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1 Introduction

When an in-homogeneous and time-dependent disturbance is created on the quark-gluon
plasma (QGP), its response reveals the rich structure of the medium. The hydrodynamic
theory should describe the medium’s response in long wavelength and low-frequency limits.
On the other hand, one could apply the perturbative QCD method to study QGP’s behavior
at an asymptotic large gradient. Apparently, exploring the intermediate regime between
those two asymptotic limits is crucial to understanding how the properties of QCD matter
evolve as scale changes. Yet, our knowledge about this non-hydrodynamic and possibly
non-perturbative regime is very limited as illustrated in figure 1. See refs. [2–9] on examples
of studying non-hydrodynamic properties of QGP.
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Figure 1. A cartoon illustrating our current understanding of Quark-Gluon Plasma (QGP) as a
function of the characteristic momentum scale (k). When k is small, QGP behaves like a near-perfect
liquid. As k increases to the asymptotic free regime, QGP can be viewed as a parton gas. The
properties of QGP at the intermediate scale are less known, but they can be explored by studying jet-
medium interaction observables in heavy-ion collisions and by conducting the lattice QCD calculation
of the Euclidean correlators, see further discussion in the text.

By comparing the behavior of conventional hydrodynamic theories extrapolated outside
the hydrodynamic regime with QGP-like models, we may monitor how some hydrodynamic
behavior disappears, and possible new features emerge as characteristic gradients grad-
ually increase. Doing so can bring insight into the nature of the transition from QGP
liquid to weakly-coupled parton gas. In this work, we will compare the non-hydrodynamic
energy-momentum response obtained from the first-order and some variants of second-order
hydrodynamics with that from a particular microscopic theory, which we consider the kinetic
theory under relaxation time approximation (RTA). Despite its simplicity, the RTA kinetic
theory captures a transition from the hydrodynamic regime to a regime whose response is
dominated by quasi-particle excitations and has been widely used as a model for a QCD-like
system. The study of the retarded correlator, which describes the medium’s response induced
by the metric perturbation using the Boltzmann equation, can be found in refs. [8, 10, 11].
Our focus is on the response function that describes the induced energy-momentum due
to the initial energy-momentum disturbance.

Another motivation of our work is to further investigate and elaborate on the notion of the
extended hydrodynamic regime (EHR) proposed by us in ref. [1], This scenario corresponds to
the situation that a high-frequency sound exists that governs the medium’s response outside
the hydrodynamic regime on the one hand, and its dispersion is not described by naively
extending conventional hydrodynamic theories outside the hydrodynamic scale on the other
hand. In ref. [1], we demonstrate the presence of this scenario for strongly coupled N = 4
super-symmetric Yang-Mills (SYM) theory and RTA kinetic theory. We also show that the
sound dispersion can be captured by a “deformed” version of MIS, namely MIS*, with a
suitable choice of model parameters. In this work, we show detailed analysis indicating
that the same MIS* equations can describe not only dispersion relation but also response
function outside the hydrodynamic regime.

Phenomenologically, the observables sensitive to the jet-medium interaction can help
extract the medium’s properties at a non-hydrodynamic scale. An energetic parton may be
viewed as a point-like source that deposits energy and momentum density to the medium
it transverses to. It would generate perturbation for a vast range of gradients, including
those outside the hydrodynamic regime. Recently, evidence has been suggesting that properly
incorporating the medium’s response to those disturbances is essential in describing data (e.g.,
see refs. [12–16]). To date, many studies are using linearized first-order and second-order
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hydrodynamics (or its variant) to account for the medium’s response (see, for example,
refs. [17–19]). We have analyzed the energy-momentum response for a Bjorken-expanding
background. This allows us to compare the response functions for the static and expanding
background and discuss the importance of non-hydrodynamic response in the context of
jet-medium interaction.

Theoretically, one may extract the medium’s properties from the Euclidean correlator,
which can be studied from the first-principle lattice QCD calculations. While the Euclidean
correlators are notoriously insensitive to the infrared structure of the real-time response (see
ref. [20] for a review), it may be suitable for extracting response at a gradient of the order
πT . We present perhaps the first illustrative analysis that suggests the sensitivity of the
Euclidean correlator to the non-hydrodynamic response. Assuming the EHR scenario, we
also explore the lattice’s potential to extract the medium’s properties in EHR.

This paper is organized as follows. In section 2.1, we derive a general relation between
the response function describing the response induced by initial disturbance and the retarded
correlator describing the medium’s reaction to the metric perturbation, see eq. (2.10) (or
eq. (2.11)). While it directly follows from the standard linear response theory, it seems new
in the literature. We then compute the energy-momentum response function in a static
background from RTA kinetic theory and hydrodynamic theories in sections 2.2 and 2.3
respectively. In section 3.1, we analyze the excitations that dominate the response for the
RTA kinetic theory. In doing so, we review the concept of EHR and discuss its generality.
Then we review the construction of MIS* in section 3.2. Section 3.3 compares kinetic response
and that from different hydrodynamic theories. In section 4, we set up the formalism to
calculate similar response functions in a Bjorken expanding background and present results
in section 5. The sensitivity of the Euclidean correlator to non-hydrodynamic response is
discussed and illustrated in section 6. Finally, we summarize in section 7.

Throughout this paper, we use the most plus metric ηµν = (−1, 1, 1, 1).

2 Response in a static background

2.1 Response function and retarded correlator

We want to investigate the behavior of a thermal medium when it is in equilibrium and
then undergoes an infinitesimally small perturbation. For definiteness, we look at a set of
observables such as energy, and charge densities and collectively denoted the corresponding
operator by ÔI where I, J are the labels. In response to the perturbation, the expectation
value O = ⟨Ô⟩ will deviate from its equilibrium value ⟨Ô⟩eq, i.e. δO = O − ⟨Ô⟩eq ̸= 0.

The present work primarily considers the response induced by the out-of-equilibrium
deviation δOI

in(x) ≡ δOI(t = 0,x) at some initial time, say t = 0. To describe such a
response, we define response function (R.F. ) G as

δOI(t,x) =
∫

x′
GI

J(t,x − x′) δOJ
in(x′) (2.1)

where
∫

x ≡
∫
d3x and the summation over the dummy index is understood. We shall assume

that G satisfies the following initial condition:

GI
J(t = 0,x) = δI

J δ
3(x) , (2.2)
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meaning we have assumed that when I ̸= J , a non-zero δOI will not cause a non-zero δOJ at
the beginning. The discussion below can be easily generalized when this assumption is relaxed.

