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1 Introduction

Exploring de Sitter (dS) solutions in the landscape of superstring vacua has been a central
and challenging goal in string phenomenology. Continuous studies have resulted in a series of
no-go scenarios in the last two decades [1-19], setting important constraints on the possibility
to obtain superstring vacua compatible with cosmological observations. More recently, in the
spirit of the swampland program — see [20-22] for a review — several conjectures questioning



the existence of dS vacua in string theory have been formulated [23-25].1 Building on the
fact that most of the initially realized dS no-go results were based on type IIA orientifold
models [3-14], we aim to perform a detailed analytic study of the F-term potential in the
landscape of Type ITA flux vacua. To expand over the previous results, we will consider
(non-)geometric fluxes in addition to the usual form fluxes (H3 and F},).

The introduction and study of non-geometric fluxes have been motivated from various
perspectives. They appear in the context of gauged supergravities [28-30], in Double Field
Theory (DFT) [31-33] and in superstring compactifications with generalized fluxes [33-39]. In
addition, the analysis of non-geometric flux compactifications has also led to some interesting
utilizations of the symplectic geometries to formulate the four-dimensional effective scalar
potentials in a concise form [40-45]. These multidisciplinary interconnections have been
very helpful for exploring the landscape of (generalized) flux vacua. A useful review of the
developments of non-geometric flux compactifications can be found in [46].

The initial motivation for studying the non-geometric flux compactifications lies in the
fact that (non-)geometric fluxes naturally arise from a successive application of T-duality
on the NS-NS three-form flux Hs of Type II supergravity theories [47]. It turns out that
such generalized fluxes induce tree-level contributions to the scalar potential depending
on the different moduli. As a consequence, this can lead to the possibility of dynamically
stabilizing all the moduli in the absence of any (non-)perturbative corrections.? In this
regard, incorporating such (non-)geometric fluxes certainly enriches the possibilities from
a model-building perspective.

However, it is still not fully known how many different kinds of fluxes can be consistently
turned on simultaneously in a given construction [38, 47, 49-53]. Even the Bianchi identities,
the simplest known constraints for the flux choice, are not fully settled for generic Calabi Yau
orientifold compactifications, as can be observed from the fact that there are two inequivalent
formulations for these relations [38, 50, 54, 55].

In the context of moduli stabilization and the attempts to construct de-Sitter (dS)
vacua, the models based on type II orientifolds with (non-)geometric fluxes have attracted a
considerable amount of attention in recent years [36-38, 56-65]. Understanding the effective
four-dimensional (non-geometric) scalar potentials and the possible constraints are among the
central issues. On these same lines, exploring the ten-dimensional origin of four-dimensional
effective potentials, which is known as the dimensional oxidation process, has also been one
of the main topics of interest [33, 40, 42, 43, 45, 66—68].

In this paper, we consider the generic bilinear structure of the non-geometric scalar
potential [39]. As commented in the original reference, this form of the potential is derived
assuming that possible corrections are suppressed and do not spoil the axionic shift symmetries
of the Kihler potentials® [69, 70]. Taking this as a working assumption,* we present a detailed

Let us also mention that there are several proposals claiming for consistent dS realization, and we refer
the interested readers to the reviews [26, 27].

2Notice that in type IIA with only RR and NSNS standard fluxes all moduli can be stabilized in AdS
vacua [3, 48].

3¢/ corrections respect this symmetry — at least at first order —. For simplicity, we will assume we can
ignore them.

40f course, one should check that this is true once a particular vacuum is chosen.



analysis regarding the constraints on the fluxes to realize dS extrema, exploring under what
conditions dS no-go can be derived. In the first part of the paper, we will follow a completely
general approach. We will see that just including more and more fluxes does not guarantee
that one can find dS extrema. The main results of this first part are expression (3.26)
and tables 2 and 3.

After the general discussion, we will improve our analytical control by looking at a
particular Ansatz. More specifically, we will impose a proportionality relation between the
F-terms and the Kéhler derivatives when both are evaluated at the vacuum. This is the
same scenario already studied in the presence of only RR and NSNS fluxes in [62] and with
geometric fluxes in [39]. We will see that, under these conditions, the scalar potential can be
compactly expressed using a set of eight so-called axionic fluxes. Then, the simple choice of
imposing an axionic flux to be zero or non-zero generates 256 flux configurations. Of these,
227 cases lead to dS no-go scenarios, whereas the other 29 choices remain undecided.

The paper is organized as follows. In section 2 we begin with a brief review on the generic
type IIA non-geometric flux compactifications where we provide the necessary ingredients
relevant for the current work. Section 3 presents a detailed analysis of the generic conditions
which can lead to dS no-go results. In Section 4 we impose the Ansatz that F-terms are
proportional to the respective Kéhler derivatives and analyze the subsequent simplified
expressions for the scalar potential and its various derivatives. Section 5 provides a detailed
classification of the dS no-go scenarios in the Ansatz. Finally, we summarize the findings in
section 6, and present all the other details and necessary intermediate steps in appendices A, B,
and C. Two detailed lists of all the dS no-go cases, and those for which a dS no-go could
not be obtained, are displayed in appendix D.

2 Preliminaries

Type ITA compactifications on Calabi-Yau orientifolds with fluxes are a fascinating corner of
the string landscape, since they provide a framework where one can stabilize all the moduli
in a weakly coupled, scale separated AdS regime with the classical potential generated by
the p-form fluxes alone [3, 48]. One can even consider a more extensive set of NS fluxes
related to each other by T-dualities, as discussed in [47]. Putting all these fluxes into the
game yields a richer scalar potential, studied in [36, 38, 49, 50, 71, 72] and more recently
in [39]. In this section, we will review the scalar potential generated when all the p-form,
geometric and non-geometric fluxes are turned on over a CY orientifold. As shown in [39],
using some previous work [42], such potential can be rewritten in a very compact way thanks
to the bilinear formalism developed in [73, 74]. This bilinear structure has turned out to
be a potent tool to study the vacua structure, as demonstrated in [39, 62, 75, 76]. In the
following, we will restrict ourselves to recalling the main ingredients we will need from [39],
referring the reader to this reference for a more detailed discussion.

2.1 Type IIA orientifolds with general fluxes

Let us consider (massive) type ITA string theory compactified on an orientifold of Xy x Xg
with Xg a compact Calabi-Yau three-fold. We take the standard orientifold quotient by



cohomology group HJ(FI’I) gty Hf’2) gZ? Hi H3

dimension hsrl’l) h(_l’l) h(_l’l) hgrl’l) A2 41| A2 4 q
basis Wey Wq w® w® oy B

Table 1. Extracted from [81] and adapted to our conventions. We are working in units where
ls = 2wy o/ = 1. For simplicity, with respect to standard notation, we have gathered the Z-odd
three-forms (az, 8%) into (ar, ) = @, and the Z-even three-forms (87, ax) into (87, ax) = 8.

Q,(—)rZ [77-80],° with Z an involution of the Calabi-Yau metric acting on the Kihler
2-form J and the holomorphic 3-form Q as Z(J) = —J and Z() = ¢*9Q, respectively. Under
the action of Z, the harmonic forms split into even and odd H? (Xg) = HY & H”. We can
introduce a basis for each of these subspaces:

In the absence of background fluxes and neglecting worldsheet and D-brane instanton
effects, dimensional reduction to 4d leads to a N = 1 supergravity theory whose massless
field content can be organized as follows [81]:

o There are h™! complex fields, the complexified Kahler moduli T%. They come from the
complexification of the Kéhler 2-form J = e%t“wa and the B = b%w, field, defined by
J.= B+ ies ] = (b* +it*) we. Here J is in the Einstein frame, ¢ is the 10d dilaton.
Integrating on the correspondent cycles the complex scalar fields in 4d are

T = b® + it®, ae{l, ..., Kb}, (2.1)

The metric appearing in the kinetic terms is derived from the K&hler potential

4
Ki — —log (3/c> , (2.2)
where K = Kgpt®t?t¢ = 6Vol Xg = %QT is homogeneous of degree three on the t* and
Kabe are the CY triple intersection numbers, KCppe = — | X Wa A\ wWp A we

o There are 1 + h*!' complex fields, so-called complex structure moduli, coming from
the integration of the complex 3-form 2, the axio-dilaton and the RR 3-form po-
tential C5. Defining Q. = C3 + i Re (CQ2) where C = e—¢=10¢3(Kes—KK) apq K. =
—log (—i / xg 2N ﬁ) the complex structure moduli are defined as

Ut =g+t = | Q.ABH, pe {0, ... h7}. (2.3)
Xe
Their kinetic terms are given in terms of the following piece of the Kéhler potential

¢

(&
Ko=4log | ——— | = -1 —4D 2.4
Q Og(m) og (e~17) (2.4)

SHere Q, the worldsheet parity reversal operator and Fy, spacetime fermion number for the left movers.




where D is the four-dimensional dilaton. The function Gg = e~ Ka/?

is a homogeneous
function of degree two in u*. These moduli are redefined in the presence of D6-brane
moduli, and so is the Kéhler potential (2.4) [74, 82-84]. For simplicity, we will not

consider compactifications with D6-brane moduli in the following.

¢ In addition to the spectrum of the chiral scalar fields, vector multiplets can also arise
from the dimensional reduction of the 3-form Cj if the CY has hi’l # 0. For simplicity,
we will only consider compactifications such that hi’l = 0. This assumption also
prevents us from considering the D-term flux potential, which does not contribute in
this case.

The flux superpotential. On top of this background, one can add RR, NSNS, geometric
and non-geometric fluxes. Following the conventions of [62] we will define the flux quanta
of the RR fields as

m = Gy, m* = GoANGQY, €4 = — GiNwg, ey = — G . (2.5)
Xg X6 X

The flux superpotential including RR and also geometric and non-geometric NS fluxes is
described in terms of a twisted differential operator [71]

D=d-HA+ f<+ Q>+ Re, (2.6)

where H is the NS three-form flux, f encodes the geometric fluxes, @) that of globally-
non-geometric fluxes and R is the locally-non-geometric fluxes, see e.g. [46, 49] for more
details. The action of various fluxes appearing in D is such that for an arbitrary p-form
Ap, the pieces H A Ay, f<Ap, Q> A, and Re A, denote a (p+3), (p+1), (p —1) and
(p — 3)-form respectively. Following the conventions in [38], the action of the different NS
fluxes on the basis of harmonic p-form is

HAN1=-h,p", HANoy=h,Ps,
fawa=—fauB", fawa=fat o,
faay=—fou@®,  fapt=—fl"0",
Qra*=-Q"p", Qra“=Q"a,
Qra,= Q%w,, Qrpfl=0Q%""w,,
Red®s =R, (", Rea,=R,1,

(2.7)

where ®g is the normalised volume form, [ x P6 =1, and we also have that HAS* = ReSH = (.
The NS flux quanta are hy, fou, fo!, Q%, @**, R, € Z. This specifies the action of the
twisted differential operator (2.6) on each p-form.

