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1 Introduction

Quantum entanglement is the most distinguishing characteristic between quantum and
classical systems. Holographic gravity, condensed matter theory, quantum information, and
other areas have recently overlapped with each other on quantum entanglement. Numerous
quantum entanglement measurements have been discovered to be capable of diagnosing the
quantum phase transition of strong correlation systems and the topological quantum phase
transitions, as well as playing a key role in the emergence of spacetime [1–8].

There are numerous types of quantum entanglement measurements, including entangle-
ment entropy (EE), mutual information (MI), Rényi entanglement entropy, and negativity.
Among these quantum entanglement measurements, EE is commonly considered a useful
measure of pure state entanglement. However, EE is not applicable to measure the more
common mixed-state entanglement. To measure mixed-state entanglement, numerous new
entanglement measurements, such as the entanglement of purification, non-negativity, and
the entanglement of formation, have been proposed [9, 10]. On the other hand, calculating
the mixed-state entanglement measures is extremely difficult.

Gauge/gravity duality is a powerful tool for analyzing strongly correlated systems be-
cause it connects entanglement-related physical quantities to geometric objects in dual
gravity systems. In the dual gravity system, the holographic entanglement entropy (HEE)
connects the EE of a subregion on the boundary with the area of the minimum surface [5].
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HEE has been demonstrated to be able to detect quantum phase transitions and ther-
modynamic phase transitions [11–15]. Recently, the Rényi entropy was proposed to be
proportional to the minimal area of cosmic branes [16]. Moreover, the butterfly effect that
reflects the dynamic properties of quantum systems, has been extensively studied in holo-
graphic theories [17–26]. In addition, the holographic duality of quantum complexity, a
new information-related quantity from the EE, was also proposed [27–33]. More recently,
the EWCS was associated with the area of the minimum cross-section of the entanglement
wedge [34, 35]. The geometric prescription of EWCS provides a novel and powerful tool
for studying the mixed-state entanglement in holographic theories [36–44].

Among all the models in holographic theories, the Born-Infeld (BI) model is a spe-
cial class of models for nonlinear electromagnetic field theories. It was first proposed
to eliminate the divergent self-energy of the Maxwell theory. Later, it was found that
the BI theory can be naturally derived from the string theory under the low-energy ap-
proximation. The BI model under the holographic theories can be dual to the quantum
chromodynamics (QCD) systems [45, 46], and some condensed matter systems with novel
transport behaviors, such as the quantum liquid [47], the Mott-insulator [48], and the
novel magneto-resistance phenomenon [49, 50], which is consistent with the experimental
phenomenon in [51, 52]. Various properties of the BI model, such as its thermodynamic
properties, transport properties [53], and the complexity [54], have been extensively in-
vestigated. However, the question of how exactly the BI factor b, which embodies the
nonlinearity of this nonlinear electromagnetic field theory, affects the properties of the
system, especially the mixed-state entanglement properties, remains to be answered.

This paper focuses on the effect of the BI factor on two measures of mixed-state en-
tanglement - MI and EWCS. When b→ 0, the background geometry is AdS-Schwarzschild
solution, and the entanglement property of the system is decoupled from the transport
property of the system; while for non-zero b, the transport behaviors can affect the en-
tanglement property. Therefore, we interpret b as the degree of correlation between the
entanglement and transport properties of the metric when b increases from zero. Remind
also that the coupling between the transport properties and the entanglement is also an
important topic in condensed matter field theory, and is crucial for the construction of a
stable quantum circuit [55–61]. For b → ∞, the system goes to the AdS-RN black brane
system with a linear Maxwell field. Therefore, the range b ∈ (0,∞) represents the process
that the Maxwell field turns on and converges to a linear Maxwell field case. Our main
goal is to explore how BI factor b affects the MI and EWCS.

We organize this paper as follows: we introduce the holographic BI model in section 2.1,
entanglement measures (HEE, MI, EWCS) and their holographic duality in section 2.2.
We discuss the properties of HEE, MI (3) and EWCS (4) systematically. Subsequently, we
examine two more BI-like models to further validate our results in 5. Finally, we summarize
in section 6.
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2 Holographic Born-Infeld theory and information-related quantities

First, we review the holographic BI model. Following that, we review the concepts of the
HEE, MI, and EWCS with their holographic dual. Then, we elaborate upon our algorithms
proposed to calculate minimum surfaces and minimum cross-sections.

2.1 The AdS Born-Infeld model

The action of the 4-dimensional holographic BI model is,

S =
∫
d4x
√
−g

R− 3Λ
16πG + b2

4πG

1−

√
1 + 2F

b2

 . (2.1)

The parameter b is the BI factor, Fµν is the electromagnetic tensor and F = FµνFµν . The
cosmological constant Λ = − 3

l2 with l the AdS radius. The equation of motion (EOM) of
this model can be read as,

∇µ

 Fµν√
1 + 2F

b2

 = 0,

Rµν −Rgµν + Λgµν − 2gµνb2
1−

√
1 + F

2b2

− 2FµρFνρ√
1 + F

2b2

= 0.