In parallel, the retarded correlator

GIJ
R (t, t′;x,x′) ≡ −i

〈 [
ÔI(t,x), ÔJ(t′,x′)

] 〉
θ(t− t′) (2.3)

has been widely considered in literature. This correlator describes the response induced by
the source ψI(t,x) that is conjugate to ÔI asuming that the perturbed Hamiltonian takes
the form ∆Ĥ(t) = −

∫
x Ô

J(t,x)ψJ(t,x).
We can establish the relation between R.F. and the retarded correlator. The key ob-

servation is that G is entirely determined by the medium’s properties and hence does not
depend on how the initial deviation δOin is created. We may generate δOJ

in by turning on
the source ψJ at t = −∞ and switch it off at t = 0, i.e.,

ψJ(t,x) = θ(−t) e−ϵtψJ,in(x) , (2.4)

where an infinitesimal value ϵ is introduced to ensure that the source vanishes at t = −∞.
Using the linear response theory (e.g., ref [21]), we then have, after taking spatial Fourier
transform (assuming the translational invariance in space and time), that

δOI(t,k) =
∫ ∞

−∞
dt′GIJ

R (t− t′,k)ψJ(t′,k) . (2.5)

Particularly, evaluating eq. (2.5) at t = 0 with ψJ specified by eq. (2.4) yields

δOI
in(k) =

(∫ 0

−∞
dt′GIJ

R (−t′,k)eϵt′
)
ψJ,in(k) = χIJ(k)ψJ,in(k) . (2.6)

In other words, the induced δOI
in resulting from turning on a time-independent source ψJ,in

from t = −∞ to t = 0 is determined by the static susceptibility.

χIJ(k) =
∫ ∞

0
dtGIJ

R (t,k) = GIJ
R (ω = 0,k) . (2.7)

Now, we take the time derivative of eq. (2.5) w.r.t. time t. After using ∂tGR(t− t′) =
−∂t′GR(t− t′) and performing the integration over t′ by parts, we obtain (see also eq. 2.7
of ref. [21])

∂tδO
I(t,k) = −GIJ

R (t,k)ψJ,in(k) . (2.8)

Assuming χIJ is invertible, we can rewrite (2.8) as

∂tδO
I(t,k) = −GIJ ′

R (t,k) (χ−1(k))J ′JδO
J
0 (k) . (2.9)

If we take the derivative of eq. (2.1) and compare it with eq. (2.9), we find the relation
between the response function and retarded correlator that we are after:

∂tGI
J(t,k) = −GIJ ′

R (t,k) (χ−1
R (k))J ′J . (2.10)
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Further performing the temporal Fourier transformation, we have

iωGI
J(ω,k) + δI

J = GIJ ′
R (ω,k) (χ−1(k))J ′J (2.11)

where we have used the property of “one-sided” Fourier transform∫ ∞

0
dt eiωt ∂t g(t) = −iωg(ω,k)− gin . (2.12)

for any function g(t) satisfying g(t = 0) = gin and the initial condition for G (2.2) in the
spatial Fourier space:

GI
J(t = 0,k) = δI

J . (2.13)

Eqs. (2.10) and (2.11) are the main results of this section. They make it clear that one
can determine the R.F. from the knowledge of the retarded correlator. In other words, how
the medium reacts to the external source also tells us how it would respond to the initial
perturbation. Moreover, the relation (2.11) reveals that the analytical structure of R.F. is
the same as that of the retarded correlator. For instance, the pole of the correlator in the
complex frequency plane should be the pole of R.F. at exactly the same location.

In the upcoming sections, we will discuss R.F. of the energy-momentum tensor (EMT):

δTµν(t,k) = Gµν
αβ(t,k) δT

αβ
in (k) . (2.14)

Our focus will be on a charge-neutral and conformal fluid. In this situation, there are only
three independent components in Gµν

αβ . Among them, one is associated with the behavior of
shear stress. We will concentrate on the remaining two, which we choose to be1

GL(t, k) ≡ G00
00(t, k) GT (t, k) ≡ G0x

0x(t, k) (2.15)

where without losing generality, we take the Fourier momentum k along z-direction.

2.2 Kinetic theory

The response function has to be computed from some microscopic theories to which we take
the kinetic equation under relaxation time approximation (RTA)

pµ∂µf − Γλ
ασp

αpσ ∂f

∂pλ
= −u · p

τR
(f − feq) . (2.16)

Here, f(t,x,p) is the distribution of relativistic particles and Γλ
αβ is the metric connection.

The relaxation time τR sets the timescale at which f approaches the local equilibrium

feq ≡ eβpµuµ . (2.17)
1It is well-known that by implementing Ward identity and rotational symmetry, the retarded correlator

has only three independent components for a conformal system at finite temperature [22]. Among them is one
representative component of shear stress correlator, while the other two can be identified as G00,00

R ∼ ⟨δT 00δT 00⟩
and G0x,0x

R ∼ ⟨δT 0xδT 0x⟩. The components of R.F. can be related to those of retarded correlator from the
relation (2.11).
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The local fluid velocity, uµ together with energy density ϵ, are determined by the matching
condition

Tµν =
∫

p

1
p
pµ pν f , T µνuν = ϵ uµ . (2.18)

where
∫

p ≡
∫
d3p/(2π)3, and for ultra-relativistic particle, we have p = |p|. With ϵ given,

the effective temperature T = 1/β in eq. (2.17) is determined by assuming the equation
of state for the relativistic Boltzmann gas, i.e., ϵ(T ) = N0(3T 4)/π2 where N0 counts the
quantum state and species of particles under consideration, although the results shown in the
present paper do not depend on the value of N0. For the system to be conformal system,
we require τR scales with ϵ

τR ∼ (ϵ)−1/4 . (2.19)

We shall study R.F. (2.15) describing the induced energy density and fluid velocity
around the equilibrium background

ϵ = ϵ0 + δϵ , uµ = (1,0) + (0, δu) , (2.20)

where we use subscript 0 to denote the background value of thermodynamic and fluid
variables such as ϵ, uµ. Using

δfeq = e−β0p0 (−p0δβ + β0 p · δu) (2.21)

we have (
∂t + v · ∂ + τ−1

R

)
δf = βp0 f0 τ

−1
R

[
−δβ
β

+ δu · v

]
. (2.22)

where we have introduced the short-handed notation f0 ≡ e−β0p0 for the background equilib-
rium distribution and v = p̂ is the single particle velocity. We shall solve eq. (2.22) under
the initial condition that the distribution is in local equilibrium:

δ fI = δ eβ(p·u) = β0p
0 f0

(−δβI

β0
+ δuI · v

)
, (2.23)

where δuI , δβI denotes the value of δu, δβ at t = 0. The solution to eq. (2.22) in Fourier
space then reads