In addition, the internal RR fluxes can be gathered in a single polyform

G:G0+GQ+G4+GG. (2.8)
Given these definitions, the flux-generated superpotential is W = Wrgr + Wns [36, 71]

WRRr = — G Ae’e , Wns = / Q. ND (6_‘]“) . (2.9)
X6



Skipping the intermediate steps and referring again to [62] for a complete derivation, these
superpotentials have the following expressions [36, 38, 49, 71, 72]

1
Wi = e0+ eaT” + 5 KapermT"T° + % Kape T*TT®, (2.10)
1 1
Ws = U" | by + fap T + 5Kabe T°T°Q%, + G KapT*T’TC R, | , (2.11)
where eg, eq, m*, m, hy, fau, @y, R, are all integers.

2.2 The F-term flux potential

Under the assumption that background fluxes do not affect the Kéhler potential pieces (2.2)
and (2.4),% one can easily compute the F-term flux potential for closed string moduli via
the standard supergravity expression

Vi = e (KB DoW DgWW - 3[W]?), (2.12)

where the index A = {a, u} runs over all moduli. In [62], following what was done in [73, 74],
it was shown that this F-term potential displays a bilinear structure of the form

Vi =paZ* pg, (2.13)

where the matrix entries Z“48 only depend on the saxions {t*, n*}, while the p4 only depend
on the flux quanta and the axions {b%,&#}. Indeed, one can easily rewrite the results in [42]
to fit the above expression, obtaining the following result. The set of axion polynomials
with flux-quanta coefficients are

PA = {p()upa7ﬁa7ﬁ7pu7pau7ﬁZ7ﬁlJ»}7 (214>
and are defined as
1
po = o+ eab’ + 5 Kapem BV + %Kabcb“bbbc + puth, (2.15a)
o = €q + KapemPb® + %Kabcbbbc + Papl®, (2.15b)
Y =m+ mb* + ,525”, (2.15¢)
F=mt pugh, (2.15d)
and
a 1 brca 1 a1brc
pp = hy + faud® + QlCabcb b Q# + élCabcb b’b°R,, (2.16a)
1
Pap = fa,u + ICabcbeZ + §’CabcbbbcRu 5 (2'16b)
ph = QL+ bRy, (2.16¢)
Py =R, (2.16d)

5The validity of this assumption should not be taken for granted and will depend on the particular class of
vacua. The results in [85-87] suggest that it is valid in the presence of only p-form fluxes Frr, H. However, [88]
gives an example of compactification with metric fluxes in which fluxes heavily correct the naive KK scale,
and so should be the Kéhler potential.



The polynomials (2.16) are primarily new with respect to the Calabi-Yau case with p-form
fluxes, as they highly depend on the presence of geometric and non-geometric fluxes. As
n [74], both (2.15) and (2.16) have the interpretation of invariants under the discrete shift
symmetries of the combined superpotential W = Wgrgr + Wis.

For the bilinear form Z, one finds the following expression

G O
748 = K 2.17
ot ¢l (2.17)
where
40 0 0 0 0 0 2w
0g® 0 0 0 0 Zuwsy 0
G= , 0= 377 , 2.18
00 &g, 0 0 —2Kuwsb 0 0 (2.18)
oo o X w0 0 0
o 0 —a 0
0 &9t + gtbutu” 0 —grrgal
C=| _.x . L g A2 (2.19)
—ch 5 7€ b + =5 gapt"u 20
0 —enihk 0 K2 v

Here K = Kx+Kq, gap = 30100p Kg = $0,0,K ¢, and ¢y = 30,1 0u» K = 10,0, K¢, while
upper indices denote their inverses. We have defined K, = Kupet’t and ¢4 = ' — dutu?.

Putting all this together, the final expression for the F-term potential is explicitly given in
expressions (3.1)—(3.2), which generalizes the results of [74] — which only considered RR and
NSNS fluxes — and can be easily connected to other known formulations of (non-)geometric
potentials in the type IIA literature, e.g. [7, 18, 33, 35].

2.3 Bianchi identities and the tadpole constraints

Before coming to the study of flux vacua, it is important to look for the constraints arising
from the Bianchi identities. One needs to impose them on the fluxes to get the genuine
scalar potential. In our setup, these constraints can be obtained by imposing that the twisted
differential D in (2.6) satisfies the nilpotency condition D? = 0 when applied on the p-form
basis of the different cohomology groups [38, 50]. Using the flux actions (2.7) in the nilpotency
condition, one easily obtains the following constraints:

h,ufauzoa huQauzoa fa,ufauzoa fau@cwzoa
R,uQa'u:Oa Rufa“:()’ QauQau:Oa fo/uQau:Oa (2'20)
fa['u Qau] =0, h[,u Ru] = fa[,u Qau] .
Let us mention that, for our current work, we will focus on the orientifold constructions for

which hi’l = 0 and therefore all the fluxes, moduli and axions with « index will be absent.
This means that the only conditions which survive the orientifold project are given by

h[u RV] = fa[u Qau] = Pl ﬁu] = Palu ﬁal/]a (221>



where the last equation follows from the interesting fact that the set of constraints arising
from the Bianchi identities continues to hold even after all the fluxes are promoted to their
respective axionic-fluxes [42, 44, 54]. However, as we have mentioned earlier, the two known
formulations of the Bianchi identities, namely the Standard formulation and the Cohomology
formulation, turn out to result in two inequivalent sets of constraints [38, 50, 54, 55]. In
fact, the constraints arising from the Cohomology formulation are contained in the Standard
formulation, which, in addition has some more constraints, refereed as “missing” Bianchi
identities in [55]. So, given such state-of-the-art, even if one manages to realize a suitable
(dS) solution in a cohomology approach, the possibility of having additional constraints
may not be generically ruled out!

Complementing the flux constraints arising from the NSNS Bianchi identities, there are
tadpole cancellation conditions that one must consider while constructing concrete models.
These RR Bianchi identities are slightly non-trivial compared to those involving the NSNS
flux. They can be encoded in the following,

DG = > aqps/pe + D 406 (2.22)
D6/ D6’ 06
where gpg/per and goe denote the three-forms corresponding to the respective charges of
the D6-brane, its image D6’-brane and the O6-plane which can be consistently allowed by
the choice of orientifold involution. For our case, the left side of eq. (2.22) turns out to
be a flux-invariant given by

DG = (mhy —m® fo, + ea Q) — €0 Ry) BY = (ppy — p*pav + papy, — popv) B (2.23)

However, the introduction of appropriate local sources can be argued to cancel the tadpole
charges, which can be determined once the local brane settings and O-planes are concretely
specified in the model of interest. A recent update about (the challenges in) incorporating
these constraints in the non-geometric models can be found in [89].

2.4 Flux invariants and moduli fixing

The bilinear formalism of the scalar potential and the use of gauge-invariant flux-axion
polynomials provide a powerful tool to study the moduli stabilization processes systematically.
Since the flux polynomials depend on the axions %, moduli fixing amounts to solve a system
of algebraic equations in the saxions t* and the flux polynomials p 4. However, this change
of framework comes at the cost of decoupling the number of variables from the number
of moduli, since the size of the set p4 scales with the dimension of the flux lattice and
not with the dimension of the moduli space. As a result, in most cases, the number of
polynomials will exceed the rank of the system of equations of motion. This is not a problem
to achieve a well-determined solution because the set p 4 is not composed of fully independent
variables. There are many constraints arising from the way these objects have been defined.
Such constraints are expressed in terms of a set of invariant combinations of flux-axion
polynomials, which are invariant under shifts of the axions. The main invariants relevant to
the construction considered in this paper were identified in [39]. At the linear level, there
is of course p, = R,. At the quadratic level, we have

PPu — P Pap + Paﬁz = PPy s (2.24)



and
Qa

ﬁ[uﬁu] ’ Pl 151/] ~ Palu ﬁau] ) pa(uﬁu) - Kabcﬁﬁﬁi > (225>
where in the above () and [ | stand for symmetrization and anti-symmetrization of indices,
respectively. We again emphasize that the expressions above can be written exclusively in
terms of the flux quanta and are therefore moduli independent.

Let us also mention that there appears to be a close correlation between the flux invariants,
the Bianchi identities and the tadpole contributions. For example, the flux invariant (2.24)
appears in the Vj,. piece in the scalar potential (3.2). Further, as mentioned in eq. (2.21), the
following NSNS Bianchi identity holds and happens to be the only one (in the cohomology
formulation) which survives the orientifold projection with h}r’l = 0 [42],

h[u RV} = fa[p, Qau] = Pl ﬁl/] = Palu ﬁal/]‘ (2.26)

As mentioned in (2.25), it turns out that pj, gy — paj A% = by By) — fa Q%) is also an
invariant flux combination. Moreover, it has been shown in [55] that there are additional,
the so-called missing Bianchi identities, in explicit toroidal orientifold models based on
TS/(Zy x Z3) and T°/Z,4 orbifolds. Some of these are given as below,

fa(u Rl/) = ICachlbj, Qi ) 3h(u Rl/) = fa(u Qg) (227)

Since the set of Bianchi identities which hold for the usual fluxes remains to hold (as the
whole set of constraints) when those usual fluxes are promoted to their respective axionic-
fluxes [42, 44, 54], such missing Bianchi identities can be written as follows,

pa(uﬁu) = Kabcﬁ;aﬁf/ ) 3p(# ﬁu) = Pa(p ﬁg) (2'28)

And therefore, for such cases, pg(,0,) — ICabc[)Z,ﬁf, and 3p(, Pv) — Pa(u ﬁg) are invariant fluxes
as it has been observed in [39]. This shows a very interesting connection between the set of
Bianchi identities and the set of flux invariants. Following the study of Bianchi identities
in type ITA context in [42], one would expect several additional “missing” flux invariants
corresponding to the “missing” Bianchi identities in a given concrete construction. In more
generic orientifold constructions with hil # 0 and therefore fluxes supporting the D-terms,
one would expect to have even more flux invariants, which generate obstructions to achieve
full moduli stabilization [89].

The existence of these invariants constrains the dimension of the orbit of possible values
for the set p4. The surviving degrees of freedom, which by construction are never larger
than the number of axionic fields, are later fixed by the equations of motion. Depending
on the Hodge numbers of the underlying Calabi-Yau orientifold, even when h};l # 0, the
constraints arising from the invariants for generic flux configurations can be too strong to
allow complete moduli stabilization. Such restrictions were already observed through the
lenses of the Bianchi identities and the tadpole conditions in [89].

The rank of the choices of flux quanta also plays a crucial role, since new invariants may
arise while others become trivial when lowering this value. For instance, if the non-geometric
fluxes are set to zero (i.e. @, = R, = 0), we have the following invariants at the linear level

ﬁ =m, Pap = fa;t ) (2'29>



while at the quadratic level we have

~ ~ - 1 b~

PPy — P pap = (mhyy —m®fou) . (ppa - 2/Caz,cpbpc) : (2.30)
Here the c* € Z are such that ¢*p,, = 0 V. This means that there are i 7 of this last
class of invariants, with 7 the rank of h''! x (1 4+ A*!) matrix f,,. Considering all these
invariants, one can see that p4 takes values in a (1 + h5" + 7 £)-dimensional orbit.