(2.2)

The solution of the BI theory is,

ds2 = −f(r)dt2 + 1
f(r)dr

2 + r2hijdx
idxj , (2.3)

with

f(r) = r2

l2
− 2M

r
+

4Q2
2F1

(
1
4 ,

1
2 ; 5

4 ;− Q2

b2r4

)
3r2 + 2b2r2

3

1−

√
Q2

b2r4 + 1

 , (2.4)

Q is the electric charge and M is the mass of the black brane. Also we have the gauge field
Fµν = ∇µAν −∇νAµ and Aµ = a(r)dt,

a(r) = −

√
2Q 2F1

(
1
4 ,

1
2 ; 5

4 ;− 2Q2

r4b2

)
r

. (2.5)

Additionally, for l2 < 0 and l2 > 0 the system is asymptotically dS and AdS, respec-
tively. Here, we fix l2 = 1 for concreteness. For k = 1, 0,−1 the hij denotes a sphere, a
Ricci flat surface, and a hyperbolic surface, respectively. Here, we focus on the planar case,
i.e., k = 0.

At the horizon r = rh we have f(rh) = 0, and hence we arrive at the ADM mass

M =
4l2Q2

2F1

(
1
4 ,

1
2 ; 5

4 ;− Q2

b2r4
h

)
− 2b2l2r4

h

√
Q2

b2r4
h

+ 1 + 2b2l2r4
h + 3r4

h

6l2rh
. (2.6)
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The Hawking temperature is,

T = rh
4π

(
3− 2b2

(√
Q2

b2r4
h

+ 1− 1
))

. (2.7)

The planar case is always thermodynamically stable [62]. Therefore, in this BI black brane
system, there is no thermodynamic phase transition.

The system is invariant under the rescaling,

(t, 1/r, x, y)→ α(t, 1/r, x, y), Q→ Q/α2, T → T/α, rh → αrh.

Other parameters such as b are dimensionless. Therefore, we can fix rh = 1. Here, we
adopt

√
Q as the scaling unit, consequently, we need to divide physical quantity with

scaling dimension [n] by Qn/2.
For numerical convenience, we transform r into z ≡ rh/r such that the semi-infinite

domain r ∈ (rh,∞) becomes a finite domain z ∈ [0, 1]. Then the metric becomes,

ds2 = 1
z2

(
−hdt2 + r2

hdz
2

h
+ r2

hdx
2 + r2

hdy
2
)
, (2.8)

with
h(z) ≡4

3Q
2z3

(
z 2F1

(
1
4 ,

1
2; 5

4;−Q
2z4

b2

)
− 2F1

(
1
4 ,

1
2; 5

4;−Q
2

b2

))

− 2
3b

2

z3

1−

√
Q2

b2
+ 1

+

√
Q2z4

b2
+ 1− 1

− z3 + 1.
(2.9)

And the dimensionless Hawking temperature becomes,

T =
b2
(

2− 2
√

Q2

b2 + 1
)

+ 3

4π
√
Q

. (2.10)

From the dimensionless Hawking temperature (2.10) we can find that,

lim
Q→0

T →∞, lim
Q→
√

12b2+9
2b

T → 0. (2.11)

Also, we can find that,

∂QT = 2b
(
b−

√
b2 +Q2

)
− 3

√
Q2

b2
+ 1− 2Q2 < 0. (2.12)

Therefore, the quantity Q is restricted to the range [0,
√

12b2+9
2b ] and that the temperature

T decreases as Q increases. This system is described by three variables (T, b , rh), with
only two of them being independent. We have also observed that for any given value of
b, the temperature T always increases with increasing rh, thus, the value of rh is uniquely
determined by a given temperature T . This can be seen in the figure 1. Therefore, we can
simplify the system to a two-parameter system (b, T ).

– 4 –



J
H
E
P
0
9
(
2
0
2
3
)
1
0
5

Figure 1. The contour plot of the Hawking temperature in the plane (b, rh), where the temperature
is only positive in the shaded region.

When the parameter b→∞, the background solution of our system converges to the
AdS-RN solution, and when b→ 0, it becomes the AdS-Schwarzschild solution. When b is
zero, there is an electromagnetic field present, but the background solution is still the AdS-
Schwarzschild solution. This means that the entanglement-related physical quantities are
not affected by the conductivity of the system. However, as b increases, the electromagnetic
fields starts to affect the background solution, and thus has an impact on the entanglement
structure of the system. Therefore, we refer to increasing b from zero to infinity as the
process of turning on the coupling between the background and the conductivity, and finally
resulting in an AdS-RN system.