δf(ω̄, k̄;v) = i β0p0f0τ
−1
R

(ω − v · k̄ + iτ−1
R )

[(
−δβ(ω̄, k̄)

β0
+ δu(ω̄, k̄) · v

)
+ δfI(k̄;v)
β0p0f0τ

−1
R

]
. (2.24)

where ω̄ = ωτR and k̄ = kτR. Plug in the Fourier transform of the initial condition, and
further use the relation β2δϵ = −cV δβ with cV = ∂ϵ/∂T being the specific heat, we arrive at

δf(ω̄, k̄) = i β0p0f0

(ω̄ − v · k̄ + i)

[
β0δϵ(ω̄, k̄)

cV
+ δu(ω̄, k̄) · v +

(
β0δϵI(k̄)

cV
+ δuI(k̄) · v

)
τR

]
. (2.25)

Note that the mass dimension of δu(ω̄, k̄) is −4 while that of δuI(k̄) is −3.
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We are now ready to determine the R.F. . For the response in the longitudinal channel, we
consider non-zero δϵ, δuz where, as we mentioned earlier, we shall take k along the z-direction.
We are interested in computing energy-energy response function GL (2.15) so we use the
initial condition (δϵ, δuz) = (δϵin, 0) at t = 0 in accordance with eq. (2.2)) Substituting
eq. (2.24) into the linearized version of eq. (2.18),

δTµν =
∫

p

pµpν

p
δf , (2.26)

and use the relation

δϵ = δT 00, δT 0i = w0δu
i (2.27)

where w = ϵ + P is the enthalpy density, we find

δϵ(ω,k) = C0(ω,k)(δϵ(ω,k) + δϵin(k)τR) +
1
c2

s

C1(ω,k) δT 0z(ω,k) , (2.28a)

δT 0z(ω,k) = C1(ω,k)(δϵ(ω,k) + ϵin(k)τR) +
1
c2

s

C2(ω,k) δT 0z(ω,k) . (2.28b)

Here, we have used the expression for cV

cV =
∫

p
p
∂f0
∂T

= β2
∫

dp

2π2 p
2f0 (2.29)

which leads to the following useful expression∫
dp

2π2 β0p
2f0(−

δβ

β0
) (. . .) = β−2

0 cV (−δβ)
∫
dΩ
4π (. . .) = δϵ

∫
dΩ
4π (. . .) (2.30a)∫

dp

2π2 β0p
2f0 δu

i (. . .) = δT 0i

w0
β−2

0 cV

∫
dΩ
4π (. . .) = δT 0i

c2
s

∫
dΩ
4π (. . .) , (2.30b)

Here, dΩ = dϕ d cos θ denotes the integration over the solid angle in the phase space, and (. . .)
refer to any functions which only depend on p̂ = (sin θ cosϕ, sin θ cosϕ, cos θ). The sound
velocity is denoted by c2

s and obeys the relation cV T/w = 1/c2
s. In eq. (2.28), functions

Cn are defined by

Cn ≡ 1
2

∫ 1

−1
d cos θ i cosn θ

ω̄ − k̄ cos θ + i
. (2.31)

Solving eq. (2.28) for δϵ, δu and using c2
s = 1/3 yields δϵ induced by the initial energy

disturbance

δϵ = −
(
−3C2

1 + 3C0C2 − C0
)
ϵin(k)τR

−3C2
1 + 3C0C2 − C0 − 3C2 + 1

, (2.32)

from which we read the response function

GL(ω, k) =
−
[
6k̄ +

(
3(i+ ω̄) + ik̄2

)
L(ω̄, k̄)

]
τR

2k̄(k̄2 + 3iω̄) + i
(
k̄2 + 3ω̄(i+ ω̄)

)
L(ω̄, k̄)

. (2.33)
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Here, for convenience, we have defined

L(ω, k) = ln
(
ω̄ − k̄ + i

ω̄ + k̄ + i

)
. (2.34)

and used the relation among Cns.

C0 = −i
2k̄

L(ω̄, k̄) , C1 = −i
k̄

(1− (1− iω̄)C0) . (2.35a)

C2 = 1
k̄
(i+ ω̄)C1 = (1− iω̄)

k̄2 (1− (1− iω̄)C0) . (2.35b)

Similarly, we find that in the transverse channel

GT (ω, k) =
3i
[
2k̄(ω̄ + i)−

(
k̄2 + (1− iω̄)2

)
L(ω̄, k̄)

]
τR

2k̄(3 + 2k̄2 − 3iω̄) + 3i
(
k̄2 + (1− iω̄)2

)
L(ω̄, k̄)

. (2.36)

The expression for the RTA retarded correlators has been obtained in ref. [23], see
also ref. [8]. We copy the relevant expression in terms of C0,1,2 below (up to a contact
term) in our notation:

G00,00
R (ω, k) = 3w0

ik̄C1
−3C2

1 + 3C0C2 − C0 − 3C2 + 1
, (2.37)

G0x,0x
R (ω, k) = −3w0

iω̄(C0 − C2)
2− 3(C0 − C2)

. (2.38)

Using the expressions (2.33) and (2.36), one can verify the relation (2.11) between the
response function and the retarded correlator.

2.3 Hydrodynamic response function

The primary goal of this paper is to investigate the response function’s behavior beyond the
hydrodynamic regime. To benchmark hydrodynamic behavior, we now calculate GL and GT

within hydrodynamics and/or its cousin theory, Muller, Israel and Stewart (MIS) theory. In
the following section, we will compare these results with the RTA response.

We begin with the decomposition of EMT

Tµν = ϵuµuν + P ∆µν + πµν (2.39)

where p denotes the pressure, and the projector is given by

∆µν = ηµν + uµuν , (2.40)

and πµν arise from the gradient correction to Tµν . For a conformal fluid, P = ϵ/3 and πµν

is traceless. One may expand πµν in gradient in the long time and wavelength limit. To
the first-order gradient, πµν takes the form

πµν
(1) = −2 η σµν (2.41)
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where η is the shear viscosity, and the shear stress is given by

σµν = ∇⟨µ uν⟩ . (2.42)

Here ∇µ denotes the covariant derivative. Angular brackets around a pair of Lorentz indices,
<µν>, mean that the indices are to be symmetrized, space-projected, and trace-subtracted, i.e.:

A<µν> = 1
2∆

µα∆µβ (Aαβ +Aβα)−
1
3∆

µν∆αβ Aαβ . (2.43)

As usual, we refer to the conservation equation

∇µT
µν = 0 (2.44)

supplemented by the relation πµν = πµν
(1) (2.41) as the first-order hydrodynamics for a charge-

neutral system. One may include contributions from higher-order gradient terms [24–26].
Various versions of higher-order theories have shared a feature that πµν is promoted as an
independent dynamical degree of freedom. For the theory developed by Muller, Israel and
Stewart (MIS), πµν obeys a simple relaxation equation:

Dπµν = − 1
τπ

(
πµν − πµν

(1)

)
, (2.45)

where D ≡ u · ∇ is the time-derivative in the fluid rest-frame and τπ gives the relaxation
time scale under which πµν approaches πµν

(1) .
We first consider the response function in the longitudinal channel obtained from lin-

earizing hydrodynamic theories. As we did earlier, we take k along z-direction. Therefore
the relevant dynamical fields are δϵ, δuz, πzz where shall count πij as O(δ). To compute
GL (2.15), it is sufficient to consider the initial condition (δϵ, δuz, πzz)

∣∣∣
t=0

= (δϵin, 0, 0).
By linearizing conservation equation (2.44) and evolution equation for πµν (2.45) and

the performing the Fourier transform, we have

−iω δϵ

w0
= −ikδuz + δϵin

w0
, (2.46a)

−iω δuz = −ik
(
c2

s

δϵ

w0
+ πzz

w0

)
, (2.46b)

−iωπ
zz

w0
= − 1

τR

(
πzz

w0
+ ik

4
3 ν0 δuz

)
, (2.46c)

where specific viscosity is given by ν = η/w. To obtain eq. (2.46a), we have used eq. (2.12).
Now, we solve eq. (2.46c) to find

πzz

w0
= −ν(ω) ikδuz , (2.47)

where we have defined frequency-dependent longitudinal momentum diffusive coefficient

ν(ω) = 4
3

ν0
1− iωτπ

, (2.48)
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Substituting eq. (2.47) into eq. (2.46b) and using eq. (2.46a) yields

δϵ(ω, k) = 1
R(ω, k)

(
iω − ν(ω)k2

)
δϵin(ω, k) , (2.49)

where

R(ω, k) = ω2 − c2
sk

2 + iν(ω)ωk2 . (2.50)

We then arrived at the expression for the longitudinal response function

GL(ω, k) =
iω − ν(ω)k2

R(ω, k) . (2.51)

In parallel, we find

GT (ω, k) =
i

ω + iνT (ω) k2 , (2.52)

where frequency-dependent transverse momentum diffusive coefficient reads (cf. eq (2.48))

νT (ω) =
ν0

1− iωτπ
. (2.53)

It is easy to verify that the above hydrodynamic expressions can be matched to the small
ω, k behavior of RTA response function (2.33), (2.36) with

c2
s = 1

3 , ν0 = 1
5 τR τπ = τR (2.54)

Before closing, we recall the related EMT correlators in the hydrodynamics regime (see
e.g., refs. [10, 11]) is given by (up to the ω, k-independent contact terms)

G00,00
R (ω, k) = w0k

2

R(ω, k) , G0x,0x
R (ω, k) = −iw0 νT (ω)k2

ω + iνT (ω)k2 (2.55)

It is then straightforward to confirm the relation between the response function and the
retarded correlator (2.11).

3 Extended hydrodynamic regime

3.1 Excitations

The behavior of the R.F. is determined by the properties of the medium’s excitations that can
be recognized by studying its analytic structure (pole, branch-cut) in the complex ω-plane.
In physical terms, poles indicate the collective modes and the branch-cuts are typically
associated with quasi-particle excitations. In the time domain,

G(∆t, k) =
∫ ∞

−∞

dω

2π G(ω, k)e−iω∆t (3.1)

we can close the contour of the integration over ω in the lower half-plane to explicitly show
the contributions of the pole and branch cut,

G(∆t, k) = −i
∑

n

Rn(k)e−iωn∆t +
∑
m

∮
Cm

dω

2π G(ω, k)e
−iω∆t , (3.2)
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where all the poles and branch cuts are labeled by n and m, respectively. Here, Rn(k) is
the residue of the G(ω, k) at pole ω = ωn(k). Cm schematically denote the contour around
the branch-cut m.

Specifically, the RTA response function has poles given by the zeros of the denominator
in eqs. (2.33), (2.36):

2k̄ (k̄2 + 3iω̄) + i
(
k̄2 + 3ω̄(i+ ω̄)L(ω̄, k̄)

)
= 0 , (3.3a)

2k̄ (3 + 2k̄ − 3iω̄) + 3i
(
k̄2 + (1− iω̄)2

)
L(ω̄, k̄) = 0 , (3.3b)

for the longitudinal and transverse channels, respectively. In the longitudinal channel (3.3a),
the solutions present a pair of propagating modes (sound-like modes) ωL(k) = ±v(k)k− iΓ(k)
where v is the phase velocity and Γ is the attenuation rate. In the transverse sector (3.3b),
the solution is purely imaginary ωT = −iΓT (k). In the regime where k is small, RTA
collective modes are usual hydrodynamic sound and shear modes (see also figure 3 below).
Nevertheless, as first noticed in ref. [23], collective modes in RTA continue to exist until
k̄ = k̄O with k̄O = 4.52 for the longitudinal channel and k̄O = 3π/4 = 2.37 for the transverse
channel. We refer to those modes outside the hydrodynamic regime as high-frequency sound
and shear modes for the clarity of presentation and for the reasons that will be revealed
later in section 3.1.1.2

Besides the poles, GL,T have a logarithmic branch cut stretching from ω̄ = −k̄ − i to
ω̄ = k̄ − i (see the expression of L (2.34)). They represent quasi-particle excitations through
the effect akin to Landau-damping; see section IIB of ref. [8] for an intuitive elaboration on
their origin. For k̄ > k̄O, the response of the medium is determined solely by quasi-particle
excitations. At the same time, hydrodynamic modes govern for k̄ < kH τR, with kH denoting
the boundary of the hydrodynamic regime. The question of interest, therefore, is, what
is the relative importance of “high-frequency” sound and shear modes and quasi-particle
excitations in the intermediate regime kH < k̄ < k̄O?

In figure 2, which exhibits the RTA response function vs ∆t for three values of k̄ (k̄ < k̄O)
in the longitudinal and transverse channel, we have shown the contribution from the poles
and branch cuts separately. Remarkably, the collective modes have a prevalent impact on
the behavior of response functions even at the non-hydrodynamic gradient, especially at
sufficiently large t. To understand why this happens, we compared the damping rate of RTA
collective modes with the relaxation rate of quasi-particle excitations shown in figure 3. We
refer to the difference between the two, ∆Γ(k) = τ−1

R − Im(ω(k)), as the gap. If the gap
is greater than zero, the contribution from quasi-particle excitations will be suppressed by
exp(−∆Γ∆t), eventually making high-frequency hydrodynamic modes dominate the response.