3 Analytics of the non-geometric flux vacua

Assuming that the choice of orientifold action is such that h}r’l = 0, which translates into the
fact that there are no D-terms, the non-geometric scalar potential arising from the F-term
contributions can be clubbed into the following three pieces,

V=Ve=e" (Ver+ Vs + Viee) s (3.1)
where
K 2 ab 4]C2 ~a ~b ICQ ~2
Virr =€ 405 + 9" papy + —5=9ao0" 0" + 507 (3.2)
- o, Ka K 4K2 o
Vs =X {C“”pﬂpu + (@8 4 g™ ut ) pap + (c“”;; + 5 gabU“uV> P,

2

K2 s = o K. N
+og @ Pupy — & Rapupy, — 5 t“paupy},

Vloc = %(EK/CUV l:ﬁpl/ - ﬁapcw + paﬁﬁ - pOﬁu] .
For Vrgr and Vg, we have considered this classification promoting the usual scalar potential
pieces for the standard RR and NS-NS fluxes to the corresponding axion polynomials. On the
other hand, V.. can be related to the tadpole equations, which we choose to cancel without
introducing any D6 branes. Let us also point out that Vip is a positive semi-definite quantity,
whereas the sign of the Vg and the Vj,. contributions is a priori not fixed.

The generic superpotential can be expressed in terms of the axionic flux combinations
after using egs. (2.15)—(2.16) into egs. (2.10)—(2.11),

L KN ) . K 1
W= {<p0—2l€ap )—u” <p(wt —6pu>} -H{(pat —Gp) +ut (pu—2lCapu>} (3.3)

Subsequently, the F-terms arising from the (non-)geometric flux superpotential pieces given
in egs. (2.10)—(2.11) simplify to the following form,

F, = :pa — Kapphu — %% (tbpb +utp, — %/CbﬁZU“ + é@)]

+1 {’Cabﬁb + paput + %% <PO — t*uF pay — %Kbﬁb - é’cﬁuuuﬂ ) (3.4)
B = [ = 5Kt + 25 (10 + s = Kol — 255

+1i (t“pau - éfCﬁu - &‘TK (Po — t"u”pay — %Kbﬁb + é@w”)) : (3.5)

,10,



3.1 SUSY vacua conditions
Using the F-terms in eqgs. (3.4)—(3.5), we impose the F-flatness conditions:

F,=0=F,, (3.6)
which in particular leads to the following two complex constraints,
1 1. .. 3 K.
t'Fy = {—2% t* — Z’CaPZ“M - 5““,0# - 40}
3 1 .. 1 K
+i {2/)0 + ZICap“ — 3Pan thut — 4:0#“”} =0, (3.7)

1 K
ut F, = {—pu ut 4+ 3 Kapj, u" —2t"pa + 3/3}

K
+1 [2/)0 — Paut® ut — Kop" + Eﬁ“ u“] =0. (3.8)

These four real conditions can be solved for different axion flux polynomials taken as different
variables. One such solution of (3.7)—(3.8) can be given as under,

3pat®  Kp 9p0  SK.p*
e e TR papt ! = = = = (39)
. 5pqt%  3Kp K . po . 3K p*
a M — _ — H = —
Pukau 2 4’ Gk 1 T8

Note that the above solution is useful when we want to get rid of the NS-NS p polynomials
for determining the vacuum, as it helps in expressing them in terms of the generalized RR
sector polynomials. After imposing these four F-flatness conditions, the superpotential (3.3)
simplifies into the following form,

1. . . . K
Wsusy = K—po—i- §]C“p ) -1 (pat % p)} (3.10)

Subsequently, the AdS minimum is given as,

1. \? K \?
(V5U5y> = —3¢eK ‘WSUsy‘Q = —3¢eK {(po 3 K pa> + (pa t* — 5 ,0) }, (3.11)

yielding a negative semidefinite scalar potential expressed as a sum of quadratic combinations
of flux-axion polynomials. Now, in order to have the chance to obtain de Sitter vacua, we
will explore the non-SUSY landscape.

3.2 Non-SUSY vacua conditions

In this subsection we perform an analytical exploration of the generic (non-SUSY) flux vacua.”

These vacua can be globally studied from the extremization of the scalar potential given
in egs. (3.1)—(3.2). In this regard, we present the relevant expressions of the various scalar
potential derivatives. We will not calculate or discuss here the Hessian associated with these
vacua, keeping in mind that it has to be computed to check its perturbative stability. Our
main aim is to find swampland-like inequalities by considering the derivatives of the scalar
potential and their various suitable combinations, as we will elaborate later on.

"Strictly speaking, we should always talk about the extrema of the potential rather than about the vacua,
since we still need to check the absence of flat directions and the perturbative stability through the Hessian.
Nevertheless, we will use both words indistinguishably, bearing in mind that for a given extremum one should
study the second derivatives of the potential to see if it is a vacuum.
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Axionic derivatives: the derivatives of the scalar potential corresponding to the Cj
axions &7 are

ov 8K2 ., 2K%
—— =" 1800 ps +29™papro + —o—gah By + “Pad
oEe 9 9
aK 4K 4K 4K _
—?p(,pyu” + ?pagpl‘ﬁu” — ?pgpwu” + ?pgpyu” . (3.12)

Let us note that the last four terms are trivial due to the fact that usual NS-NS Bianchi
identities continue to be satisfied after promoting the fluxes into the axionic p-flux polynomials.
In fact, one has the following constraint from the generalized Bianchi identities [42, 44, 54],

H[g RH] = fa[g QZ}? == Plo :5&] = Palo ﬁZ] ) (313>
where the underlined indices are anti-symmetrized. Therefore, the £7 derivative can be
recast as

g OV 8K2 ., | 2K%
e =800 ps + 29" Papro + ——garP P + = Pop. (3.14)

o 9 9
Similarly, we get the following derivative of the scalar potential w.r.t. the b* axion,

_g OV _ 8K2
e X g = Spopat 29" Kapap®pe + =5 JacPP" + 26" paypy
- _ i Kol 8K? - .
+2 (C“”tbtc + gbcu%“) Kabadlhpey + (c“” oot ggacu%”> Pubs,
~UV ~b ~ 1 ~uv ~C ~
_¢ (paup,,ICb + puplea> — 3¢ KK achypu- (3.15)

Saxionic derivatives: the two saxionic derivatives are presented below,

_ OV _ 4K 4K 4K 4K
e oue {6 RVo, K — 3 Papot ?Pﬁpa - ?Papaa +t 5 Pre + o™ ppupy
- K:b(acrcwjpuﬁl; - 4paﬁguu - 4puuuﬁg) + tatb(acrclwpa,upbu - 8pa0pbuuy)
K N _ -
+ QQGbPaUPbVUV - tag(aacwjpaupu - 4PaaPuUV - 4pa,uuupa)
KaKh s s 8K . K? -
+ Z (@CW,OZP?, — 8pphu’) + Tgabpﬁpgu” + %(%clwpup,, ,  (3.16)
g OV _ 8K 4K? b 2K
e o= [e KV 0, + 0ag™pope + <3/Cagbc - 98a9b0> P+ 5 Kap?

— 4K, (POﬁV - pbﬁg + ﬁbpbv - ﬁpl/) u” — 25}W’Cabpuﬁg + 28" pappev

N . K N b~
+ 8a9bcpbuu'upcvuu - (’Catbpbupu + BPGMPV> + CuuKachprzcz

8K b oy~ 4K? b - K -
+?’Ca9bcpzuupiuy + TaagbcpZu“p,cju” + 6/Cac’wpupl,1 : (3.17)

From the explicit expressions of the derivatives of the scalar potential, equations (3.14)—
(3.17), one can construct the following four conditions as the initial step for exploring the
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s OV a B

non-SUSY landscape,
ov 1% ov
— = =0 F—— =0 9 — =
T T T ota

(3.18)

OuH
of the various scalar potential pieces, as we will exploit later. Moreover, it turns out that

Note that the last two quantities (u“a—v) and (tag%) can be expressed as a linear combination

solving the last two (saxionic) extremization relations is equivalent to looking into the
volume/dilaton (V, D)-plane as studied earlier, e.g. see [4-7]. More precisely, let us consider
the first of these two relations, which is given by

ov anK , . 4AK , 4K aK .
u“w = 4V +eF [—Su pPopv + 3 vy, — 3 7’ s + 3 PPy (3.19)

) _ ) i L2k )
+26 pppu + 2L + ") prupes — 28 Kipupy, — St pryupy

1 ) b K2 oL
+ (2/Ca’CbCW + ggabU“UV> PPy + QCWPMPV = 0.
Now, using the decomposition of the potential given in eq. (3.1), it can be observed that

the above relation (3.19) can be compactly rewritten as

u“% = —4Vrr — 2VNs — 3Vipe - (3.20)

For the cases when Vj,. # 0, using the fact that the above formula vanishes when evaluated at

the vacuum, one can eliminate V,. — whose sign is undetermined — in (3.1). Subsequently,

the potential at the vacuum can always be written as,

(Vns)  (Vgr)
3 3

So, given the fact that the Vi contribution is always positive semidefinite (indeed (3.2)

(V) = (3.21)

directly implies Vrr > 0), whether one can realize a de-Sitter or not will be determined by
the behaviour of the Vg piece when we impose the remaining three extremization conditions.

We consider next the t* derivatives, which can result in the following useful relation,
OV 16K2 2K

i = 3V e 120" pope + — e P+ =57 (3.22)

t

2

16/C
+2(6ul/tbtc + gbcuuuu)pbupcu + <K:alcbéwj + gabu#uy> ﬁZﬁIC/
Ko - - 4K -
5" b = 28 Kopupy, = —- &t poy
—AKu” popy + 4Ku” ol — A 5P pry + 4/CUV/3PV} -

Y

Note that the last line in the above expression is in fact “+3V},.” which gets cancelled by
the respective local piece in “—3V"” at the beginning of the equation. In this case, though,
we could not derive an analogous expression to (3.21).