It is worth noting that the relationship between conductivity and entanglement-related
quantities is of great importance in condensed matter theories.

In most condensed matter systems, quantum entanglement shows an intricate connec-
tion to transport properties like thermal and electrical conductivity [55–58]. The underlying
quantum coherence enables nonlocal correlations can directly manifest in the measurable
transport. For instance, in quantum spin chains, the entanglement between distant spins
allows energy transport despite the lack of individual particle motion [55]. However, in
certain important cases, the entanglement can become decoupled from the transport be-
havior. For example, in topological insulators, the robust edge state transport persists
regardless of the bulk entanglement due to topological protection [56]. This illustrates the
irrelevance between entanglement and transport. Though counterintuitive, such irrelevance
underscores the delicate nature of quantum effects.

Recent experiments have shown that entanglement between quantum dots can per-
sist despite the influence of surface plasmon polariton (SPPs) transmission [60, 61, 63].
These findings are crucial for the development of stable quantum circuits. Additionally, it
has been found that at specific values of the inter-dot distance d or detuning δ, the two-
quantum-dot system can be in a highly entangled state and be separate from the trans-
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mission of SPPs [59]. However, when d or δ deviate from these values, the entanglement
of quantum dots becomes highly correlated with the transmission of SPPs. This suggests
that decoupling of entanglement and transport can exist in real physical systems and can
be characterized by certain parameters. Properly modeling the coupling and decoupling
between entanglement and transport remains an open challenge. Advanced theoretical
frameworks need to be developed that can transition between the two regimes.

Next, we will focus on how the entanglement-related physical quantities change as we
vary the parameter b.

2.2 Holographic information-related quantities

Entanglement is a fundamental and intriguing aspect of quantum mechanics. One way to
quantify entanglement is through entanglement entropy (EE), which measures the degree
of entanglement between a subset of a system and the rest of the system. Specifically, the
entanglement entropy SA between subsets A and B of a system A∪B is defined as the von
Neumann entropy in terms of the reduced density matrix ρA.

SA(|ψ〉) = −Tr [ρA log ρA] , ρA = TrB (|ψ〉〈ψ|) . (2.13)

It is easy to find that SA = SB for pure states [64]. Holographic duality theory relates
the holographic entanglement entropy (HEE) to the area of the minimum surface in dual
gravity systems [5] (see the left plot of figure 2).

EE is often used to measure the degree of entanglement in pure states, but it is not as
effective in measuring mixed state entanglement. For example, even when subsystems A
and B are not entangled, they can still have non-zero EE in a system composed of direct
product of the density matrices of ρA and ρB. This is because EE takes into account both
quantum entanglement and classical correlation, so it does not always provide a accurate
measure of the entanglement. As a result, other measures for mixed-state entanglement
have been proposed in the literature [9, 10]. The most direct mixed-state entanglement
measure is MI.

For the subsystem A ∪ C separated by B, the mutual information (MI) is defined as:

I (A,B) := S (A) + S (B)− S (A ∪B) , (2.14)

This measures the mixed-state entanglement between A and B. It can be easily verified
that I (A,B) = 0 when ρAB = ρA ⊗ ρB, therefore MI have the property that direct
product states have zero entanglement. However, MI is not a perfect measure of mixed-state
entanglement, as it is closely related to EE, and it’s properties are sometimes dominated
by EE or thermal entropy in certain situations. This indicates that other measures of
mixed-state entanglement should be used.

The entanglement wedge cross-section (EWCS) has been associated with the duality of
certain mixed-state entanglement measures, such as entanglement of purification, logarith-
mic negativity, and reflect entropy [65–67]. Takayanagi proposed that EWCS EW (ρAB) is
the area of the minimum cross-section ΣAB in connected entanglement wedge [34], i.e. (see

– 6 –
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Figure 2. The left plot: the minimum surface for a given width w. The right plot: the minimum
cross-section (green surface) of the entanglement wedge.

the right plot in figure 2),

EW (ρAB) = min
ΣAB

(Area (ΣAB)
4GN

)
. (2.15)

It is important to note that if the entanglement wedge is disconnected, meaning the min-
imum cross-section does not exist, the EWCS will be zero, it corresponds to cases with
vanishing MI. Additionally, the EWCS also satisfies some important inequalities as its
quantum information counterparts [34, 68]

Next, we present the algorithm for obtaining the minimum surfaces and EWCS.

2.3 Computations of holographic geometric quantities

We examine the EWCS of an infinite strip with a homogeneous background for numerical
simplicity. For a generic homogeneous background

ds2 = gttdt
2 + gzzdz

2 + gxxdx
2 + gyydy

2, (2.16)

where z = 0 represents the boundary of the asymptotic AdS spacetime. The left plot in
figure 3 is a visual representation of the minimum surface for an infinite strip along the
y-axis. Since the background is homogeneous, all metric components gµν only depend on
the coordinate z.