2It is fun to note that the high-frequency sound mode may be viewed as analogous of Tiktaalik in the
context of biological evolution. According to Wikipedia (https://en.wikipedia.org/wiki/Tiktaalik), “its fins
have thin ray bones for paddling like most fish, but they also have sturdy interior bones that would have
allowed Tiktaalik to prop itself up in shallow water and use its limbs for support as most four-legged animals
do. Those fins and other mixed characteristics mark Tiktaalik as a crucial transition fossil, a link in evolution
from swimming fish to four-legged vertebrates”. Similarly, the high-frequency sound mode propagates as a
sound mode but with a phase velocity closer to the velocity of parton than the ordinary sound. It might
be the crucial link in the evolution of excitations in a QGP-like plasma from hydrodynamic modes to the
weakly-coupled quasi-particles.
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Figure 2. RTA response function in the time domain (solid curves) at three different values of
k̄ = kτR. They are compared with the contribution from the collective modes ωL(k), ωT (k) (dashed
curves), which are conventional sound and shear modes in hydrodynamic regime (see eq. (3.2) and the
text). In the extended hydrodynamic regime for RTA kinetic theory where k̄ ≥ 1, those modes are
referred to as high-frequency sound and shear mode. (Left): the longitudinal channel where we have
rescaled the time by Ω = |ReΩL(k)| (Right): the transverse channel where we have rescaled the time
by Ω = |ImΩT (k)|.

Figure 3. The dispersion of collective modes in RTA kinetic theory. In the longitudinal channel,
the solution to eq. (3.3a) represents a propagating mode ωL(k) = ±v(k) k − iΓ(k). In the transverse
channel, the solution to eq. (3.3b) is purely dissipative ωT (k) = −iΓT (k). From left to right, the
red curves in the figure correspond to phase velocity v, attenuation rate Γ, and ΓT as a function of
k̄ = kτR. For comparison, the first-order hydrodynamics and MIS theory results are plotted in blue
dashed and green dotted curves, respectively. For figures on the middle and left, the horizontal black
dashed curves plot the damping rate of quasi-particle excitations, 1/τR.

The gap remains open unless the value of k̄ is close to k̄O, as seen in figure 3, which explains
the importance of high-frequency sound and shear modes outside the hydrodynamic regime.

It is crucial to mention that the dispersion of those high-frequency collective modes
can not be described by extrapolating the results in the usual hydrodynamic theories to
a larger gradient. To elucidate this, we compute the poles of the hydrodynamic response
functions (2.51), (2.52) by solving

R(ω, k) = ω2 − c2
sk

2 + iν(ω)ωk2 = 0 , (3.4a)

in the longitudinal channel and

ω + iνT (ω) k2 = 0 . (3.4b)
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in the transverse channel. Here ν(ω) equals to ν0 for the first-order theory and is given
by (2.48) in MIS theory, and the relevant transport coefficients are listed in eq. (2.54). In
figure 3, we confirm that first-order and MIS theory accurately describes the dispersion of
the RTA collective modes in the hydrodynamic regime but generally fall short in capturing
important qualitative features of the RTA modes as we move to a larger gradient, see also
further discussion in section 3.3.

3.1.1 Extended hydrodynamic regime: generalities

More generally, one may introduce the notion of “Extended Hydrodynamic regime” (EHR),
as discussed recently in ref. [1]. EHR has two defining properties: 1) high-frequency sound
and/or shear modes exist that are gapped from other non-hydrodynamic excitations; 2)
the dispersion relation of high-frequency sound and shear mode can not be described by
conventional hydrodynamic theory. The RTA kinetic theory exemplifies the existence of
EHR, as discussed in the preceding sections.

Importantly, EHR can appear in a wide range of microscopic theories.
First of all, the authors of refs. [27, 28] demonstrate remarkable agreement among the

retarded correlator in the sound channel for kinetic theory with different collision kernels
once time and gradient are rescaled by the effective relaxation time η/w. Those collision
kernels include those obtained from RTA, scalar ϕ4, SU(3) Yang-Mills theory and QCD
effective kinetic theory with Nf = 3. This study indicates that EHR, observed using the
simplified RTA collision kernel, applies to more sophisticated and realistic collision kernels
derived from quantum field theory.

Furthermore, high-frequency sound mode is not uncommon in strongly coupled gauge
theories that can be calculated using holography duality. For example, in the strongly coupled
N = 4 super-symmetric Yang-Mills theory in large Nc limit (SYM), which captures many
features of QCD in strong coupling, the sound mode exists at any finite gradient and has
a smaller than damping rate than other excitations (quasi-normal modes) [29, 30]. This
similarity between kinetic theory and strongly coupled SYM theory is remarkable, given that
the coupling strength is drastically different between the two.

Finally, various liquid metals can sustain sound modes extending from hydrodynamic
regime to wavelengths comparable to inter-atomic distances, as reviewed in refs. [31, 32]. All
the results discussed above indicate the generality of the EHR scenario.

3.2 The construction of MIS∗

We review MIS* theory, which we proposed in ref. [1]. The purpose of constructing MIS* is
to provide a simple model that can describe the response in EHR. Our approach is by “trial
and error” strategy: we explore the simplest extension of MIS and evaluate its effectiveness.
The resulting theory may be seen as a “deformation” of MIS theory that we decompose the
non-equilibrium corrections to the EMT,πµν (2.39), into two parts:

πµν = πµν
1 + πµν

2 , (3.5)

– 13 –
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And we require the dynamic equation for π1,2 to have the same form as eq. (2.45) in
MIS theory.:

Dπµν
a = − 1

τa
(πµν

a + 2ηa σ
µν) , a = 1, 2 , (3.6)

where η1,2, τ1,2 are model parameters. Without losing generality, we shall assume that τ1 < τ2,
meaning π2 relaxes faster than π1. In the long time limit, πµν should approach to its value in
the first-order hydrodynamics (2.41), yielding the following constraint

2∑
a=1

ηa = η . (3.7)

We shall examine if MIS* can be used to describe EHR response in RTA kinetic theory.
Following a similar procedure as in section 2.3, we find GL,GT from MIS* is of the same form
as eqs. (2.51) and (2.52), respectively, with ν(ω), νT (ω) given by

ν(ω) = 4
3

2∑
a=1

νa

1− iωτa
, νT (ω) =

3
4ν(ω) . (3.8)

where νa = ηa/w0. To further simplify the model, we consider the limit τ2/τ1 → 0, allowing
eq. (3.8) to be written as

ν(ω) = 4ν0
3

( 1− δ

1− iωτ1
+ δ

)
. (3.9)

where two dimensionless ratios are defined for later convenience

δ = η2
η
, γ = τ1

τπ
. (3.10)

This limit means that even at non-hydrodynamic timescales like ω ∼ τ−1
1 , πµν

2 has enough
time to relax to −2η2σ

µν and contribute around ∝ δk2 to the damping rate of sound mode,
which makes δ the parameter that controls the dissipative rate in EHR.3 We note that while
τπ in MIS theory is fixed by matching to the second-order hydrodynamics, we only require
MIS∗ to reproduce the first-order hydrodynamic results and not higher-order corrections in
the small gradient limit. With this little compromise, we could adjust τ1 or the ratio γ to
describe modes in EHR, making it an excellent trade-off, as we shall see shortly.

