mass splitting in K 0-K̄ 0 mixing
system, where (qi , q j ) = (d, s), is given by

�mK |NP = 2Re〈K 0|Heff
FCNC|K̄ 0〉

= 2Re〈K 0| L
2
12

m2
Z ′

(d̄Lγ μsL)2 + 2
L12R12

m2
Z ′

(d̄Lγ μsL)

×(d̄RγμsR) + R2
12

m2
Z ′

(d̄Rγ μsR)2|K̄ 0〉. (72)

The related hadronic matrix elements are

〈K 0|(d̄Lγ μsL)2|K̄ 0〉 = 〈K 0|(d̄Rγ μsR)2|K̄ 0〉 = 1

3
mK f 2

K ,

(73)

〈K 0|(d̄Lγ μsL)(d̄RγμsR)|K̄ 0〉

= −1

2

[
1

2
+ 1

3

(
mK

md + ms

)2
]

mK f 2
K , (74)

which have been determined in the vacuum insertion approx-
imation using PCAC [35], in agreement with [28]. Hence,

�mK |NP � 2mK f 2
K

3m2
Z ′

Re

{

L2
12 −

[
3

2
+

(
mK

md + ms

)2
]

L12R12 + R2
12

}

.

(75)

Similarly for B0
d,s-B̄

0
d,s mixings with (qi , q j ) = (d, b) and

(s, b), respectively, we have

�mBd |NP � 2mBd f
2
Bd

3m2
Z ′

Re

{

L2
13 −

[
3

2
+

(
mBd

md + mb

)2
]

L13R13 + R2
13

}

,

(76)

�mBs |NP � 2mBs f
2
Bs

3m2
Z ′

Re

{

L2
23 −

[
3

2
+

(
mBs

ms + mb

)2
]

L23R23 + R2
23

}

. (77)
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Note that the theoretical predictions of meson mass dif-
ferences can be decomposed as

�mK ,Bd ,Bs = �mK ,Bd ,Bs |SM + �mK ,Bd ,Bs |NP, (78)

where the first part/term comes from the SM contribution
[36,37],

�mK |SM = 3.074 × 10−12 MeV, (79)

�mBd |SM = (3.574 ± 0.191) × 10−10 MeV, (80)

�mBs |SM = (1.2355 ± 0.0566) × 10−8 MeV, (81)

while the second part/term is due to the new physics contri-
bution as derived in (75), (76), and (77). These theoretical
predictions will be compared with the experimental values
as summarized in [4], namely

�mK |exp = (3.484 ± 0.006) × 10−12 MeV, (82)

�mBd |exp = (3.334 ± 0.013) × 10−10 MeV, (83)

�mBs |exp = (1.1693 ± 0.0004) × 10−8 MeV. (84)

However, due to the presence of long-distance effects in
�mK , the uncertainties in this system are very large. We
therefore require the theory to produce the data for kaon mass
difference within ±30%, i.e., 0.7 < �mK |SM/�mK |exp <

1.3, or equivalently

− 0.3 <
�mK |NP

�mK |exp
< 0.3, (85)

in agreement with [38]. For the Bd,s-meson mass differences,
the SM predictions are more accurate than that of kaon, so
we can calculate the 2σ ranges by combining quadrature of
the relative errors in the SM predictions and measurements
as

0.83 <
�mBd |exp

�mBd |SM
< 1.04, 0.86 <

�mBs |exp

�mBs |SM
< 1.03,

(86)

and then we obtain the following constraints,

− 0.17 <
�mBd |NP

�mBd |SM
< 0.04,

−0.14 <
�mBs |NP

�mBs |SM
< 0.03. (87)

By using the following input parameters [4,39,40], in
units of MeV,

md = 4.67, ms = 93.4, mb = 4180, (88)

mK = 497.611, mBd = 5279.66, mBs = 5366.92,

(89)

fK = 155.7, fBd = 190.5, fBs = 230.7,

(90)

we obtain the constraints

�̄ � 4.91 TeV, �̄ � 12.97 TeV, �̄ � 14.14 TeV,

(91)

corresponding to the K 0-K̄ 0, B0
d -B̄0

d , and B0
s -B̄0

s mixing sys-
tems. These lower bounds are generally more stringent and
are quite larger than the those determined in (71).2