2.3.1 The minimum surface

The minimum surface near the AdS boundary is perpendicular to the boundary, making
the spatial direction x an unsuitable parameter for finding the minimum surface. Ref. [69]
adopted the angle θ with tan θ = z/x, as the parameter for the minimum surface (see
figure 3). Using this method, we can parametrize a surface as (x(θ), z(θ)) with area A
given by

A = 2
∫ π/2

0

√
x′(θ)2gxxgyy + z′(θ)2gyygzzdθ. (2.17)

– 7 –
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The resultant equations of motion read,

x′(θ)z′(θ)2
(
g′xx
2gxx

+
g′yy
gyy
− g′zz

2gzz

)
+
x′(θ)3

(
gyyg

′
xx+gxxg′yy

)
2gxxgzz

+x′′(θ)z′(θ)−x′(θ)z′′(θ) = 0,

z(θ)−tan(θ)x(θ) = 0.
(2.18)

where g′## ≡ g′##(z). The boundary conditions are,

z(0) = 0, x(0) = w, z′(π/2) = 0, x(π/2) = 0, (2.19)

where w is the width of the strip.

2.3.2 The EWCS

Given a biparty subsystem with minimum surfaces C1(θ1), C2(θ2), we solve the minimum
surface Cp1,p2 connecting p1 ∈ C1 and p2 ∈ C2. We parametrize Cp1,p2 with z, then the
area of Cp1,p2 reads,

A =
∫
Cp1,p2

√
gxxgyyx′(z)2 + gxxgzzdz. (2.20)

The resultant equation of motion becomes,

x′(z)3
(
gxxg

′
yy

2gyygzz
+ g′xx

2gzz

)
+ x′(z)

(
g′xx
gxx

+
g′yy
2gyy

− g′zz
2gzz

)
+ x′′(z) = 0, (2.21)

with boundary conditions,

x(z(θ1)) = x(θ1), x(z(θ2)) = x(θ2). (2.22)

To obtain the EWCS, we need to locate the global minimum of the minimum surfaces
connecting C1(θ1), C2(θ2), i.e., the minimum cross-section.

Finding the minimum cross-section is a challenging task as it involves searching through
a two-dimensional parameter space (θ1, θ2). However, it can be noted that the globally
minimum cross-section must be perpendicular to the minimum surfaces at the point of
intersection. This observation serves as a local constraint, which can greatly speed up
the search process. We demonstrate the methods of solving the EWCS in figure 3. For
numerical stability, it is better to implement the perpendicular conditions with normalized
vectors as,

Q1(θ1, θ2) ≡
gab
(
∂
∂z

)a (
∂
∂θ1

)b√
gcd
(
∂
∂z

)c (
∂
∂z

)d√
gmn

(
∂
∂θ1

)m (
∂
∂θ1

)n
∣∣∣∣∣∣∣∣∣
p1

= 0,

Q2(θ1, θ2) ≡
gab
(
∂
∂z

)a (
∂
∂θ2

)b√
gcd
(
∂
∂z

)c (
∂
∂z

)d√
gmn

(
∂
∂θ2

)m (
∂
∂θ2

)n
∣∣∣∣∣∣∣∣∣
p2

= 0.

(2.23)

Note that Q1 and Q2 are both functions of the θ1 and θ2. Now, the search of the EWCS
is equivalent to finding the minimum surface ending at (θ1, θ2) where (2.23) is satisfied.

– 8 –
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θ1θ2
C1(θ1)

C2(θ2)

Figure 3. The demonstration of the EWCS. The p1 and p2 are the intersection points of the
minimum surface connecting those two minimum surfaces. The solid blue curve (parametrized with
θ1) and solid orange curve (parametrized with θ2) are minimum surfaces. The thick red curve is the
minimum surface connecting p1 and p2. The blue arrows at the p1 and p2 are the tangent vector(
∂
∂z

)a∣∣∣
p1

and
(
∂
∂z

)a∣∣∣
p2

along the Cp1,p2 , while the purple arrows are the tangent vectors
(

∂
∂θ1

)a∣∣∣
p1

and
(

∂
∂θ2

)a∣∣∣
p2

along C1, C2, respectively. The dark dashed horizontal line is the horizon.

To determine the correct EWCS, we first select an initial seed (θ1, θ2) and use the
Newton iterative method to obtain feedback (δθ1, δθ2). By repeating this process, we can
find the minimum cross-section, which is the EWCS. It is crucial to carefully choose the
initial values of (θ1, , θ2) for the iterations to converge. The numerical reliability is ensured
by the convergence of results when using different initial values or increasing the density
of discretization. For more technical details, refer to reference [70].

Using the techniques outlined above, we will now examine mixed-state entanglement
measures for the BI model. Additionally, we will examine the correlation between the BI
factor b and information-related quantities.