In the following subsection we will mainly focus on equations (3.19) and (3.22), which
we will combine in order to determine necessary conditions for realizing a dS vacuum. In
appendix A.1 the reader interested can find the explicit expressions of the four extremization

conditions (3.18) expressed in terms of the flux-axion polynomials.
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3.3 On generic dS no-go scenarios

As we have briefly commented in the introduction, finding dS vacua and exploring the
possibility of dS no-go scenarios has been at the center of interest for decades. An important
feature of the general analytical study of the vacuum equations is that it is possible to
derive many No-Go conditions against de-Sitter realizations without explicitly solving the
extremization conditions. Such has been the case for many type II constructions where the
non-geometric fluxes are absent, e.g. see [4-9, 39]. Some examples of non-geometric type
IT models that led to dS no-go results have been studied in [18, 19]. In our framework this
can be seen using (3.19) in combination with (3.22). In the presence of all flux quanta,
the same reasoning can be generalized more systematically by using the following set of
combinations of saxionic derivatives,

oV oV 1 4K2 K2
o a 4 4 K be . ~b ~c ~2 9
oy + at i — (44 32)V +4e lx <2g PbPe + —y eeP'p + 5P (3.23)

1 1 L 3 N
5 pupy + (3 + az) Ku” (ppu — 2w + puy — popu)

1 o ” 1 v ~
+o (1 + 2) (@t + g*ulu”) pyupes — 5(1 + @) Kppupl,

2
1 16KC2 1

+5(1+22) <lcalcb&*“’ + gabu“u”> i — s+ 22)&" KtP pyu
K2 o

+ﬁcuy(1 + 3:E)pup,/‘| )

which vanishes when evaluated at the vacuum. This relation naturally extends the results
of [39] beyond the geometric flux case and can be used to derive the general expression

1 Y By 1\ [ K252
(V) = (04 3) |12+ %+ () [ . 30“%0”] (3.24)

412

+(1—2) [(5“”75“750 + 9" ) oy ey — 5 PP gab — 6“”&/}@3]

+(z+1) [(5“”22 + gabU“uV) pops — 9*papy — I;é“”t“pauﬁu] :

Notice that the elements of the set of polynomials p4 are not fully independent variables
as the equations of motion constrain them.® Consequently, after demanding the vacuum
conditions to be satisfied, there are many equivalent ways of writing the scalar potential
in terms of these functions. The usefulness of relation (3.24) lies in its generality, since it
has to be satisfied for any = € R. By carefully choosing the values of x in which the above
formula is evaluated, one can arrive at several distinct simplified expressions for the scalar
potential at its extremum points as a function of the flux-axion polynomials. We focus on
those choices that cancel some of the terms in (3.24), that is x = £1 and = £1/3. The

8As we discussed in section 2.4, even before imposing the equations of motion several constraints fix their
relative values in terms of combinations of flux quanta.
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evaluation at those points is explicitly computed in appendix B. Each of them represents a
boundary between regions in the flux-axion polynomial space where different sets of terms
can potentially contribute to a positive vacuum energy. Hence, analyzing them individually
will provide a list of sufficient conditions to guarantee that the scalar potential is negative
semi-definite. Such a list will not be exhaustive, but due to the method employed (trying to
restrict the problem to lower dimensional subsectors of the space of p4) we expect these de
Sitter no-go sufficient conditions to be the most restrictive non-trivial demands along each
flux-axion direction, thus providing valuable insight in the search for de Sitter vacua.
Defining the following quantities

. 4K? oy .
R = (C"”t“tb + g“buMu”) Pans = 5~ P2’ Gab S = Kapupl,
3.25)
- o K Ky 4K2 o ~ B B (
R = (CW/;2 + 9gabuuuy> pzpl; - gabpapbv S = ’chjtaﬂaupuy

we analyze how the different terms contribute to the sign of the potential in (B.1)-(B.4).
The most general no-go conditions we can derive with this procedure are directly obtained
from simply demanding that the expressions (B.1)—(B.4) are negative. However, it is not
very illustrative due to the large number of parameters involved. Therefore, we choose to
soften the no-go claims, restricting ourselves to more basic conditions, in order to provide
easy-to-check rules. Motivated by the observation below (3.21) — the fact that the sign of
the potential in the vacuum can only be changed by the Vg piece — we consider all the
terms in (B.1)-(B.4) that depend on the NSNS fluxes (i.e. ¢*’p,p., ¢ pupy, R, R,S,S) and
include the additional RR contributions in the cases where they favour de Sitter vacua.’
Doing so, we find the following four sufficient conditions to guarantee the absence of de Sitter

vacua (note it is enough to satisfy one of them):

,CQ ~9 B S ]C2
gp +R - 3 + Ecwjﬁuﬁu — ™ pupy, <0, (3.26a)
IC2
R — S+ 4pi + 2¢" pup, — %c‘“’ﬁuﬁy <0, (3.26b)
R S ~ S K?
5 - E + R - g + ﬁcuyﬁuﬁu S 07 (3260)
2R —2S + R — 3 +3¢"pupy < 0. (3.26d)

Though these four equations encode many possible no-go results against dS vacua, it is worth
studying some particular choices of fluxes to shed some light on their implications.

¢ Previous results in the literature can be easily recovered when we omit the non-geometric
fluxes. For instance, it is well known that CY orientifold compactifications of massive
type IIA with only RR and NSNS fluxes can never yield dS vacua [5]. In our formalism,
this follows from (3.26¢), which reduces to 0 < 0 after setting fo, = Q = R, =0 (and
therefore p,, = 0 = p% = p,). On the other hand, in the absence of non-geometric

9In particular, this means we will ignore the terms R and R when they are purely RR — the cases in which
pap = 0 and p,, = 0 respectively — since for these particular choices of fluxes R and R always favour AdS.
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Pu | Py | Pau | Pu No-go condition #

0 1
0 Always

- 2

0

0 3
- R<0 or p=0

- 4

0 ~
0 R <0orpg=0 5

K25% +9R — 9 pup, <0or 2R —S <0 or
4p% + 2" pupy —S <0 or R+3cpup, —28 <0

K252+97é§00r R+2R <0 or
- R+4p3 <0 or 2R+R <0

IC2p~2+97~€—9c“”,0le,§00r R+R—-8<0 or

4p3 +2c" pupy + R —S <0 or 7~2+2R+3c‘“’pupl,—28§0

Table 2. Summary of sufficient de Sitter no-go conditions for all the distinct basic flux-axion
polynomial configurations with R, (= p,) = 0.

fluxes (3.26a) becomes 52 < 0. This also proves that there cannot be dS if the Roman’s
parameter p vanishes, even in the presence of RR, NSNS and geometric fluxes, in
agreement with what has been previously done [6-8, 11, 12]. Finally, when we turn on
simultaneously the Roman’s mass and the metric fluxes, (3.26¢) shows us that there
are still important constraints to obtain de Sitter. In particular R must be positive, as
was already observed in [39]. All these results are summarized in rows 1 to 4 of table 2,
labelled there by a #.

+ The next step in the analysis is to introduce the non-geometric fluxes @, while keeping
Ry, (ie. pj, # 0 and p, = 0), so there is still a local notion of geometry in the internal
space. The conditions that arise from (3.26) for the different flux configurations,
summarized in rows 5 to 8 of table 2, become increasingly involved. In particular, the
cross term S hinders the goal of making general and concise statements. It is worth
mentioning, however, that when R and R are negative (as it happens naturally when
considering the stability-motivated Ansatz employed in the following section) de Sitter
no-go’s are immediately recovered for configurations 5 and 7, while configurations 6
and 8 (generic case) do not rule out de Sitter vacua as long as the Roman’s parameter
is not trivial.

» Finally, we set R, # 0 which means g, # 0. The most general no-go’s we can derive
with our simplified method are the relations (3.26). For some particular configurations,
these can be refined and shortened to prove the absence of de Sitter in a large region of
the relevant flux-axion polynomial space. A selection of such simple cases is summarized
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Pu | Py | Pap | P No-go condition #

0 0 Always 9
- 0 R<0 or pg=0 13
-l o 6R—S<0 or 4p+R— cmp5,5,<0 or R<0 11
) 6R+3R-8<0 or B LR -S4 Ko 5, <0
] FIR—6 <0 or Zg= 4+ R =5+ 5 pupy <0 or 15
3R+ 6R — 28 + L j,p, <0 or 4p3+ R — Koervp,p, <0
0 0 - || K252 + %26“"/3”,51, —9c"pup, <0 or 203 + M pupy — %c“”ﬁuﬁy <0] 10

Table 3. Some configurations with R,(= p,) # 0 and a selection of their most simple no-go’s.
Numbering of axion-flux configuration has been chosen to ease comparison with table 4 in section 5.

in table 3. Remarkably, as soon as we turn on the flux p, the no-go conditions become
much more specific, which hints at the fact that the most general configurations are
loosely constrained by (3.26), leaving the door to find de Sitter still opened.'®

4 Imposing the Ansatz

In the previous section, we discussed the equations of motion of non-geometric flux compactifi-
cations and the nature of the resulting vacua. We now aim to particularize these techniques to
a better-controlled framework where we can push the analytical characterization even further,
thus refining the no-go results and granting a better understanding of the vacua structure. To
do so, we recover the Ansatz studied in [39], which is given by the following proportionality
relation between the F-terms and the derivatives of the Kéhler potential of moduli space

Fa={F, F,} = {axKa,a9K,}, ak,ageC. (4.1)

This Ansatz, motivated through (perturbative) stability arguments [90], was used in [39] to
perform a detailed study of a vast class of flux vacua. In that reference, the central analysis
was done by exclusively turning on RR, NSNS and geometric fluxes. In the present work,
we want to go further by also including non-geometric fluxes.

Translated to the F-terms computed in (3.4)—(3.5), the Ansatz (4.1) requires

pa — Kap phu =P O, K, Kapp’ + papt” = Q. K, (4.2)
1 . . 1.
pu—§lCapz=M8MK, paut“—gleMZNﬁuK,

where P, Q, M, N are real functions of the moduli. The set of conditions (4.2) can be
manipulated to lead to the following four relations,

1 a ~a 1 5% a
P=—g (oot~ Kapf?) . Q=3 (KaP" + put” v .

: L . k. (4.3)
M= (Puu“ - QIC“p/‘uu> M= (”“’” v 6”*”“‘“) '

9As an example, the de Sitter candidate found in [9] falls in the mirror type ITB version of the most general
case, for which no subfamily of p's is set to zero. The no-go employed there is a simplified version of (3.26¢).
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The plan now is to impose the Ansatz and to study the scalar potential and its first derivatives,
to see in which cases a dS extremum can be possible. We will not look at the second derivatives
of the potential — the Hessian —, which we leave for future work.

4.1 Simplified scalar potential and its derivatives

Using the expressions (4.2)—(4.3), one can simplify the superpotential (3.3) and the F-
terms (3.4)—(3.5) to the following form

1 K
W:(po—zlcaﬁa+4/\/>+i<pata—6ﬁ—4M>, (44)

1 K 3
F, = 2aaKKtapa+6,5—4M+2P) — i (po+21Caﬁ“+4Q—4N)],

1 K 1
= o (t00— K5 20) i (- o 20)].

\)

As it can be seen now, the F-terms are manifestly proportional to their respective Kéhler
derivatives. Combining these relations with the standard identities: (9,K)c* (0,K) = 16
and ut (0, K) = —4, the expression of scalar potential can be greatly simplified. To illustrate
how it works, here we note that six (out of 16) pieces of the scalar potential in (3.1), including
the two cross-terms S and S introduced in (3.25) for which the signs are not a priory fixed,
can be expressed as

uv ~uv yah pny Ka Ky ~a ~b K Uy~ ~ pny ~a K ~uvga ~
Cpupy + ETE pappoy + ET =27 Py + 3¢ Pubv—¢ Kapupy, — 3¢ " Pappv
IC2
=4utu” pypy + s ' iy py — 48 (M2 4+ N?). (4.5)

Similarly, taking into account that t*9,K = —3 and g®K,K;, = 4/3K?, six more terms of
the scalar potential (3.1) can be written in the following manner,

42 4KC? 4K . 4K
9" papy + Tgabpapb + g“bu“ul’paupby + Tgabu“u”p/‘iplb, + ?prapﬁ - ?Uyl)apau
= —6(P% + Q%) +2(t" pa)” + (Ko p% uh)* + (Ko §*)* + 2 (t* papu)®. (4.6)

Merging all the above results and working with the remaining terms in pg and p, the full
F-term scalar potential takes the following form

K 1 3 2
V=K 4(p0+lCaﬁ“+3Q—4/\f)2+4<6ﬁ+2tapa+273—4/\/l) (4.7)

+2(t% pa)? + (1 pa + 3P)* + (Ka 5> + 2 (Ko p° + 3 Q)

AR (M2 N — 6(P? 4+ Q%]
Notably, the introduction of the Ansatz (4.2) allows us to express the scalar potential as
a combination of pieces which are either positive semi-definite or negative semi-definite.