Alternatively, one could align the quark mixing to the
up quark sector by assuming VdL = 1 and then VCKM =
V †
uLVdL = V †

uL . Hence, the current D0-D̄0 mixing data
implies

[VCKM]13[V ∗
CKM]23

�̄
<

1

103 TeV
, (92)

given that the first term in Eq. (68) dominantly contributes
to the relative meson mixing amplitude [33,34]. Taking
[VCKM]13 = 0.00369 and [V ∗

CKM]23 = 0.04182 [4], we
obtain a constraint �̄ � 0.15 TeV, which is much weaker
than those obtained in Eq. (71). Further, the mass splitting in
this system has the form similar to Eq. (75), i.e.

�mD|NP � 2mD f 2
D

3m2
Z ′

Re

{

L2
12 −

[
3

2
+

(
mD

mu + mc

)2
]

L12R12 + R2
12

}

, (93)

if all the terms in Eq. (68) for contribution [42]. For this
scenario, using the input values given in MeV as [4,40],

�mD|exp = (6.56237 ± 0.76353) × 10−12, (94)

mD = 1864.84, fD = 211.6, mu = 2.16,

mc = 1270, (95)

and requiring −0.3 < �mD|NP/�mD|exp < 0.3 as done in
the K 0-K̄ 0 mixing system, we get a corresponding constraint
as �̄ � 1.04 TeV, which is also much weaker than those
obtained in Eq. (91).

5.2 LEP-II

The LEP experiments have made measurements in electron-
positron collisions with collision center-of-mass energy
ranging from the Z pole (LEP-I) up to 209 GeV (LEP-
II), providing stringent constraints on Z ′ boson [43,44].
One of the processes searched at the LEP experiments is
the four-fermion contact interaction mediated by heavy Z ′

2 At low energy, Z ′ may also contribute to atomic parity violation but
would be safely suppressed by the current FCNC bound (see, [41], for
a discussion).
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boson, which can be parameterized by the following effec-
tive Lagrangian [45],

Leff = 1

1 + δe f

1

m2
Z ′

∑

i, j=L ,R

CZ ′
ei C

Z ′
f j ēiγμei f̄ jγ

μ f j , (96)

where δe f = 1(0) for f = e ( f �= e). From the relevant
data of the LEP-II experiment [44], we impose a constraint
on this contact interaction as

2
√

2πmZ ′
√

(CZ ′
eL )2 + (CZ ′

eR )2
� 24.6 TeV. (97)

Note that the electron is vector-like under U (1)X , i.e. CZ ′
eL =

CZ ′
eR = CZ ′

e = −zgX , for both models under consideration.
Therefore, we get a lower bound of the new physics scale,
�̄ � 3.47 TeV, which is independent of gX and z and is quite
smaller than the bounds obtained from FCNCs, shown in Eq.
(91).

5.3 LHC

At the LHC experiment, the new gauge boson Z ′ can be reso-
nantly produced via the fusion processes q̄q → Z ′ in whichq
indicates the SM quarks, and this boson subsequently decays
into the SM fermions as well as the exotic particles if kineti-
cally allowed. Furthermore, the most significant decay chan-
nel of Z ′ is given by Z ′ → l+l− with l = e, μ, τ because of
well-understood backgrounds [46] and also that it signifies
a Z ′ having both couplings to lepton and quark like ours.
Using the narrow width approximation, the cross section for
the relevant process takes the form,

σ(pp→ Z ′ → l+l−)�σ(pp→ Z ′)Br(Z ′ → l+l−). (98)

The first factor is the production cross section of the Z ′ boson,
which can be estimated as

σ(pp → Z ′) =
∑

q

Lqq̄(m
2
Z ′)σ̂ (q̄q → Z ′), (99)

where Lqq̄ is the parton luminosity,

Lqq̄(m
2
Z ′) =

∫ 1

m2
Z ′
s

dx

xs

[

fq(x,m
2
Z ′) fq̄

(
m2

Z ′
xs

,m2
Z ′

)