3 The holographic entanglement entropy and the holographic mutual
information

We begin by examining the relationship between HEE, system parameters b and T . As
shown in figure 4, HEE, represented by S, increases monotonically with both b and T , but
their rate of increase is different. Initially, S increases slowly with T and its growth rate
with T becomes more pronounced as T increases. On the other hand, S increases quickly
with b at first and then slows down as b decreases. Next, we explain the behavior of S with
b and T , respectively.

On the gravity side, the HEE is related to the area of the minimum surface. Especially,
when the horizon radius of the black brane increases, the minimum surface tends to be closer
to the horizon of the black brane, which makes the thermodynamic entropy dominate the
behavior of the HEE. Therefore, the growth of HEE with T as well as b, can be understood

– 9 –
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Figure 4. HEE vs T and b at width w = 0.8, respectively.

from the relation between rh and T or b. According to (2.7) we can deduce that rh increases
with increasing temperature and b, this can be seen by taking the derivative of rh with
respect to T and b. The results are,

∂T rh =
r4
h

√
Q2

b2r4
h

+ 1

r4
h

(
2b2

(√
Q2

b2r4
h

+ 1− 1
)

+ 3
√

Q2

b2r4
h

+ 1
)

+ 2Q2
,

∂brh =
2rh

(
Q2 − 2b2r4

h

(√
Q2

b2r4
h

+ 1− 1
))

b

(
r4
h

(
2b2

(√
Q2

b2r4
h

+ 1− 1
)

+ 3
√

Q2

b2r4
h

+ 1
)

+ 2Q2
) .

(3.1)

From the above equation, it is clear that ∂T rh is always positive, indicating that rh increases
as T increases. However, ∂brh can be positive or negative, depending on the specific
parameter range. Further examination shows that ∂brh is always greater than zero when
rh is relatively large. This means that rh increases with b when rh is large, or when the
minimum surface is closer to the horizon of the black brane. When b is relatively large,
the system is approximately the AdS-RN system. The argument presented in [71] can be
applied to prove that ∂TS > 0. Furthermore, for small subregions, it can be inferred from
the equations in [71] that ∂TS is close to 0, which explains the flat behavior of S along T
for small temperatures.

After studying HEE, we proceed to investigate the behavior of MI with T and b. In
the BI model, the configurations for MI and EWCS are subsystems composed of a and b
separated by region p. As seen in figure 5, MI decreases with increasing temperature and
b. This is in contrast to the behavior of HEE. Moreover, it is worth noting that MI can
decrease to zero, which is an indication of a disentanglement phase transition. We have
also plotted the MI for smaller configurations (see figure 6), and the qualitative phenomena
remain the same.

As the subsystem c and the separation p change, the system undergoes a disentangling
phase transition, at which point the entanglement of two subsystems a and c vanishes.
The critical value of subsystem cc and separation pc are shown in figure 7. The left plot

– 10 –
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Figure 6. MI as a function of b and T for different configurations.

of figure 7 shows that the critical value of subsystem cc increases with b and T ; however,
the right plot of figure 7 shows that the critical value of the separation pc decreases with b
and T . This is as expected since increasing the temperature or b will tends to destroy the
entanglement, resulting in a larger subregion cc or a smaller separation pc.

In summary, both HEE and MI exhibit monotonic behavior with respect to the BI
factor b, but in opposite manner - HEE increases while MI decreases. From the gravity
side, the thermal contribution to HEE and MI dominates as rh increases with b, which
leads to the monotonic dependence on b. From a perspective rooted in the AdS/CFT
correspondence, the thermal effects dominate the entanglement behavior observed on the
boundary CFT. However, EWCS, being minimum cross-sections anchored on the minimum
surfaces, may exhibit different behavior from the black hole thermal physics. Investigating
EWCS could unveil new perspectives on mixed state entanglement.

Next, we explore the mixed-state entanglement through the EWCS.
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Figure 8. The illustration of EWCS. At the same configuration (a, p, c) = (0.1, 0.05, 0.06925) we
see that the minimum surface becomes flatter when decreasing the temperature. Meanwhile, the
minimum cross-section always ends at the point near the tops of the inner minimum surface, while
ends at the point away from the tops of the outer minimum surface.

4 The holographic entanglement wedge cross-section

In figure 8, we present the minimum surfaces and the corresponding minimum cross-
sections. It can be observed that the minimum surface is flatter when the temperature
is lower. This is due to the fact that the coordinate z is related to the horizon radius rh,
and at lower temperatures, a small rh will rescale z to zrh, resulting in a flatter minimum
surface. This makes it challenging to obtain precise enough solutions for the minimum
surface since the flat case is more singular in the θ coordinate. To overcome this issue, we
redefine the angle as z = ηx tan(θ), where η is a number related to the temperature. Only
with this technique, we can achieve precise enough solutions.