3.3 Kinetic theory vs. hydrodynamic theories

In this section, we will explore how the RTA response function behaves in a static and
homogeneous equilibrium background in the time domain. To do so, we will use equation (3.1)
alongside eqs. (2.33) and (2.36). We will then compare these results with their counterpart
in the Bjorken expanding background in section 5. Moreover, we will compare the RTA
results with responses in “hydrodynamic theories”, which include first-order MIS and MIS*

3Like MIS theory, MIS* is not causal for very large k in the τ2 → 0 limit, but this is not a severe problem
as long as we are working on the linear response regime. We can use a small but finite value of r to ensure
causality if necessary.

– 14 –
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Figure 4. The RTA response function vs k∆t for the longitudinal channel (the upper panel) and the
transverse channel (the lower panel). For comparison, MIS* (obtained by choosing (δ, γ) = (0.15, 0.8)),
MIS, and the first-order hydrodynamic results are shown in red, blue, and green curves, respectively.
For their analogs in the Bjorken expanding background, see figure 6.

theory. We put a quotation mark here to emphasize that some of those theories are to be
extrapolated outside the hydrodynamic regime. The first-order and MIS theory results are
obtained using parameters listed in eq. (2.54). For MIS*, we will use a suitable choice of
(γ, δ), which could describe RTA sound dispersion; see figure 1 in ref. [1].

In figure 4, we show the longitudinal (the upper panel) and transverse (the lower panel)
response function vs k for ∆t = 2 τR (left), ∆t = 8 τR (middle) and ∆t = 16 τR (right). They
represent early-time, intermediate-time, and late-time responses, respectively. For kinetic
theory, GL exhibits the damped oscillation behavior while GT is purely dissipative. As k
increases, Hydrodynamic and RTA kinetic theory start to differentiate from each other. MIS
theory, which includes higher-order gradient effects, only modestly improves the description
when k is small. Outside the hydrodynamic regime, both first-order and MIS theory are
inadequate to describe the RTA response (see also ref. [10]). The discrepancy can be primarily
explained by the difference in the dispersion of collective modes among those theories. For
instance, the phase velocity v(k) of RTA sound mode rises from the conformal sound velocity√
1/3 ≈ 0.57 up to 0.8 as k increases, and the sound attenuation rate also rises with k. In

contrast, (extrapolated) first-order hydrodynamics does not give a supersonic phase velocity,
and the sound damping rate grows faster than the RTA theory. Consequently, as shown
in figure 4, first-order hydrodynamics is less oscillatory with a smaller amplitude than the
RTA response function. As for the MIS theory, the phase velocity of the sound mode also
increases, but its attenuation rate will be saturated instead of growing as k becomes larger.
This explains the oscillating behavior in the MIS response function at large k where RTA
sound mode has already been damped out.
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Suppose we define “hydrodynamization” of response as the point where the response
function closely matches the hydrodynamic prediction at a specific ∆t.4 In that case, we can
see that in the shear channel, hydrodynamization occurs sooner than in the sound channel.
There are at least two reasons why this may occur. The first reason is accidental: the shear
dispersion happens to be quantitatively similar in the first-order and RTA theory for a wide
range of values for k. The second one is more general. The damping rate of the shear mode
is greater than that in the sound channel at given k. Therefore, the non-hydrodynamic
gradient will be damped first in the former sector. It is worthwhile mentioning that in the
transverse channel, equation (3.4b) has two roots at a fixed value of k. While both modes
are imaginary for small k, they become a pair of propagating modes for k larger than a
certain threshold. This is responsible for the spurious wave-like behavior observed in the
MIS response function in the shear channel.

In figure 4, we illustrate the comparison between RTA and MIS* response function
with a representative combination of model parameters (γ, δ) = (0.25, 0.8). Despite the
model’s simplicity, the agreement in the sound channel is rather remarkable. In the shear
channel, the agreement is less impressive. Pursuing improvement in this channel is interesting,
which we leave to future work. That said, we stress that MIS* is still very useful in its
current form when hydrodynamization happens first in the shear channel, since capturing
the EHR response in the sound channel is more important in this case. This is what has
been accomplished by MIS*.

3.4 Discussion on the extension of hydrodynamics

We developed the MIS* theory to describe how the medium responds in the extended
hydrodynamic regime (EHR), where the high-frequency sound mode still has a longer lifetime
than other excitations. Our analysis above shows that this framework could describe high-
frequency hydrodynamic mode in EHR (or at least part of it) with a minimum number of
model parameters. This is not the only possible formalism with which to describe EHR.
An alternative method is to include higher-order gradient terms in hydrodynamics, and
the efficiency of doing so relies on the convergence of the gradient expansion, which has
attracted many recent studies [33–35]. See also ref. [36] for a different strategy in extending
hydrodynamics.

In MIS*, π1, π2 are introduced to describe sound dispersion outside the hydrodynamic
regime. While including non-hydrodynamic fields to extend hydrodynamic is not new and
has been widely discussed in literature [37–39], most of those studies are motivated by
the expectation that the number of relevant modes increases at shorter time scales or
non-hydrodynamic distances. Moreover, the emergence of parametrically slow modes also
necessitates including additional modes even in the hydrodynamic regime, and the result
theory is referred to as “Hydro+” in ref. [40]. One familiar situation is near a critical point;
the relaxation time of the fluctuations of the order parameter field grows with increasing
correlation length. In all cases discussed above, the number of relevant modes is larger than
that of hydrodynamic ones, which are conserved densities. In contrast, the number of slow

4In many references, "hydrodynamization” refers to the case when the bulk evolution is described by viscous
hydrodynamics.

– 16 –



J
H
E
P
0
5
(
2
0
2
4
)
1
7
1

modes in EHR is the same as that of hydrodynamic ones in the sound channel. The purpose
of including non-hydrodynamic dynamic fields πµν

1,2 is not because they are additionally slow
modes but because they bring about new parameters needed to characterize the dispersion of
high-frequency sound modes.5 This distinguishes the MIS∗ theory from early studies.