+ fq

(
m2

Z ′
xs

,m2
Z ′

)

fq̄(x,m
2
Z ′)

]

, (100)

with
√
s to be the collider center-of-mass energy and

fq(q̄)(x,m2
Z ′) to be the parton distribution function of the

quark q (antiquark q̄) evaluated at the scale m2
Z ′ , while the

partonic cross section is approximated as σ̂ (q̄q → Z ′) �
π
3 (CZ ′

q )2. The last factor in Eq. (98) is the branching ratio of
Z ′ decaying into the lepton pair l+l−,

Br(Z ′ → l+l−) = �(Z ′ → l+l−)

�Z ′
, (101)

where the partial decay width of Z ′ boson is approximately
given by

�(Z ′ → l+l−) � mZ ′

12π
(CZ ′

l )2, (102)

while the total Z ′ decay width is estimated as

�Z ′ � mZ ′

12π

∑

f

NC ( f )(CZ ′
f )2 + mZ ′

8π
(CZ ′

νL
)2

+mZ ′

24π
(CZ ′

νR
)2

3∑

i=1

(

1 − 4m2
νi R

m2
Z ′

)3/2

�
(mZ ′

2
− mνi R

)

+mZ ′

12π
(CZ ′

ξ )2

(

1 − 4m2
ξ

m2
Z ′

)3/2

�
(mZ ′

2
− mξ

)

+mZ ′

48π
(zgX )2

(

1 − 4m2
η

m2
Z ′

)3/2

�
(mZ ′

2
− mη

)
, (103)

for the conventional U (1)X model, assuming mZ ′ < mH ′ ,
and

�Z ′ � mZ ′

12π

∑

f

NC ( f )(CZ ′
f )2 + mZ ′

8π
(CZ ′

νL
)2

+mZ ′

12π
(CZ ′

ναR
)2 + mZ ′

48π
(−8zgX )2

+mZ ′

24π
(CZ ′

ν3R
)2

(

1 − 4m2
ν3R

m2
Z ′

)3/2

�
(mZ ′

2
− mν3R

)
,

(104)

for the alternative U (1)X model, assuming that Z ′ is lighter
than the new Higgs bosons H2,S1,2, and A1,2. Above, f
denotes the SM charged fermions, N f is the color number
of the fermion f , � is the step function, and the related
couplings are given by

CZ ′
e,μ,τ = −CZ ′

u,c,d,s = CZ ′
t,b = CZ ′

νL
= CZ ′

νR
= 1

2
CZ ′

ξ

= 1

4
CZ ′

ναR
= −1

5
CZ ′

ν3R
= −zgX . (105)

Employing the MSTW2008 parton distribution functions
[47] and setting

√
s = 13 TeV, we plot the cross-section

for the relevant process as a function of the Z ′ boson mass,
for various values of the product |z|gX , which are shown in
Fig. 2. The left panel corresponds to the convention U (1)X
model, assuming mνi R = 2mξ /3 = 4mη/3 = mZ ′/3, while
the right panel corresponds to the alternative U (1)X model,
given thatmν3R = mZ ′/2. In addition, in each of these panels,
we include the upper limits on the cross section of this process
observed by ATLAS [46] and CMS [48] experiments. In the
left (right) panel, the lower bounds on the Z ′ boson mass
are 4.5, 4.9, and 5.3 (4.0, 4.5, and 4.9) TeV according to
|z|gX = 0.1, 0.15, and 0.22.

In Fig. 3, the lower bounds of Z ′ boson mass that obtain
from the ATLAS (CMS) are described by the black (gray)
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Fig. 2 Dilepton production cross-section as a function of the Z ′ boson
mass for various values of the |z|gX product. The left (right) panel
corresponds to the conventional (alternative) U (1)X model. The black

(gray) curve shows the upper bound on the cross-section obtained by
the ATLAS 2019 results for �/m = 3% [46] (the CMS 2019 results
[48] for �/m = 0.6%)

curve. The left (right) panel corresponds to the convention
(alternative) U (1)X model. For comparison, in each of these
panels, we also add the lower bounds on the Z ′ boson mass
which come from the FCNCs (brown line) and the LEP-II
(purple line). The available regions for the Z ′ boson mass
lie above these four lines. It is easy to see that the constraint
from the ATLAS and CMS (FCNCs) is the strongest if the
coupling strength |z|gX is smaller (larger) than about 0.18
for the convention U (1)X model and 0.16 for the alternative
U (1)X model.