We show the EWCS vs b in figure 9, from which we can find that the EWCS can show
very delicate behaviors. The EWCS increases with b at first in a very narrow range of b,
however, it starts to decrease with b when b is relatively large and monotonically decreases
with b. This is in sharp contrast to the behavior of the HEE and MI, that only shows
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large, the EW converges to certain fixed values. For T = 0.2971 it can first increase, and later
decreases, and after that increases with b. Therefore, for very small b the EWCS increases with b,
irrespective of the values of the T and the configurations.

monotonical behaviors (see figure 4 and figure 5). In addition, the EW changes slower
with b than that with T . The typical change is of order 10−4 and 10−3, respectively. This
delicate behavior can be captured precisely because the precision of our numerical methods
can be up to 10−7.

Notice that the background is an AdS-Schwarzschild solution when b is 0, meanwhile,
its electromagnetic field is non-zero. At this point, the charge transport behavior of the
system is significantly different from that of the genuine AdS-Schwarzschild system. More-
over, since its geometry is still AdS-Schwarzschild, the entanglement-related geometric
quantities will be decoupled from the charge transport. As b gradually increases, the back-
ground geometry will receive back reactions from the Maxwell field. At this time, the
entanglement-related geometry starts to couple with the charge transports. Therefore, b
can play a role in measuring the relationship between entanglement and transport when b
is small. As we have pointed out, the EWCS increases with b when b is very small, i.e.,
when the coupling has just occurred. And when b increases further, the EWCS gradually
shows a decreasing behavior. Notice that simpler geometric quantities such as HEE, and
MI only show a very flat monotonic behavior. This indicates that EWCS, as a mixed-state
entanglement, captures very different properties from HEE and MI.

To understand the above behavior more clearly, we implement the following analytical
treatments. For small values of b, we can expand the expression of the EW (2.20) integral
with respect to b as,

EW =
∫

Σ

√Ξ(z)
z2 +

b
(
Γ
(

1
4

)
+ 8Γ

(
5
4

))
2
√

3πTΞ(z) (z2 + z + 1) Γ
(

1
4

) +O(b2)

 dz, (4.1)

where Ξ(z) ≡ x′(z)2 + 1
(1−z3) and the second term shows us that dEW

db > 0 for small values
of b. This explains the ubiquitous existence of the monotonically increasing behavior of
EW vs b for small values of b. From the holographic dual picture, it means that when
the Maxwell field starts to turn on from the BI case, the EW is increased. However, when
further increasing b we find that EW reaches local maximums and starts to decrease. When
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Figure 10. The EWCS vs b for a larger configuration (a, p, c) = (0.5, 0.2, 0.3875).

b is large, it can be expected that the background system approaches the AdS-RN, a fixed
background geometry. Therefore, the EW will starts to converge to some fixed value.

For sufficiently large values of b, it is possible to derive the analytical expression for
EW through expansions. The expression is given by Equation 4.2,

EW =
∫

Σ

(√
Θ(z)
z2 − zQ4 (z4 + z3 + z2 + z + 1

)
40b2(1− z) (−Q2z3 + z2 + z + 1)2√Θ(z)

+O

( 1
b3

))
dz, (4.2)

where Θ(z) is defined as,

Θ(z) ≡ x′(z)2 + 1
(1− z) (−Q2z3 + z2 + z + 1) > 0.

The second term in (4.2) reveals that EW decreases as b becomes larger. Consequently,
since EW increases for small values of b and decreases for large values of b, there must
exist at least one critical value of b at which EW reaches its maximum for a continuous
function. This observation aligns with the numerical results and provides an explanation
for the non-monotonic behavior of EW with respect to b.

In the context of gravity, the non-monotonic behavior of EWCS versus b can be inter-
preted by its increasing tendencies at smaller b values and decreasing tendencies at larger
ones. What separates EWCS from the typical monotonic behavior of HEE and MI is its
location within the bulk. This positioning frees it from the overpowering influence of ther-
mal effects. Furthermore, EWCS is unique due to its second-order minimization process,
compared to HEE and MI that are associated with first-order minimization. This allows
EWCS to capture different degrees of freedom in the quantum system. On the flip side, in
the dual field theory, mixed state entanglement, such as entanglement of purification, also
involves the second-order minimization. This difference also provides an explanation for
the distinct behavior observed.

Next, we show the EWCS in larger configurations in figure 10. As seen in figure 10, the
non-monotonicity of EW with b becomes more pronounced as the width of the configuration
increases. This means that the non-monotonicity exists over a wider interval. The reason
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plot is obtained for a larger configuration (a, p, c) = (0.5, 0.2, 0.3875).

for this is that when the width is relatively small, the minimum surface and the minimal
cross-section are only slightly different from the properties of AdS. However, as the width
increases, they deviate more significantly from AdS.