This stands in stark contrast to the discussion in section 3, where the overall sign of the
terms of (3.24) involving R, R,S and S (defined in (3.25)) was left undetermined. Finally,
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in appendix A.2 we also write the four extremization conditions introduced in (3.18) in
terms of the Ansatz.

To summarize the story so far, using the Ansatz (4.2) we have expressed the total
F-term scalar potential as well as the four types of extremization conditions in terms of
eight quantities, namely {M, N, P, Q} and {po, (pat®), (Kap®),p}. At first sight, it may
naively look like an underdetermined system of four constraints with eight variables. However,
let us note that these eight unknown quantities are not all independent, since there are
several constraints due to the existence of moduli-invariant combinations of the flux-axion
polynomials. We recall the previous discussion in section 2.4 for more details on the flux
invariants, and their correlations with the Bianchi identities.

4.2 Insights from a couple of examples

In this subsection, we make use of the Ansatz (4.2), the reformulated scalar potential (4.7)
and the four constraints arising from the derivatives of the potential (A.3), in order to study
a subclass of simple but explicit models. Namely, we will focus on the SUSY vacuum as well
as on the geometric scenario (where we set the non-geometric fluxes to zero). In the first of
these two examples, we will limit ourselves to derive the minimum of the potential in terms of
the Ansatz. Meanwhile, for the second case, we will connect our formalism to previous results
in the literature [39] and will have a first encounter with the no-go obtained in section 3.3.

SUSY vacua. The supersymmetric vacua of our Ansatz could be derived as a subset of
the solutions satisfying (A.3). However, it is far simpler to work directly with the F-flatness
conditions Fra = 0 = Fyu using (4.4). We find

K 3

t“pa+gﬁ—4M+2P:0, po+§lCaﬁa+4Q—4./\/:0, (4.8)
o« K. 1,
tpa—gp—Z/\/l:(), po—ﬁlCap +2N =0.

Subsequently, the space of solutions can be entirely described by the four parameters of our
Ansatz. Given the relations above we can write

w=- -0 (put?) = 3M =P, (49)
(Kap®) = 3N =20, %ﬁ =M-P,

which, of course, is also a solution to the four extremization conditions given in (A.3). Note that
once a particular choice of flux quanta is made, the parameters M, N, P, Q will also be fixed
by the constraints arising from the axion-invariant relations between the different elements
of pa. Such a process can be observed substituting the Ansatz on the expressions (2.24)
and (2.25). Subsequently, the scalar potential at the SUSY minimum is given by

(Vsusy) = —12€’ (M2 +/\/’2> : (4.10)

Geometric model. Let us now move away from the assumption of supersymmetry and
consider some simplifications in the flux lattice. In the absence of non-geometric fluxes, one
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has pf, = 0 = p,,, and subsequently the set of 4 constraints in (4.2) takes the shorter form,

pputt = —4M, papttut = —4N, (4.11)
pal® = —3P, Ko = —3Q+4N.

Given that only the last two of the above appear explicitly in our simplified formulation
of the scalar potential and its derivatives, now we have a system of six unknowns, namely
{M,N,P,Q, po,p} which are further constrained by the set of restrictions through the
Bianchi identities and the flux invariants. Using the expression (4.11) the value of the
potential in the vacuum can be written as

1 2
(Vigeometric) = €~ (4 pe + 16 M? +12P% 4302 — 24N Q — gKﬁM + ’Bf) . (412

under the conditions

NP —Mpy=0, (4.13a)
K
8N(M—P)+6P(Q—po)+€ﬁ(4./\/—3Q):0, (4.13D)
2
p3+2M2+2N2+3P2+ZQ2—5NQ—/C5M+’3C—652:o, (4.13¢)
2 2_§ 2 2_1 2 2 _£2~2_
P+ 4M 3/\/ +P*- 10 +3NQ 257 =0 (4.13d)

coming from the four extremization equations introduced in (3.18).

Since this system corresponds to the geometric setup, it should reproduce some of the
simple dS no-go scenarios discussed in the previous section. We know that one cannot have a
dS extremum in geometric flux models without having non-trivial Romans mass terms and
the geometric flux; for example, see [6-8, 11, 12, 91] and the recent works [92-94]. Although
in some of these studies, sometimes dS extrema were obtained but those were found to be
unstable. Under the conditions of our Ansatz (4.2), such solutions are excluded and the dS
no-go gets extended, which shows the effectiveness of the Ansatz to filter out unstable flux
configurations. Indeed, given the special choice of Ansatz we have imposed, it is possible to
combine (4.12) with (4.13c) and (4.13d) to find the following negative semi-definite expression

(V)= G 803 + 16P% + 16 <2N— Q)Q + 592] <0. (4.14)
3 3 4 3
This shows that the no-go is restored as long as the conditions (4.2) are satisfied irrespective
of whether the Romans mass term is zero or not! Such behaviour, which was already observed
in [39], encompasses a particular realization of the no-go R < 0 of configuration 4 in table 2.
As we will see in more detail in the next section, this no-go is more general and excludes
a more significant set of flux configurations.

For completeness, let us conclude the discussion on the geometric flux setting by men-
tioning that the four constraints in (4.13) have already been studied in detail in [39, 95]
resulting in the identification of several classes of stable SUSY as well as non-SUSY AdS
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vacua. In fact, one can connect the current analysis with those of [39] by simply introducing
six parameters A, B,C, D, E, F in the following manner:

—F
po=KA, P =K B, Q= —IC(C?)), (4.15)
p=2D, M=KE, N:%.

5 dS no-go in the Ansatz

Having introduced and familiarized ourselves with the Ansatz in the previous section, we
will now study how it behaves under the no-go’s established in section 3. As we will see, the
Ansatz will improve the analytical control and will allow us to refine the conditions required
to go away from AdS vacua. We will start by discussing the different configurations of the
NSNS fluxes, mirroring the general case of section 3.3. Then, we will take advantage of the
simplicity of the Ansatz and systematically study every possible configuration, including all
the contributions (both RR and NSNS) in the scalar potential (4.7).

5.1 Reproducing and expanding the NSNS analysis

In the context of the search of de Sitter vacua, one crucial outcome arising from the Ansatz (4.2)
is given by the expressions:

5 s 1. .5 K%,
R = =2 (u't"pap)” = 3 (Kap")” + 508" Dubv (5.1a)
R= _%( MKafp)” - g(t“pa)2 + b Pup (5.1b)
S =2¢8" pupy — 3(Kouhp*) (pput) (5.1c)
§ =, 300 () (514

which can be derived from the following relations, involving the primitive and non-primitive
components of the moduli space metric,

4
g =g¥ + g, gPRK =0, g% =t 1"

3
3
P NP P b NP )
Yab = Yab + Yab garl” =0: Gab = iz Ka Ks; (5.2)
M = + Kb A 9,K =0, Ap = utu”.

Using these results, one finds that the previous generic relation (3.23) simplifies to
the following form:

)= (o 1) [+ o] (o 3) [ - ]

+(1—2) [—g(pwtauuf _ é(lCaﬁa)Q + S(ﬁZICau“)puu”} (5.3)

5 ~Q 4 a a ~ 14
) [~ K — 5 (E ) + ('t gt |

where now all but two of the terms have fixed signs.
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From the relations (5.1) we see that some of the no-go conditions established in tables 2
and 3 are automatically satisfied. For instance, in configurations 3,4, 5,7 of table 2 we saw that
a dS no-go was present if R < 0, R <0 or {R, 7~2} < 0, depending on the case.!! We indeed
verify that this is the behaviour displayed by the Ansatz, leaving only the two possibilities 6
and 8 of table 2 for the search of dS vacua. Regarding these two cases, de Sitter is incompatible
with our stability-inspired Ansatz whenever the Roman’s mass vanishes.'? This discussion is
summarized in rows 1-8 of table 4, matching there the labelling we used in table 2.

A similar analysis can be performed when the non-local non-geometric flux R,, is present.
As it happened in the general case — recall table 3 — simple dS no-go conditions can be
derived for some particular selection of fluxes, whereas for some others it is hard to extract
easy-to-check equations from (5.3). The main issue in the latter configurations is the lack of
general control over terms depending on S and S, since contrary to all others, they cannot be
decomposed as sums of quantities with definite signs. We summarize this discussion in rows
9-16 of table 4. Notice that we have broadened the analysis we made in table 3, labelling
the cases that appear in both tables with the same numbers.

5.2 A more comprehensive classification with all the axionic fluxes

In this subsection, we comprehensively classify the dS no-go scenarios in the Ansatz introduced
in (4.2). This Ansatz, motivated by stability requirements, was characterized by four
parameters constrained by the choice of flux quanta. Throughout the last two sections, we
observed how it allowed us to cancel all contributions coming from the primitive sectors of
the flux-axion polynomials and write the equations of motion and vacuum energy exclusively
in terms of non-primitive components (see for instance (4.7), (5.3) and (A.3)).

Until now, we have focused on the NSNS sector, looking for some minimal requirements
to achieve de Sitter, ignoring negative-definite terms in the scalar potential. We will now
take full advantage of the powerful simplifications generated by the Ansatz, systematically
considering all possible flux contributions. To shorten the expressions, we will write the scalar
potential and the equations of motion explicitly in terms of the non-primitive components
of the flux-axion polynomials (eight in total, one per family) eliminating the dependence
{M,N,P,Q} (4.3),

5

4 4 5
V=el 47%+§7§+§7§+472+)\%—§)\§—§A§+)\ﬁ+6)\1)\3+6)\2)\4 (5.4)

8 8
+8y4 A1 — 573/\2+§72>\3—871 A,

where we have introduced four ~;’s corresponding to the four generalized RR axionic fluxes
and another four \;’s corresponding to the four generalized NS-NS axionic fluxes, defined as

1. . K
Y1 = po, Y2 = pat?, V3 = §ICap“, V=GP (5.5)
a 1 ~Qa ,C ~
A1 = puuuv )‘2 = pa,ut u,u, )\3 = ilcapuuua )\4 = E p,uuu'

"'"These configurations correspond to the choices {p, = 0,p% = 0,p, = 0} ,{p, = 0,54 = 0},{p. =
0,pap =0,p, =0} and {p, =0, p, = 0} respectively.

12This does not mean that  # 0 guarantees the existence of dS vacua, since using equation (5.3) one can
obtain more involved constraints. We are only writing here the simplest conditions.
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Pu | Py | Pap | pu | de Sitter | No-go conditions | #
0 No 1

0
- No 2

0
0 No 3
- No 4
0

0 No 5

0
- || Undecided p=0 6
0 No 7
- || Undecided p=0 8
0 No 9

0
0 - || Undecided 10
0 || Undecided po=0 11
- || Undecided 12
0 No 13

0
- || Undecided 14
0 || Undecided po=0 15
- || Undecided 16

Table 4. Viability of de Sitter with Ansatz (4.2) for the different NSNS axion-flux configurations.
In the simplest configurations, de Sitter is ruled out entirely. In four configurations, we can provide
some easy-to-check sufficient conditions that also lock the system away from dS. Finally, there are
four other configurations, characterized by an increasing number of flux contributions, where we are
not able to make generic statements beyond (5.3).