4 Perturbation in medium undergoing Bjorken expansion

In this section, we will study the energy-momentum response around a Bjorken expanding
conformal plasma and compare the results with those in the static background.

4.1 Response function for Bjorken background

We divide the stress-energy tensor (EMT) into a background and a perturbation part:

Tµν(τ,x) = Tµν
0 (τ) + δTµν(τ,x) , (4.1)

where we assume the background is under Bjorken expanding. Accordingly, background EMT
Tµν

0 (τ) only depends on the Bjorken proper time τ =
√
t2 − z2 and takes form

Tµν
0 = diag (ϵ0, P0, P0, P0) + diag

(
0, 1, 1,− 2

τ2

)
π0 . (4.2)

Here, the first and second terms on the R.H.S. of eq. (4.2) represent the contribution from the
ideal and non-equilibrium part of the constitutive relation, see eq. (2.39). The background
πµν

0 is diagonalized and is fully parameterized by π0 = πxx
0 = πyy

0 for a conformal system
under consideration.

Following ref. [41], we define the response function describing the subsequent evolution
of the initial perturbation δTµν at (τ ′,x′

⊥) (cf. eq. (2.1)):

δTµν(τ,x⊥) =
∫
d2x′

⊥ Gµν
αβ(x⊥ − x′

⊥; τ, τ ′) δTαβ(x′
⊥, τ

′) . (4.3)

where we have used the fact that the response functions depend only on the different
r = x⊥ − x′

⊥. For the present purpose, we only consider the perturbation that depends
on the spatial vector lying entirely in the plane transverse to z-direction x⊥. The non-zero
independent components of δTµν are

δϵ = δT ττ δga ≡ δT τa , δT ab , (4.4)

where a = x, y and δga is nothing but transverse momentum density perturbation. The
value of δT ηη is related to δϵ, δT ab by the conformality condition. We are interested in the
response of the plasma near equilibrium, so we shall implicitly assume that τ ′ is larger than
the thermalization time of the plasma. The response functions of a far-from-equilibrium
Bjorken expanding plasma have been studied using effective QCD kinetic theory [41–43]
and RTA kinetic theory [44].

5In our view, to understand the need to introduce non-hydrodynamic d.o.fs. πµν
1,2 in MIS*, it might be

useful to recall that some heavy particles are introduced to make neutrino light through the sea-saw mechanism
in some beyond-standard model scenarios.
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Following the discussion of ref. [41], one can show that there are five independent
components of Gµν

αβ that describe the energy-momentum response to the initial energy
density δϵ and initial transverse momentum density δga disturbance (see also ref. [44]):

Gττ
ττ (r) ≡ Gϵϵ(r) , (4.5a)

Gτa
ττ (r) ≡ r̂a GϵL(r) Gττ

τa(r) ≡ r̂a GLϵ(r) , (4.5b)

Gτa
τb(r) = r̂ar̂bGLL(r) +

(
δab − r̂ar̂b

)
GT T (r) . (4.5c)

In the above expressions, we suppress the dependence on τ, τ ′ in R.F. to highlight their
dependence on r. The physical interpretation of those R.F. should be transparent. For
example, GϵL describes energy density at τ induced by the momentum density disturbance
projected along direction r̂ at initial time τ ′. Likewise, GT T describes the transverse (with
respect to r̂) momentum density induced by the initial momentum density.

Following the common practice (see refs. [42–44]), we first compute Gµν
αβ in Fourier

space k = (kx, ky) and obtain the real space R.F.

Gµν
αβ(x − x0; τ, τ0) =

∫
d2k

(2π)2 Gµν
αβ(k; τ, τ0) eik·(x−x0) . (4.6)

The relevant independent components of Gµν
αβ(k; τ, τ0) are [41]

Gττ
ττ (k) = Gϵϵ(k) , (4.7)

Gττ
τa(k) = i k̂aGϵL(k) , Gτa

ττ (k) = i k̂a GLϵ(k), (4.8)
Gτa

τb(k) = k̂ak̂b GLL(k) + (δab − k̂ak̂b)GT T (k). (4.9)

They determine the real-space response function through the relation:

Gϵϵ(r) =
∫
dkk

2π J0(kr)Gϵϵ(k) , (4.10a)

GϵL(r) =
∫
dkk

2π J1(kr)GϵL(k) , GLϵ(r) =
∫
dkk

2π J1(kr)GLϵ(k) , (4.10b)

GLL(r) =
∫
dkk

2π
1
2 [(J0(kr)− J2(kr)) GLL(k) + (J0(kr) + J2(kr))GT T (k)] , (4.10c)

GT T (r) =
∫
dkk

2π
1
2 [(J0(kr) + J2(kr))GLL(k) + (J0(kr)− J2(kr))GT T (k)] , (4.10d)

where J0,1,2 are standard Bessel functions.

4.2 Kinetic theory calculation

In this section, we present the calculation of the response function for a Bjorken expanding
plasma using RTA kinetic equation (2.16). In Bjorken coordinate the kinetic equation (2.16)
reads

∂f

∂τ
+ pa

p

∂f

∂xa
− pη

τ

∂f

∂pη
= −pµu

ν (f − feq)
p τR

(4.11)

where the summation over the dummy variable a is understood. As explained earlier, we
consider massless particles with single-particle energy p = |p|.
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Since we are interested in energy-momentum disturbance, it is convenient to introduce
the integrated distribution function (see also refs. [45, 46])

F (p̂) =
∫ ∞

0

dp

2π2 p
3f , (4.12)

from which one can obtain the components of EMT through the solid angle integration
with the appropriate weight, e.g.,

ϵ =
∫
dΩ
4π F, ga =

∫
dΩ
4π

pa

p
F , Tab =

∫
dΩ
4π

(
papb

p

)
F . (4.13)

By performing the integration over dp over the kinetic equation (4.11), we then derive the
equation for F (see also refs. [4, 45, 47])[
∂τ + p̂a

∂

∂xa
+ 1
τ

(
4 cos2 θ − cos θ(1− cos2 θ

)
∂cos θ

]
F = − 1

τR

∫ ∞

0

dp

2π2 p
2 (p · u) (f − feq) .

(4.14)

We first consider background solution F0(τ, cos θ) with uµ
0 = (1, 0, 0, 0)(in Bjorken

coordinate). The equation (4.14) reduces to[
∂τ + 1

τ

(
4 cos2 θ − cos θ(1− cos2 θ

)
∂cos θ

]
F0(τ, cos θ) =

1
τR

[ϵ0(τ)− F0(τ, cos θ)] . (4.15)

The R.H.S. of eq. (4.15) can be understood from the fact that in equilibrium, F0 = ϵ0 and
is independent of cos θ.