Next, we examine the behavior of EWCS with temperature. When the configuration
is relatively small in BI systems, EWCS decreases monotonically with temperature, as
shown in the left plot of figure 11. It is worth noting that the non-monotonic behavior
of EWCS at extremely small temperatures has been studied in [71] for AdS-RN systems.
Additionally, we illustrate the behavior of EWCS with temperature for larger configurations
in the right plot of figure 11, which also shows that EWCS decreases monotonically with
temperature. Although the monotonic decreasing behaviors are similar, the EWCS curves
for small configurations differ from those for large configurations. By comparing the two
plots in figure 11, crossovers of the EWCS curves with temperature can be observed in the
larger configuration, which reflects the non-monotonic behavior of EWCS with b. These
findings suggest that the behavior of EWCS is generally monotonically decreasing with
temperature, and this behavior is consistent with that of MI.

In order to more clearly demonstrate the relationship between the EWCS and variables
b and T , a contour plot of EWCS as a function of b and T is presented in figure 12. This
plot illustrates the non-monotonic nature of EWCS with respect to b and the monotonic
decrease of EWCS as T increases.

The non-monotonic dependence of the EWCS on the BI factor b that we have demon-
strated is expected to be universal for BI-like nonlinear electromagnetism. To test this
universality beyond the specific holographic model studied here, we will examine two addi-
tional BI-like theories. Observing similar non-monotonicity will confirm the crucial role of
the BI term in generating this entanglement behavior, independently of other holographic
dual details. Studying additional models will also elucidate the interplay between nonlinear
electromagnetic effects and entanglement.
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Figure 12. The EWCS vs b for a larger configuration (a, p, c) = (0.5, 0.2, 0.3875).

5 Born-Infeld with axions and Born-Infeld with massive gravity

We aim to extend our investigation of holographic information measures by exploring two
additional modifications of Born-Infeld (BI) theory. Specifically, we will examine BI theory
coupled to axions and BI theory with massive gravity terms.

In the case of BI theory with axions, previous research focused on analyzing holographic
transport in a model that incorporates the Born-Infeld term and axion fields φI = αxI ,
where I = 1, 2 and α is a constant. The action for this model is given by [53],

S =
∫
d4x
√
−g

R+ 6
L2 −

1
2(∂φI)2 + b2

4πG

1−

√
1 + 2F

b2

 , (5.1)

In this study, the DC and AC conductivities were analytically computed, revealing a
temperature-dependent DC conductivity. The analysis also observed a transition from
coherent to incoherent transport, which depended on parameters such as b.

For BI theory with massive gravity, the action considered includes the Einstein-Hilbert,
Born-Infeld, and massive gravity terms [72],

S =
∫
d4x
√
−g

R− 2Λ +m2
4∑
i=1

ciUi(g, f) + b2

4πG

1−

√
1 + 2F

b2

 , (5.2)

Here, the Ui represent symmetric polynomials of the eigenvalues of the d× d matrix Kµν =
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Figure 13. Left plot: HEE SE vs b at w = 0.5 and α = 1. Right plot: MI vs b at (a, p, c) =
(0.5, 1, 0.5) and α = 1.

√
gµαfαν , defined as follows:

U1 = [K], (5.3)
U2 = [K]2 − [K2], (5.4)
U3 = [K]3 − 3[K][K2] + 2[K3], (5.5)
U4 = [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4]. (5.6)

The authors obtained black hole solutions and conducted a comprehensive analysis of their
thermodynamic stability and phase transitions. Notably, they found that properties such
as the heat capacity CQ and phase structure were influenced by the nonlinear Born-Infeld
coupling parameter b and the massive gravity terms.

First, we present the results for the BI-axion model, where we examine the behavior of
holographic entanglement entropy (HEE) and mutual information (MI) with respect to the
parameter b. The corresponding figures are shown in figure 13. It is evident that the HEE
monotonically increases with b, while the MI decreases. Additionally, figure 14 demon-
strates the non-monotonic behavior of the entanglement wedge cross-section (EWCS). The
EWCS also exhibits non-monotonic behavior with respect to b. These observations in the
BI-axion model align with those observed in the pure BI model.

Next, we investigate the BI model with massive gravity. Figure 15 illustrates the
behavior of HEE and MI with respect to the parameter b. Similar to the BI-axion model,
the HEE monotonically increases with b, while the MI decreases. Furthermore, figure 16
presents the non-monotonic behavior of the EWCS in the EN-BI massive gravity model.
Again, the EWCS exhibits non-monotonicity with respect to b. The phenomena observed
in the BI-axion model are consistent with those observed in the pure BI model.

Based on the aforementioned observations in both the BI-axion model and the BI
model with massive gravity, we propose that the Born-Infeld term governs the monotonic
behavior of HEE, MI, and EWCS with respect to b, as all three models exhibit qualitatively
similar results. This suggests the universality of the phenomenon across BI-like theories,
highlighting the significance of the Born-Infeld term in modeling the coupling between
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BI factor b.