6 Dark matter phenomenology

6.1 Single-component dark matter in the conventional
U (1)X model

As shown, the dark matter candidate in the model, i.e., the
lightest field of ξ and η, can possess an arbitrary mass, which
is stabilized due to the conservation of the Z2 residual sym-
metry, p = (−1)X/z+2s . Additionally, the observed light
neutrino masses require the new physics scale � either in the
TeV region or close to the grand unification scale, depending
on magnitude of the Yukawa couplings, hν and f ν . Hence,
the model predicts two different scenarios of dark matter
production.

1. If the new physics scale is at the TeV region, the freeze-
out mechanism works and defines not only the dark mat-
ter relic density through its annihilation into the SM par-
ticles as well as others when kinetically allowed, but also
the dark matter nature to be a weakly interacting massive
particle (WIMP).

2. If the new physics scale is of order the grand unification
or around, the dark matter may be asymmetrically pro-

duced from the CP-violation decay of the right-handed
neutrinos, via complex couplings ya ξ̄LηνaR , similar to
the leptogenesis mechanism for lepton asymmetry gen-
eration.

However, only the first scenario is considered in this work
due to the potential discovery of new physics at the LHC.

6.1.1 Dark matter as a fermion ξ

Assume that the fermion ξ is lighter than the scalar η. Then
ξ is stabilized, responsible for dark matter. Because ξ is
charged under U (1)X , its pair annihilation into the SM par-
ticles and others (if kinetically allowed) in the early universe
proceeds dominantly through s-channel exchange diagrams
mediated by the new gauge boson Z ′. Hence, the dark matter
annihilation cross section times relative velocity is estimated
as

〈σvrel〉ξξ c→all � (CZ ′
ξ )2m2

ξ

π(4m2
ξ − m2

Z ′)2

×
⎡

⎣
∑

f

NC ( f )(CZ ′
f )2 + 3(CZ ′

νL
)2

2

+ (CZ ′
νR

)2

2

3∑

i=1

(

1 − m2
νi R

4m2
ξ

)

×
(

1 − m2
νi R

m2
ξ

)1/2

�(mξ − mνi R )

⎤

⎦ ,

(106)

where f denotes the SM charged fermions, N f is the color
number of the fermion f , � is the step function, and the
related couplings are shown in Eq. (105). Hence, the relic
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Fig. 3 The left (right) panel corresponds to the conventional (alterna-
tive) U (1)X model. For each panel, the black (gray), brown, and purple
lines denote the lower bounds on the Z ′ boson mass obtained from the

Z ′ boson search by the ATLAS (CMS) collaboration, the FCNCs, and
the LEP-II dilepton signal constraint, respectively. The parameter space
according to shaded regions is excluded

abundance of fermion dark matter is given by

�ξh
2 � 0.1 pb

〈σvrel〉ξξ c→all
. (107)

Let � = 15 (45) TeV satisfy the limits from the FCNCs
and the LEP-II (a future projected bound), and take mνi R =
mZ ′/3. According to � = 15 (45) TeV, we make the
blue (red) contours of the correct dark matter relic den-
sity, i.e. �ξh2 � 0.12 [1], as shown in the left panel
in Fig. 4. Added to these density contours are the black
(dashed black) and gray (dashed gray) lines corresponding to
|z|gX � 0.168 (0.038) and |z|gX � 0.162 (0.035) which are
extracted from the ATLAS and CMS limits at � = 15 (45)

TeV, respectively, where notice that the shaded regions are
excluded. From here, we obtain the lower bound for fermion
dark matter mass to be mξ � 2.1 (1.7) TeV for � = 15 (45)