We relegate to appendix (A.3) the usual extremization conditions (3.18) written using this
language.

Thus, we have eight axionic flux-dependent quantities {7;, A;} which can be considered
as parameters'® to seek solutions of the vacuum equations — see (A.4) —. Taking a fully
analytic approach, we will now attempt to explore more dS no-go scenarios by considering
special cases in a relatively more comprehensive manner. We will do this by switching off
certain flux-axion polynomials at a time.

Let us pause the discussion here to explain what this means. In principle, if one wants
to look for dS extrema by brute force one needs to solve the vacua equations and check that
at that point Vilution > 0. For any of these solutions {~;, A;} will acquire some particular
value {vi, A\i} = {7i, Ai }solution, which can be equal or different from zero. In other words,

13 Analogous to the original coefficients of the Ansatz, these parameters are not free once a particular point
of the flux lattice is chosen. The invariant combinations of flux-axion polynomials constrain their values.
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the 28 possibilities of setting any of the eight quantities {v;, \;} to zero or non-zero encode
the full vacua landscape of the stability inspired Ansatz (4.1). Notice that setting a flux
polynomial to zero does not necessarily imply switching off a particular flux, rather, it should
be interpreted as describing a possible branch of solutions.!* This categorization allows us
to perform a systematic search and see whether any of these branches could contain a dS
vacuum. These are presented as follows:

S8: {11 =0,7%2=0,73=0,7%4=0,A\1 =0,\2=0,A\3 =0,y =0} (5.6)
ST: {(Mm#0,72=0,73=0,74=0,A\ =0,\2=0,A3 =0,\s =0} etc.

S6: {71 #0,72#0,73=0,7%=0,A\ =0, =0,A3 =0,y =0} etc.

S5: {71 #0,72#0,73#0,74=0,A\ =0,\2=0,A3 =0, g =0} etc.

S4: {y1#0,7%2#0,v3#0,7%4#0,\1 =0,\2=0,\3 =0,y =0} etc.

S8: {v1#0,7%2#0,73#0,74 #0,A\ 0,2 =0,A3 =0, s =0} etc.

S2: {y1 #0,72#0,v3# 0,74 #0,A\1 #0, 2 #0,\3 =0,\y =0} etc.

S1: {y1#0,72#0,73 % 0,7 # 0, A1 #0, A2 # 0,3 # 0, g = 0} etc.

SO0:  {y1#0,72# 0,73 # 0,71 # 0,A\1 # 0, 2 # 0, A3 # 0, \q # 0}.

For this classification, we denote the class Sn to be the one in which n out of 8 parameters are
set to zero, while the remaining (8 — n) parameters are non-zero. For the case of SO we mean
that all the eight quantities are non-zero, however they can still be dependent, via the Bianchi
identities and tadpole cancellation conditions. In total, there can be the following number of
axionic flux configurations in each of the nine sub-classes summing to a total of 256:

S8:=1(1), S7T:=8(8), S6:=28(28), S5:=56(54), S4:=70(68), (5.7)
S3:=56(56), S2:=28(12), S1:=28(0),  SO:=1(0),

where the number in the respective brackets corresponds to the total number of cases which
we could confirm to result in a no-go scenario for dS realization.

Demanding the extremization constraints (A.4) along with V' > 0, we interestingly find
that 227 (of the 256) cases correspond to the set of dS no-go scenarios. All these 227 cases are
listed in table 5 of the appendix D. The new table contains and refines the results of table 4,
providing valuable information regarding some of the undetermined cases. For instance, we
now have no-go results for some of the configurations of row 6 of table 4 even when the
no-go p = 0 is evaded, such as case 199 of table 5. Similarly, we have more control over the
generic configuration 16 of table 4 accounting for the knowledge of the RR-sector, such as
no-go 92 of table 5. From these results, we observe that even when non-geometric fluxes
are introduced, simple flux configurations (in which some of the flux quanta are turned to
zero or tuned so they induce cancellations in the equations of motion) are generally not
interesting for the search of de Sitter.

MWe use the word “possible” because it is not guaranteed that for a specific choice of values for {7i, Ai} we
can find a solution to the full system of equations satisfying quantization requirements and tadpole constraints.
However, the opposite is of course true, any vacua is described by some value (zero or non-zero) for {v;, A}
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5.3 An illustrative example

There are still many configurations that have the potential to realize phenomenologically
compelling vacua. Out of the 256 possible choices, for 29 of them we could not decide whether
there is a dS no-go or not using our analytic approach. These 29 cases are listed in table 6,
which notably include the most generic case in which none of the eight parameters are set
to zero. Among them, the seemingly simplest configurations are displayed in rows 1 and 2
of table D, which in the axion-polynomial language read

po =0, pat® =0, Kop® =0, Papt®ut =0, Kpput =0, (5.8a)
pat® =0, Kep® =0, Kp=0, puutt =0, Kapjut =0, (5.8b)

and correspond to NV =0 = Q and P = 0 = M respectively in the Ansatz (4.2). These
two cases offer a relatively simple path to construct explicit vacua where dS is not openly
excluded. Let us briefly illustrate how one could take advantage of the information learnt
from row 1 in table 6 to proceed with an analytical search of dS vacua.

First we use (A.4) to fix some of the parameters we have not turned to zero. The simplest
solution compatible with row 1 of table 6 is easily written in terms of 74

VM=Y2=73=X=M=0,

Y4 9 (5.9)
>‘1 4 ) )‘3 4747 Y4 = 0
Meanwhile the parameters of the Ansatz (4.2) are given by
3 9

Note that Ay = 0 allows us to turn off the non-local non-geometric fluxes (R, = 0). By making
this choice, 74 and all the other parameters of the Ansatz are determined by the value of the
Romans mass. Putting together all the constraints of our Ansatz in this particular case we have

. 3 -
pa = Kapput = —510a K Kyp” =0,
Kab? + paput =0, po=0,
1 9 (5.11)
~a a
Pu — ilcap n= _E’MauKa pat” =0,
Papt® =0.

These relations can be employed to simplify the general equations of motion (3.14)—(3.17)
and the invariants of section 2.4, which are then used to fix the value of the moduli for
a given choice of flux quanta.

Using the table to look for de Sitter in the most generic configurations can be very
involved, given the non-trivial relation between the flux quanta and the parameters of the
Ansatz. However, it is worth noting that the connection becomes more straightforward for
isotropic geometries leading to STU-like models (where one denotes the chiral coordinates as
T =T,U° =S and U’ = U). A detailed numerical analysis may help one in exploring such
cases. Given that our current work focuses on taking an analytic approach for studying a
generic F-term type ITA scalar potential induced via the inclusion of (non-)geometric fluxes,
we leave the numerical analysis of these undecided cases for future work.
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6 Conclusions

In this paper, we have performed a systematic analysis of the de-Sitter no-go scenarios
in the context of type ITA string theory, including (non-)geometric fluxes, along with the
standard NS-NS and RR fluxes. To begin with, we have considered the generic F-term
scalar potential, expressed in the bilinear formulation [73, 74]. This splits the dependence
between saxions, encoded in a bilinear form, and axions, which are combined with the flux
quanta to build a set of flux-axion polynomials. We have used such formulation to derive the
extremization conditions for the scalar potential and have discussed the solutions to these
conditions. Moreover, we have found that the generic extremization conditions lead to four
sets of constraints, see expression (3.26), which can be useful for deriving swampland-like
inequalities in the form of de-Sitter no-go equations. Studying these relations we recover
many previously known no-go results as well as some new ones which show that the simplest
non-geometric flux configurations are generically not enough to enable de Sitter vacua.
Therefore, any chance to find a de Sitter extremum involves carefully handling many different
contributions simultaneously (the standard RR and NSNS, geometric and non-geometric
fluxes), significantly increasing the difficulty of having a reliable analytical control.

Given the complicated form of the generic scalar potential, some overall simplification is
needed to perform any flux vacua analysis further in this generic setup. Two distinct paths
could be taken. One could either perform a numerical search or make some simplifications
in order to proceed with an analytic approach. We have chosen the second option and
imposed an Ansatz characterized by the F-term being proportional to the respective Kéahler
derivatives [39]. This results in significant simplifications for the scalar potential and its
derivatives, helping us to obtain a large number of dS no-go results by refining the cases found
in the generic search. These no-go scenarios, classified on the basis of various axionic fluxes,
are listed in table (5) and rule out many of the simplest flux configurations one can attempt
to construct. Crucially, there remain 29 cases out of 256 for which no-go results could not be
derived from our analytic approach. These cases, listed in table (6), are still undecided. It is
worth mentioning that finding a solution to the moduli equations of motion with a positive
value of the scalar potential in any of these 29 configurations does not guarantee the existence
of a real de Sitter vacua. One still needs to make sure that the flux quantization and the
tadpole conditions are satisfied and look for possible instabilities. Such conditions can be
very restrictive and provide an additional challenge in many setups [89].

We emphasize once again that the analysis we have performed throughout this paper is
subjected to the assumption of corrections to the Ké&hler potential being small enough so
they can be ignored, especially those breaking its axionic shift. Such an assumption should
always be verified once a particular vacuum has been found, which is far from trivial, as
noted in [70, 96, 97]. Moving away from this regime is a compelling but challenging path to
expand on the current results. Other alternative ways to make further progress using this
same formalism include generalizing our Ansatz, introducing o’ corrections as done in [76],
or accounting for the effect of D-terms in the scalar potential.!® In any case, we hope the
classification we have provided here will be helpful for future vacua searches. It can allow

5This last option would come at the cost of reducing the number of stabilized moduli, as discussed in [89].
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to take controlled cancellations on the vacuum equations without turning off the option to
find de Sitter from the start. Complementary to this, it would be interesting to perform a
numerical exploration of some of the simplest configurations of this flux landscape subset.
They offer a compelling avenue for building explicit models of phenomenological interest.
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A Derivatives of the potential

A.1 General equations

In this appendix we explicitly give the four extremization conditions

s OV

oV )% ov
_ — = 1 a — a
U oea 0=C1, t

G =0=C2, w'ol=0=0C3, "20=0=C4, (A

in terms of the flux-axion polynomials introduced in (2.15) and (2.16)

Cl: 8pgpotu’ +29%pappou’ + 89Kzgabﬁa,5(b,ua + 92;)},5157 =0, (A.2)

C2: 8pypat”+4pat®Kyp’ — %paﬁ“ + %ﬁ/@ﬁ“ + 2" paut® py
— K pupy + M papt®pl Ky — % utu”py, pay + % Ko P, v = 0,

C3:  16p5 + 49" paps + 165 29abﬁaﬁb + 4’52/32 + 20" pupy + 2@t + g"PuFu) papupiy
+ (;’WIC(JC@ + %’fgabw‘uﬁ pph + 15820“ Y pupy — 28" Kapupl, — %5"”#‘[)@”@
—4Ku” popn + AKu" papy, — AKUY p% pay + 4Ku” ppy, = 0,

C4: 1205+ 9" paps — M;anbﬁ“ﬁ” - ’fﬁQ + 3¢ pupy + (@11 + g""uu) papupiy

1. 4KC? e K2 W K .
- <4C‘“’i€a/Cb + ggabu%”> P, — 15" Pubv = Kapupy, + chtapaupy = 0.