T=0.300 T=0.302

T=0.305 T=0.307

0.05 0.10 0.15 0.20
b

-1.54

-1.52

-1.50

-1.48

-1.46

-1.44

SE

(q, α, γ)= (0.4, -1, 1), w=0.8

T=0.300 T=0.302

T=0.305 T=0.307

0.00 0.05 0.10 0.15 0.20
b9.95

9.96

9.97

9.98

9.99

10.00

10.01
MI

(q, α, γ)= (0.4, -1, 1), (a, p, c)=(0.5, 0.1, 0.5)

Figure 15. Left plot: HEE SE versus b at w = 0.8. Right plot: MI vs b at (a, p, c) = 0.5, 1, 0.5.

T=0.300 T=0.301

T=0.302 T=0.304

0.00 0.05 0.10 0.15 0.20
b

11.261

11.262

11.263

11.264

11.265

11.266

11.267
Ew

(q, α, γ)=(0.4, -1, 1), (a, p, c)=(0.5, 0.1, 0.5)

T=0.300 T=0.301

T=0.302 T=0.304

0.05 0.10 0.15 0.20 0.25 0.30
b

-0.010

-0.005

0.005

0.010

0.015

0.020
∂bEw

(q, α, γ)=(0.4, -1, 1), (a, p, c)=(0.5, 0.1, 0.5)

Figure 16. Entanglement wedge cross-section (EWCS) Ew versus the BI factor b with (a, p, c) =
(0.5, 0.1, 0.5). Left plot: Ew versus b at different temperatures. Right plot: first derivative of Ew
with respect to b, demonstrating the non-monotonic behavior of EWCS.
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entanglement and transport in holographic theories. Consequently, further exploration of
BI gravity is warranted to gain insights into strongly correlated systems.

6 Discussion

In this paper, we study the behavior of HEE, MI, and the mixed-state entanglement mea-
sure EWCS in the BI model. Our results show that HEE increases monotonically with
both b and T , while MI decreases monotonically with both b and T . Interestingly, the
behavior of EWCS with respect to b shows a non-monotonic trend. Specifically, when b is
small, EWCS increases with b, but it begins to decrease as b increases further. In contrast,
EWCS exhibits a consistent monotonically decreasing trend with T .

Note that when b is small, b serves as a measure of the coupling between the entangle-
ment-related quantities and the charge transport of the system. Based on this observation,
we conjecture that increasing the coupling between the entanglement-related quantities
and the transport properties can enhance the EWCS of the system. This coupling between
transport behaviors and entanglement is also a topic of significant interest in condensed
matter theory, as seen in previous studies on nanowires [59], plasmonics [61, 63], and
plasmons [60].

The HEE increases consistently with temperature T and the BI factor b in the gravity
perspective. This is due to the expansion of the black hole horizon radius rh, which brings
the HEE minimum surface closer to the horizon. As a result, the HEE behavior is primarily
influenced by the thermal entropy from the black hole. From the viewpoint of the dual
CFT, this monotonic relationship between HEE and T , as well as b, arises because thermal
effects dominate the entanglement entropy. Similarly, the MI decreases continuously with
T and b, as it is defined based on the HEE. On the CFT side, increasing T and b introduce
more thermal noise, which disrupts entanglement in the boundary theory.

In contrast, the non-monotonic behavior of the EWCS is characterized by an initial
increase for small values of b followed by a subsequent decrease for large values of b. This
unique pattern emerges because the EWCS relies on the cross-section within the bulk
interior, independent of the horizon’s influence. From a dual CFT perspective, the EWCS
serves as a probe for mixed state entanglement, which effectively avoids thermal noise.
Moreover, measures of mixed state entanglement, such as the entanglement of purification,
involve a second-order minimization process rather than a first-order one like HEE. This
second-order minimization enables the EWCS to capture new quantum information that
is overlooked by the thermal-dominated first-order measures like HEE or MI.

To test the universality of our results, we examined two additional BI-like holographic
models. In both models, we observed monotonic HEE and MI together with non-monotonic
EWCS dependence on the BI factor b. This alignment across the models suggests the
non-monotonic EWCS phenomenon originates specifically from the Born-Infeld term, in-
dependently of other holographic details. Our observations highlight the crucial role of
the BI term in governing the interplay between nonlinear electromagnetic effects and en-
tanglement. The universality motivates further study of BI gravity to elucidate strongly
correlated systems.
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Next, we point out the issues that deserve further investigation. To begin, we can
examine other BI-like theories, such as the BI theory with lattices or superconductivity, to
further test if the non-monotonic behavior observed in this paper is general. Furthermore,
we can examine the effect of more general nonlinear EM field theories on the entanglement-
related physical quantities of the system, such as the more general nonlinear EM fields [48,
73]. We are working on these directions.
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