TeV.
Besides the correct dark matter relic density, the fermion

candidate is constrained by the direct dark matter detection
experiments which measure the scattering cross section of
the dark matter on nucleons in target nucleus. At the micro-
scopic level, the scattering of the dark matter on nucleons
can be described by effective interactions between the dark
matter and the SM quarks. In the model under consideration,
such interactions are dominantly contributed by t-channel
diagrams by the new gauge boson Z ′ exchange, given by

Leff
ξ−quark = 1

m2
Z ′
CZ ′

ξ CZ ′
q (ξ̄γ μξ)(q̄γμq), (108)

where q = u, d. Note that both ξ and the SM quarks
are vector-like under U (1)X . Hence, we obtain the spin-
independent (SI) scattering cross section of ξ on a nucleon,

labeled as N with corresponding mass mN , such as [49]

σ SI
ξ = 9μ2

ξN
4π

1

m4
Z ′

(CZ ′
ξ )2(CZ ′

u )2

� 1.377 × 10−45
( mN

1 GeV

)2
(

15 TeV

�

)4

cm2, (109)

which is independent of the product |z|gX . Above, μξN =
mξmN /(mξ + mN ) � mN is the reduced mass of the dark
matter-nucleon system.

Taking mN � 1 GeV and � = 15 TeV as before, the
model predicts σ SI

ξ � 1.377×10−45 cm2 as described by the
blue line in the right panel in Fig. 4, which agrees with the cur-
rent bound from XENON1T [50] (LZ [51]) that is described
by the gray (black) curve, if dark fermion mass satisfies
mξ � 3.0 (4.9) TeV. These lower bounds for the fermion dark
matter mass are generally stricter than that obtained from the
correct density constraint. Further, we include the projected
bounds from upcoming direct detection experiments such as
XENONnT [52], LZ [53], and DARWIN [54], which are
respectively described by the gray, black, and brown dotted
curves. It is clear that these bounds constrain the new physics
scale and/or the dark fermion mass to higher values. Take an
example, the model predicts σ SI

ξ � 1.7 × 10−47 cm2 for
� = 45 TeV as descried by the red line, which agrees with
the projected bounds if dark fermion mass satisfiesmξ � 7.9
TeV.

6.1.2 Dark matter as a scalar η

Alternatively, we consider a possibility that the dark scalar
singlet η is lighter than the dark fermion ξ . So, η is stabi-
lized, responsible for dark matter. For simplicity, we assume
that η is lighter than H ′, Z ′, and νi R , and thus it annihilates
only to SM particles in the early universe. Such annihila-
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Fig. 4 In the left panel, we make the blue (red) contours of the correct
dark matter relic density at � = 15 (45) TeV. In the right panel, we make
the blue (red) lines of the SI scattering cross section of the dark fermion

on a nucleon at � = 15 (45) TeV. The shaded regions are excluded by
the current experiments. The dotted curves are the projected bounds

tion may proceed through a contact interaction with the SM
Higgs fields as well as H , H ′, and Z ′ portals. However, the
contribution of Z ′ portal to dark matter observables is quite
similar to the case of the fermion dark matter above, whereas
the H ′ portal does not contribute to direct dark matter detec-
tion. Hence, we do not consider these two portals here, given
that the contributions of these two portals are negligible, by
imposing appropriate parameters. With the contact interac-
tion and H portal, the dark matter pair annihilation into the
SM particles is given by the following dominant channels:

η∗η → HH,W+W−, Z Z , (110)

yielding the dark matter annihilation cross section times rel-
ative velocity to be

〈σvrel〉η∗η→SM SM � λ2
5

16πm2
η

. (111)

Assuming that the scalar dark matter η provides a correct
relic density, i.e. �ηh2 � 0.1 pb/〈σvrel〉η∗η→SM SM � 0.12,
we derive the dark matter mass at the TeV regime, i.e.

mη � |λ5| × 3.05 TeV. (112)

Concerning the direct dark matter detection, the effective
Lagrangian that describes the interaction between η and the
SM quarks induced by t-channel exchange diagrams of the
new Higgs boson H is given by

Leff
η−quark = λ5mq

m2
H

η∗ηq̄q (113)

with q denotes ordinary quarks. From this Lagrangian, we
acquire the SI scattering cross section of η on a nucleon, such
as [55]