All the possible extrema in the presence of generic (non-)geometric fluxes will be contained
in the set of solutions of these four constraints.
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A.2 TImposing the Ansatz

Under the Ansatz presented in section 4 the equations (A.1), take the following form

ot® 3P 2KC -

— (pat”) (Kap®) —4Q(pat”) + P(Kap®) = 0,
C2:  2(pat”) (po —4Q +5N) + (Kup®) <’6Cﬁ — 8P + 20M>

+6 (BNP 4+ 10MQ — 12MN — 4PQ) — 2(K,5%)(pat®) = 0,
2 3 a\2 ~a\2 ICQ ~2 2 2 3732 2
C3:  pg+ = (pat®)” + (Kap®)™ + == p° +2M* +2N* + — 4+ 69

4 36 2
—6MP—12J\/Q—6p0N+9p;Q—ICMﬁJr%Pﬁ
Kp 7P 3 19
+(pat®) <p2M+)+<i<:aﬁ“) <p°4/v+ Q) 0,
8 4 2 4
2 1 a\2 11 ~a\2 ICQ ~2 2 2 2 2
C4: p0+§(pat) —E(ICap) ~ 35 P +4M* —4N* 4+ 2P - 8Q
4 2
—6MP + 12O + 4 (/\/ _ 3Q) (Kap®) — 2 (M - f) (pat®) = 0.

A.3 Non-primitive decomposition
Finally, we write again the conditions (A.1) using the {~, A} language introduced in section 5.2

4y 433

Cl: 4y + 3 + 3 + 4y g =0, (A.4)
49773 AMA2 9N A3 Az
c2: 2 — 42 — =
Y12 + 3 + 27374 + 5 5 5 + 5 0,
3d 12 Az 132 e 3 A2 3\
. 2 _ e fate s 187e 2 2 ranl M
C3: m D 3 2 3 g T 5 T3 A
5X22 3\t BA3Z N2
_2A27 | Shodd DAsT T
24 4 24 8
2 2 2 2 2 2
Y2 V3 9 A1 A1A3 DAg A2As B3 A1
C4: 2402 2 — — — —— =0.
MWy Ty Wt 36 5 T35 1

B Auxiliary equations for dS no-go

In this appendix we present the explicit form of the expression (3.24) for the particular
choices of values = £1 and = = £1/3. As explained in the main text, the equation (3.24) is
always satisfied in the vacuum, independently of the values of x. Nevertheless, some specific
selections of x can be more illuminating in the search for dS no-go.

From x = 1 we obtain the following constraint,

4e 1 K2, 1
(V) = ——- [4p3 + 59" papy = Tg P+ 5 ¢ oupy (B.1)
1 (., KoKy 4K2 . K. R
D) (Cw;; + 9gabuuuy> PZP?, + gcwtapaupu - %CWPMPV )
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whereas from z = —1 one has

4e ) R y
(V) =——- [—203 + =y 9a" B+ 5P = Y pupy (B.2)
1, 1 I
= (&t + g**wu" ) payupun + 5@ Kapufly + e "pupu} :
Similarly the cases with x = 1/3 and = —1/3 result in the following respective relations,
4e87 5 1 4 22 o L
V) =-—3- [2/)0 + 59 Papy + S 9P P — & (c‘“’t“t +g* U“UV) PapPby (B.3)
1, w1 (KoK 4K? D e Ko s 2
+ 5 Kapup, — 3 (C“ 7“7 + =g gavu'u ) Puby + g @ Pappy — 5 ¢ pupu],
and
4ef 11 ) S P |
V)=-—5- {69“1’%% + ?Qabp“pb + T892 =5 pupy (B.4)
1 1
-3 (&t + g*"uu) payupr + 5 Kapul,
1(_, KaKp —4K? - K _ -
6 (Cw;z + 9gabuﬂuy> PZP,IZ + 1—8c"”tapwpl, .

C Intermediate results for scalar potential simplifications using the
Ansatz

In this section, after imposing the Ansatz given in egs. (4.2), we present some intermediate
steps which can be relevant for simplifying the scalar potential pieces collected in eqs. (3.1)—

(3.2). Some of those are presented as follows,
~Uv v ~ LV ~ 4,C2 ~a ~ ~ LV IC2~V~~
(@t + g wu" ) papps — & Kapyfly = —o JabP" " = 28 pupy + S8 Py

4K
— 48N? + 1207 + 24 Mp,ut + (Ko p%)? — ?Nﬁuu*‘ +8Q(K, %),

(awfcafcb 4K s

. . (C.1)
+ gabu“uV> papb — & pahu = 9" papy + & pupy — —= & pupy

2 2 9 3 18
— A8M? 4 3P? + 8 Mput — (1 po)? — AKN puut + 2P (1 pa).
Note that the sum of the above two pieces helps in eliminating the presence of ¢*¥ metric in
the Viyg piece given in eq. (3.2), which subsequently simplifies to the following form,

V., = K| ab 4IC2 ~a ~b 4 w2 ’C2 ~  \2 C.2
Ns = €7 |9 papy + —g=garP* P + 4 (puu)” + 5 (pur”) (C.2)
2 2 ~a\2 16]C ~ ~q
—48N* +12Q° + 32Mp ut + (Ko p*)* — TNPMU’M + 89(K, %)

—48 M2 + 3P — (1% po)2 + 2P (% pa) | -
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The first two pieces in the above expression are precisely the generalized RR flux contributions
from the generalized version of the Fy and Fy form fluxes in the presence of (non-)geometric
fluxes. Similarly, the Vj,. piece in eq. (3.2) simplifies to the following form,

x [4K 4K 8KC2

loc = —€ ?po(ﬁ#u“) - ?ﬁ(puu“) + 2™ papp + Tgab[)aﬁb (C.3)

FA(L po)? +2(Ka ) — 4P(pat*) — 4Q(Ka 7°)|

where we remark that none of the terms appearing in V}7_ involve ¢/ either and, as a result of
this simplification, the scalar potential in egs. (3.1)—(3.2) can be expressed without using any of
the metrics ¢*, gq and ¢®. This is because the pieces with g, and its inverse appearing in the
scalar potential precisely cancel out in the combination V' = V3, 4+ V3 g+V); .. Moreover, using
eq. (4.2) the terms involving (p,u*) and (p,ut) in both the egs. (C.2) and (C.3) can further
be expressed in terms of M, N, P, Q and (p,t*) and (K,p%). Hence, a direct implication of
using the Ansatz in eq. (4.2) is the fact that it helps in expressing the total F-term scalar
potential in terms of eight parameters, namely {M, N, P, Q} and {po, (pat®), (Kap®), s}, and
one can completely get rid of the metric. This is reflected in the collection (4.7).

Finally, let us also mention that the two relations in eq. (C.1) help to eliminate the
presence of all the involved metrics, namely ¢, g and g%, within the four extremization
conditions given in eq. (A.2) and the same subsequently leads to the four relations collected

in the eq. (A.3).

D List of possible dS no-go scenarios

Sr. No. Vanishing Axionic Flux parameters 3dS
1 {714=0,9%3=0,v%=0,71=0,A1 =0, A2 =0, A3 =0, \y =0} | False
2 {74=0,7=0,7%=0,7 =0, A\ =0, Ay =0, A\3 = 0} False
3 {14=0,93=0,7%=0,7=0,A1 =0, Ao =0, \y =0} False
4 {74=0,73=0,7%=0,71=0,A\1 =0, \3 =0, \y =0} False
5 {714=0,7=0,7%=0,7 =0, =0, 3 =0, \y =0} False
6 {74=0,73=0,7%=0, A =0, A2 =0, \3 =0, \y =0} False
7 {74=0,73=0,7 =0, A =0, \2 =0, \3 =0, \y = 0} False
8 {74=0,79%=0,71=0,A1 =0, A2 =0, \3 =0, \y =0} False
9 {v3=0,7%2=0,v =0, A =0, \a =0, \3 =0, \y = 0} False
10 {14=0,93=0,v%=0,7 =0, =0, A\oa =0} False
11 {74=0,73=0,7%9=0,7 =0, \; =0, \3 =0} False
12 {74=0,73=0,7%9=0,7v =0, \; =0, \y =0} False
13 {74=0,7%3=0,7%2=0,7 =0, A2 =0, \3 =0} False
14 {74=0,73=0,v%=0,7 =0, =0, A\ =0} False
15 {74=0,7%3=0,7%=0,7=0,A3=0, \y =0} False