σ SI
η =

(
λ5

2
√

π

μηN
m2

H

mN
mη

CN

)2

, (114)

where μηN = mηmN /(mη + mN ) � mN , and

CN = 2

9
+ 1

A

∑

q=u,d,s

[(

Z − 2

9
A

)

f pq + (A − Z) f nq

]

,

(115)

in which Z is the nucleus charge, A is the total number of
nucleons in the nucleus, and f p(n)

q are the scalar couplings

of the nucleon to q = u, d, s. The values of f p(n)
q are given

by [56,57]

f p(n)
u � 0.0208(0.0189), f p(n)

d � 0.0411(0.0451),

f p(n)
s � 0.043(0.043). (116)

Taking A = 131, Z = 54, mN � 1 GeV, and mH � 125.25
GeV [4], we estimate

σ SI
η � 1.259 × 10−45

( |λ5| × 3.05 TeV

mη

)2

cm2. (117)

This result implies that the scalar dark matter η with a mass
at TeV regime, mη � |λ5|×3.05 TeV, yields both the correct
relic density and the current exclusion limit in direct dark
matter detection experiments [50,58,59].

6.2 Two-component dark matter in the alternative U (1)X
model

As shown in the Sect. 4.2, the alternative U (1)X model pro-
vides two candidates for dark matter simultaneously, the
one being ν3R accidentally stabilized and the remainder
to be the lightest of Z2-odd fields (ναR , φ, η) stabilized
by p = (−1)X/z+2s . With the assumption �2 � �1 as
discussed in the previous subsections, the Z2-odd physical
scalars are generally much heavier than ναR . Hence, the light-
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Fig. 5 Dominant contributions to annihilation of the two-component fermion dark matter

est particle of ναR , such as ν1R without loss of generality, and
ν3R play the role of two-component dark matter candidates.

The dominant channels in the dark matter pair annihila-
tion of ν3R (ν1R), if allowed by kinematics, are ν3Rνc3R →
f f c, νaLνcaL , ναRνcαR, HαHα,AA,SαSα,AαAα, Z ′Hα,

Z ′Sα, Z ′Aα , Z ′Z ′ (ν1Rνc1R → f f c, νaLνcaL , H1H1,

AA, HA, H1A) with f indicates the SM charged fermions,
which are proceeded via the s-channel interchange of new
gauge boson Z ′ and new scalar H2 (H1,A), and via the t-
channel of ν3R (ν1R, φ0

1 , φ−
2 ). However, this work assum-

ing �2 � �1 � v, so only some annihilation channels
of them are allowed. Additionally, for for the sake of sim-
plicity, we assume that the relic density of ν3R is governed
mainly by s-channel exchange diagrams of Z ′, while the pair
annihilation processes of ν1R are proceed dominantly though
s- and t-channel exchange diagrams of A and ν1R respec-
tively, which are shown in Fig. 5. Here, there is the conver-
sion between dark matter components, namely the heavier
dark matter component ν3R annihilates into the lighter one
ν1R .

In the non-relativistic approximation, the thermal aver-
age annihilation cross-section times relative velocity for each
dark matter component is estimated as

〈σv〉νc1Rν1R→H1A � ( f ν
11)

2|4m2
ν1R

− m2
H1

|
512πm4

ν1R

×
(

| f ν
11| + λ1�1

2mν1R

)2

, (118)

〈σv〉νc3Rν3R→all � (CZ ′
ν3R

)2m2
ν3R

4π(4m2
ν3R

− m2
Z ′)2

×
⎡

⎣
∑

f

NC ( f )(CZ ′
f )2

+3(CZ ′
νL

)2

2
+ (CZ ′

ναR
)2

]

, (119)

where f presents the SM charged fermions and the relevant
couplings are shown in Eq. (105).