Continued on next page
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16 {74=0,73=0,7%2=0, A\ =0, A2 =0, A3 =0} False
17 {74=0,73=0,7%=0,A =0, Ay =0, \y =0} False
18 {712=0,73=0,%=0, =0, A3 =0, \y =0} False
19 {74=0,73=0,72=0, 2 =0, A3 =0, Ay = 0} False
20 {74=0,7%3=0,7=0, A\ =0, =0, \3 =0} False
21 {74=0,73=0,71=0,\1 =0, Ay =0, \y =0} False
22 {14=0,93=0,m1=0,A\1 =0, \3=0, \y =0} False
23 {7a4=0,73=0,91=0, =0, 3 =0, A\y =0} False
24 {74=0,93=0,A1=0,A=0,A3=0, Ay =0} False
25 {74=0,7%2=0,7 =0, A =0, A2 =0, A3 = 0} False
26 {74=0,7%=0,91=0, A =0, =0, \y =0} False
27 {74=0,7%=0,91=0, A\ =0, A3 =0, \y =0} False
28 {74=0,7%=0,v =0, =0, 3=0, \y =0} False
29 {74=0,7%=0,A\1 =0, 22 =0, A3 =0, \y =0} False
30 {1a=0,m1=0,A=0,X=0,A3=0, \y =0} False
31 {13=0,72=0,7 =0, A =0, A2 =0, A3 =0} False
32 {13=0,7%=0,v=0,A =0, =0,\=0} False
33 {y3=0,7%2=0,v =0, A\ =0, A3 =0, \y =0} False
34 {13=0,7%=0,m1=0, =0, A3 =0, \y =0} False
35 {13=0,7%2=0, A1 =0, A2 =0, A\3 =0, \y = 0} False
36 {3=0,71=0,A=0,A=0 A3=0, Ay =0} False
37 {12=0,m=0,\1=0, =0, \3=0, \y =0} False
38 {14=0,93=0,7%=0,7 =0, A\ =0} False
39 {14=0,793=0,72=0,71=0, Ay =0} False
40 {14=0,793=0,7=0,7=0,A3 =0} False
41 {14=0,793=0,7%=0,7 =0, =0} False
42 {14=0,73=0,7%=0, A1 =0, A2 =0} False
43 {14=0,73=0,7%=0, =0, \; =0} False
44 {7=0,73=0,7%=0, =0, A3 =0} False
45 {7m=0,73=0,7%=0, =0, A\ =0} False
46 {74=0,73=0,7=0,A3 =0, \y =0} False
47 {74=0,73=0,7=0,A1 =0, \a =0} False
48 {14=0,73=0,71=0, A =0, \3 =0} False
49 {1u=0,v3=0,71=0, =0, \y =0} False
50 {7=0,73=0,71=0, A2 =0, A3 =0} False
51 {7m=0,73=0,71=0, =0, Ay =0} False
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52 {14=0,v3=0,71=0, 3=0, \y =0} False
53 {1u=0,93=0, =0, =0, A3 =0} False
54 {1a=0,93=0,A=0,A=0, A\ =0} False
55 {14=0,93=0, 1 =0,A3=0, \y =0} False
56 {14=0,93=0, =0,A3=0, \y =0} False
57 {74=0,%2=0,7 =0, =0, A2 =0} False
58 {7m4=0,7%=0,7=0,A1 =0, A3 =0} False
59 {14=0,7%2=0,7=0, A =0, \y =0} False
60 {74=0,7%=0,9=0, =0, A3 =0} False
61 {7=0,7%=0,71=0, =0, \y =0} False
62 {7m=0,7%2=0,71=0,A3=0, Ay =0} False
63 {1u=0,7%=0, =0, =0,A3=0} False
64 {1u=0,9%=0, =0, =0\ =0} False
65 {712 =0,7% =0, A\ =0, \3 =0, \y =0} False
66 {71a=0,7%=0,X=0A3=0, \y =0} False
67 {14=0,91=0,A =0, =0, A3 =0} False
68 {74=0,71=0,A =0, =0, \y =0} False
69 {711a=0,m1=0, A\ =0, A3 =0, \y =0} False
70 {71a=0,m1=0,X=0,A3=0, \y =0} False
71 {71a=0,A1=0,22=0, 3 =0, \y =0} False
72 {3=0,7%=0,v=0, A =0, A\, =0} False
73 {73=0,7%=0,71=0, A1 =0, A3 =0} False
74 {13=0,7%2=0,v =0, A\ =0, \y =0} False
75 {13=0,7%2=0,71=0, =0, \3 =0} False
76 {13=0,7%2=0,71=0,A3=0, A\, =0} False
7 {13=0,9%2=0,A=0,A=0,A3=0} False
8 {13=0,72=0, A1 =0, =0, \y =0} False
79 {713=0,%=0,A =0, A3 =0, Ay =0} False
80 {13=0,7%=0,2=0,A3=0, A =0} False
81 {13=0,71=0, =0, =0,A3=0} False
82 {13=0,71=0,A =0, =0, =0} False
83 {13=0,m1=0, A\ =0, A3 =0, \y =0} False
84 {13=0,71=0, =0,A3=0, \y =0} False
85 {13=0,A1=0,X=0,A3=0, \y =0} False
86 {12=0,71=0,A =0, =0,A3=0} False
87 {12=0,71=0,A=0,A =0\ =0} False
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88 {72=0,71=0, A\ =0, A3 =0, \y =0} False
89 {712=0,7 =0, =0, A3 =0, \y =0} False
90 {72=0,A1 =0, =0, 3=0, \y =0} False
91 {m=0,A1=0, =0, 3=0, Ay =0} False
92 {712=0,73=0,7%=0, v =0} False
93 {14=0,93=0,9=0, A\ =0} False
94 {1u=0,93=0,7=0, A\ =0} False
95 {u=0,93=07=0,A =0} False
96 {74=0,v3=0,v =0, X =0} False
97 {74=0,73=0,v =0, A3 =0} False
98 {va=0,93=0,v=0, A\ =0} False
99 {74=0,73=0, A =0, A\ =0} False
100 {74=0,73=0, A =0, \y =0} False
101 {71 =0,793=0, =0, A3 =0} False
102 {712=0,73=0, A =0, \y =0} False
103 {712=0,73=0,A3=0, \y =0} False
104 {v4=0,9%=0,9=0, A =0} False
105 {14=0,79%=0,9=0, A2 =0} False
106 {u=0,7%=0,7=0,A3=0} False
107 {va=0,72=0,7=0, =0} False
108 {712 =0,7%=0, A\ =0, A =0} False
109 {711=0,7%=0,A =0, \y =0} False
110 {14=0,7%=0,X=0,A3=0} False
111 {714=0,7%2=0,2 =0, =0} False
112 {74=0,7%=0,A3=0, \y =0} False
113 {712=0,7m=0,A\ =0, \2 =0} False
114 {14=0,79=0,A =0, A\3 =0} False
115 {1u=0,91=0,A =0, =0} False
116 {74=0,71=0, =0, A3 =0} False
117 {7m=0,71=0, =0, \y =0} False
118 {7m=0,71=0,A3=0, Ay =0} False
119 {1a=0,A\=0,2=0,2A3=0} False
120 {1a=0,A=0,2=0, =0} False
121 {1u=0,A1=0,A3=0, \y =0} False
122 {74=0,X=0,A3=0, \y =0} False
123 {13=0,7%=0,7v=0, A =0} False
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124 {13=0,7%2=0,71=0, A3 =0} False
125 {13=0,7%2=0, =0, =0} False
126 {13=10,72=0, A\ =0, \y =0} False
127 {73=0,7%2=0, =0, A3 =0} False
128 {13=0,7%2=0,A3=0, s =0} False
129 {13=0,71=0, A =0, A\ =0} False
130 {13=0,7m =0, A\ =0, A3 =0} False
131 {33=0,71=0, A =0, =0} False
132 {13=0,7=0, =0, 3=0} False
133 {13=0,7=0,A3=0, Ay =0} False
134 {13=0,A1=0,X=0, A3 =0} False
135 {13=0,A1=0,X =0, =0} False
136 {v3=0,A1=0,A3 =0, \g =0} False
137 {v3=0,22=0,A3 =0, \s =0} False
138 {12=0,9=0, A\ =0, A2 =0} False
139 {72=0,7=0, A =0, A3 =0} False
140 {72=0,71=0, 1 =0, \y =0} False
141 {72=0,71=0, =0,A3 =0} False
142 {12=0,7=0,A3 =0, \y =0} False
143 {12=0, A\ =0, =0,23=0} False
144 {72=0,A1=0,X=0,\=0} False
145 {72=0,\1=0,A3=0, \y =0} False
146 {12=0,2=0,A3=0, \y =0} False
147 {r1=0,A=0,2=0,A3=0} False
148 {1m=0,A=0,A=0,A\=0} False
149 {m=0,\1=0,A3=0, \4 =0} False
150 {r1=0,2=0A3=0, A =0} False
151 {AM=0,2=0,A3=0,2X =0} False
152 {72=0,1=0, A2 =0, Ay =0} False
153 {13=0, 2=0, A2 =0, \y =0} False
154 {13=0,72=0, \1 =0, A\3 =0} False
155 {13=0, %2=0, 91 =0, A\ =0} False
156 {13=0, %2=0, 1 =0, \y =0} False
157 {mu=0,73=0, A\ =0, \3 =0} False
158 {1u=0,3=0, 2=0, A3 =0} False
159 {712=0, 73=0, 2 =0, A\ =0} False
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160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

{712=0,7v3=0,7 =0}
{74=0,93=0, A2 =0}
{74=0,93=0, A\ =0}
{74u=0,7%=0,v =0}
{7 =0,79%=0, X =0}
{1u=0,7%=0, A\ =0}
{1a=0,m=0,\ =0}
{7a=0,71=0, A =0}
{v4=0,v=0,A3=0}
{v=0,71=0, )\ =0}
{714 =0, A1 =0, A2 =0}
{1u=0,A1 =0, Ay =0}
{1 =0, =0, A3 =0}
{1u=0,x=0, )\ =0}
{1u=0,A3=0, \y =0}
{13=0,71=0, A\ =0}
{13=0,71=0, A3 =0}
{13=0, A1 =0, A2 =0}
{13=0, A1 =0, \y =0}
{13 =0, X2 =0, A\3 =0}
{13=0,A3=0, =0}
{72=0,71=0, A\ =0}
{72=0,71=0, A3 =0}
{12=0, A1 =0, A2 =0}
{712=0, A1 =0, \y =0}
{72 =0, A2 =0, A3 =0}
{72=0, A3 =0, \y =0}
{11 =0, A1 =0, A\ =0}
{11 =0,A1 =0, A3 =0}
{1n=0,A1 =0, =0}
{11 =0, =0, A3 =0}
{11 =0,A3=0, \y =0}
{AM1=0,A2=0, \y =0}
{AM1=0,3=0, \y =0}
{m =0, A2=0, \y =0}
{7r2=0, A2 =0, \y =0}

False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False

False

False

,35,
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196 {72=0, A1 =0, \3 =0} False
197 {r2=0, 71 =0, Ao =0} False
198 {r2=0, 1 =0, Ay =0} False
199 {13=0, 22 =0, \y =0} False
200 {v3=0, A1 =0, A\3 =0} False
201 {v3=0, 11 =0, A2 =0} False
202 {v3=0,7m=0, \y=0} False
203 {3 =0, 72=0, A2 =0} False
204 {3 =0, 72 =0, \y =0} False
205 {r3=0, 2 =0, A3 =0} False
206 {13=0, 72=0, \; =0} False
207 {13=0,7=0, =0} False
208 {7a=0, \i =0, A3 =0} False
209 {7va=0, 7 =0, \3=0} False
210 {7a=0, =0, \y =0} False
211 {va=0, 93=0, A3 =0} False
212 {7a=0,v3=0, \; =0} False
213 {7a=0, 73=0, 72 =0} False
214 {A2=0,A3=0, \y =0} False
215 {AM=0,2=0,A3=0} False
216 {AM =0, =0} False
217 {AM1 =0, \3=0} False
218 {M =0, \y =0} False
219 {A2 =0, A3 =0} False
220 {A2=0, \y =0} False
221 {A3=0, \y =0} False
222 {74 =0, A2 =0} False
223 {1 =0, =0} False
224 {73 =0, \a =0} False
225 {12 =0, A3 =0} False
226 {711 =0, \y =0} False
227 {711 =0, \3 =0} False

Table 5. List of 227 flux configurations with their respective vanishing flux-dependent parameters
leading to dS no-go scenarios. The parameters not mentioned in a given configuration are considered
to be non-zero.
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1 {11=0,7%=0,7=0 A2=0, \y =0}
2 {12=0,13=0,74=0, \y =0, A\3 =0}
3 {7=0,72=0, A1 =0, \3 =0}
4 {13=0,71=0, Ao =0, \y =0}
5 {’)/1 = O, )\2 = O}
6 {’)/1 = O, )\4 = 0}
7 {’)/2 = 0, )\4 = 0}
8 {’}/2 = 0, )\1 = 0}
9 {'72 =0, m= 0}
10 {y2 =0, X\ =0}
11 {y3 =0, \y =0}
12 {y3 =0, A3 =0}
13 {v3=0, \y =0}
14 {v3=0, 1 =0}
15 {v3=0, 72 =0}
16 {74 =0, A\3 =0}
17 {’)/4 = 0, )\1 = 0}
18 {7a=0, n1 =0}
19 {1a=0, 72 =0}
20 {74=0, 43 =0}
21 {\2 =0}
22 {\ =0}
23 {\3 =0}
24 {\1 =0}
25 {m =0}
26 {2 =0}
27 {3 =0}
28 {y4a =0}
29 None of the A;’s and ;’s are set to zero.

Table 6. List of 29 flux configurations with their respective vanishing flux dependent parameters for
which dS no-go case could not be found. The parameters not mentioned in a given configuration are
considered to be non-zero.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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