In the two-component dark matter framework, the dark
matter relic abundance due to the thermal freeze-out is com-
puted by solving the coupled Boltzmann equations. Assum-

ing that the production of the ν1R component from the ν3R

component is less significant compared to its annihilation
into the H1,A final states, one can obtain the individual
relic abundance of each dark matter component through an
approximate analytic solution as [60]

�ν1R h
2 = 1.07 × 109xν1R√

g∗mP〈σv〉νc1Rν1R→H1A
,

�ν3R h
2 = 1.07 × 109xν3R√

g∗mP〈σv〉νc3Rν3R→all
, (120)

where g∗ = 106.75 is the effective total number of degrees of
freedom, xν1,3R � 25 are parameters related to the freeze-out
temperature. Hence, the dark matter relic abundance is sum
of the individual contributions, namely

�DMh2 = �ν1R h
2 + �ν3R h

2. (121)

The relic density of dark matter depends on six parameters,
which are mν1R , mν3R , f ν

11, f ν
33, λ1, and the product |z|gX .

Taking f ν
11 = f ν

33 = −√
2 and mν3R = 6mν1R , in Fig. 6, we

make contours of the correct relic density of dark matter, i.e.,
�DMh2 � 0.12 [1], as a function of mν1R and λ1 for different
choices of |z|gX (left panel), of mν1R and |z|gX for different
choices of λ1 (right panel). This figure shows the viable mass
region of ν1R in the orderO(1) TeV, and 0.16 � |z|gX � 0.3.
Note that when mν1R = mH1/2, equivalently λ1 = 2 (with
f ν
11 = −√

2), then 〈σv〉νc1Rν1R→H1A = 0, which suppress
the correct density and leads to a disconnected region on
each curve in the left panel. In the right panel, when mν3R =
mZ ′/2, equivalently |z|gX � 0.2 (with �2 � �1), then
〈σv〉νc3Rν3R→all → ∞, which reduces the relic density of ν3R

to zero, thus the correct relic density of dark matter is only
set by the ν1R pair annihilation.

In Fig. 7, we show the contribution ratio of dark matter
components to the correct density as a function of mν1R for
different choices of λ1, whilemν3R = 6mν1R and f ν

11 = −√
2

kept fixed. The dashed black line corresponds to a contribu-
tion ratio of 0.5. It is easy to see that ν1R dominantly con-
tributes to the correct density when its mass takes on large
values in the possible mass region.

Concerning the constraint from the direct detector exper-
iments, it is interesting that two dark matter candidates
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Fig. 6 Total dark matter density contoured as functions of dark matter masses and λ1 (left panel) and |z|gX (right panel)

Fig. 7 The contribution ratio of dark matter components to the total
density as function of dark matter masses

under consideration are all Majorana fermions, which scat-
ter with nucleon only via spin-dependent (SD) effective
interactions by the t-channel exchange of the new gauge
boson Z ′. Such interactions give the SD scattering cross
section of each dark matter candidate on a neutron target,
σSD ∼ gZ

′
A (ν1,3R)[gZ ′

A (u)λu + gZ
′

A (d)(λd + λs)], where
gZ

′
A ( f ) is the axial-vector couplings of Z ′ to f , while λu,d,s

are the fractional quark-spin coefficients [55]. Because the
SM quarks are all vector-likes under U (1)X , the axial-vector
couplings of Z ′ to them vanish. Hence, the model predicts a
negative search result, as reported by the experiments [61–
63].

7 Conclusion

In this work, we have proposed a U (1)X extension of the
SM, where the X charge depends on flavor and is a linear
combination of the usual baryon and lepton numbers. By

the anomaly cancellation conditions associated with the new
charge X , this extension not only explains the existence of
only three fermion families as observed but also requires the
presence of at least three right-handed neutrinos similar to
the SM extension with U (1)B−L .

Depending on the X charge assignment for the right-
handed neutrinos, we obtain two potential models for this
approach, each of them predicts a distinct mechanism for neu-
trino mass generation, seesaw vs. scotogenic, as well as the
dark matter structure, single- vs. two-component(s). Addi-
tionally, one of dark matter is stabilized by residual sym-
metry p = (−1)X/z+2s , while the other one of dark matter
is accidentally stabilized by the gauge symmetry. Both the
models predict the dark matter nature as WIMP(s) with dark
matter mass in the TeV regime.

We have also investigated the FCNC and particle collider
bounds and predict generically a lower bound for the new
physics scale to be roundly 14.14 TeV.
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