Next, we turn to the perturbation around the background solution F = F0 + δF .
Linearizing the L.H.S. of eq. (4.14) is straightforward. For the R.H.S., we have

1
p
δ

[
p · u
τR

(f − feq)
]
= δf − δfeq

τR,0
+
(
p · δu− p0 δτR

τR

)
f0 − feq,0
τR,0

. (4.16)

Note δτR term will be present because τR depends on ϵ (see eq. (2.19)). For convenience, we
shall count f0 − feq,0 of the order O(δ0) where δ0 is assumed to be another small parameter
as we are interested in the near equilibrium background. In fact, π0/w0 ∼ O(δ0) in this
counting scheme. For a simple estimate of this ratio, we use the first-order hydrodynamic
expectation π0/w0 = 2η/(3τw). Using η/w = (1/5)τR in the RTA kinetic theory (2.54),
we find π0/w0 ≤ 2/15 for τ > τR and is numerically small. See also figure 5 where the
numerical solutions to the background equation (4.15) is plotted and the smallness of π0/w0
is verified. To further simplify our analysis, we will ignore the terms of the order O(δ0 δ),
i.e. the second term on the R.H.S of eq. (4.16).

To calculate the first term on the R.H.S of eq. (4.16), one can use an expression analogous
to eq. (2.21) to expand δfeq. On the other hand,

δT τa = δga = w0δu
a + δπτa , (4.17)

and πµν is transverse to the fluid velocity

δuµπ
µν
0 + uµδπ

µν
0 = 0 , (4.18)
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so we find δπτa = π0δu
a and consequently

δua = ga

w0(1− π0
w0

) = ga

w0
+O(δ δ0) . (4.19)

After integrating the linearized kinetic equation over
∫∞

0 dp p2, we obtain, in Fourier space,
the equation for δF (see also ref. [47])[
∂τ + i ka pa + 1

τ

(
4 cos2 θ − cos θ(1− cos2 θ

)
∂cos θ

]
δF = 1

τR

(
δϵ+ 1

c2
s

δga · p̂− δF

)
. (4.20)

By solving eq. (4.20), we can obtain the response function through the definition in section 4.1.

4.3 Hydrodynamic theory calculation

As we did in the previous sections 2.3, we collectively call first-order hydrodynamics, MIS
(or its variants), and MIS* “hydrodynamic theories”.

We shall first derive E.o.M for background energy density ϵ0 and linearized energy and
momentum density δϵ, δga. The resulting equations apply equally to all “Hydrodynamic
theories” under consideration. In contrast, the description of πµν differs among those theories
and will be specified later.

We begin with the energy-momentum conservation equation

∇µT
µν = ∂µT

µν + Γµ
µλT

λν + Γν
µλT

µλ , (4.21)

where the non-zero connection in Bjorken coordinates are Γη
ηη = τ,Γη

ητ = Γη
τη = 1/τ . Using

the expression for the background EMT (4.2), we obtain

∂τ ϵ0 = − 4
3τ ϵ0 +

2π0
τ

, (4.22)

Turning to the perturbation, we have from (4.21) that(
∂τ + 4

3τ

)
δϵ+ ∂aδg

a − τ δπηη = 0 , (4.23a)(
∂τ + 1

τ

)
δga + 1

3∂
aδϵ+ ∂bδπ

ba = 0 , (4.23b)

where we have used eq. (4.4).
Now, we turn to discuss πµν

0 , δπµν for different “hydrodynamic theories”. As discussed
earlier, the background πµν

0 is fully determined by π0. To close eqs. (4.23), only δπab are
needed since δπηη can be expressed in terms of dπab due to the conformality condition, i.e.,

δπηη = − 1
τ2

∑
a

δπaa . (4.24)

In the first-order hydrodynamics, πµν is not dynamical and (2.41) yields

π0 = −2η0 σ
µν
0 , δπµν = −2η0δσ

µν . (4.25)
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where for the background

σµν
0 = 1

3τ diag
{
0,−1,−1, 2

τ2

}
. (4.26)

Further using eq. (4.19), we arrived at the expression:

δσab = 1
w0

∂⟨a δgb⟩ . (4.27)

Following ref. [48], we shall use a modern variant of MIS, i.e. the theory formulated by
Denicol, Niemi, Molnar and Rischke (DNMR) [49] where the equations of motion for πµν

reads (see ref. [24] for examples of other variants of the second-order hydrodynamic theories ):

Dπµν = −π
µν + 2ησµν

τπ
− 4

3π
µνθ − λ̃1π

⟨µ
α σ

ν⟩α − . . . . (4.28)

Here, . . . on the L.H.S of (4.28) denotes a term proportional to the vorticity, but we shall
discard this contribution since the Bjorken flow is irrotational. The second-order transport
coefficient equals λ̃1 = 10/7 by matching to RTA kinetic theory [48].

The DNMR equation for the background reads [48]

∂τπ0 = − 1
τπ

(
π0 −

2η
3τ

)
−
(
4
3 + λ̃1

3

)
π0
τ

(4.29)

and the linearized equation can be written as

∂τδπ
ab =− δπab + 2ηδσab

τπ
+ 4

3τ δπ
ab +O(δ0δ) . (4.30)

Here and hereafter, we shall drop the terms of the order O(δ0δ) as we have already done
in kinetic theory calculations.

Finally, we discuss the MIS* theory introduced in section 3.2 in the limit τ2/τ1 → 0
such that πµµ

2 (see eq. (3.5)) is given by

πµν
2 = −2η2σ

µν . (4.31)

For πµν
1 , instead of using (3.6), we consider the equation of the form (4.28), i.e.,

πµν = πµν
1 + πµν

2 , (4.32)

Dπµν
1 = −π

µν + 2η1σ
µν

τ1
− 4

3π
µν
1 θ − λ̃1π

⟨µ
ασ

ν⟩α (4.33)

so that when η2 = 0, our theory reduces to eq. (4.28). Consequently, the background and
linearized equation for πµν

1 can be obtained by replacing π0, δπ
ab, η etc in eqs. (4.29), (4.30).

with (π1)0, δπ
ab
1 , η1 respectively.
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5 Results for Bjorken expansion

5.1 Initial condition

We begin the background evolution at τ ≥ τR(ϵ(τ)) when the system is expected to be near
equilibrium. Because of the conformality of the system under consideration, the solutions
to eq. (4.15) and (4.20) only depend on the rescaled time τ/τR. Instead of specifying the
overall normalization in τR ∝ ϵ−1/4, we first define τ0 such that τ0 = τR(ϵin) for a given ϵin.
We then use τ0 to set up the temporal scale and present results in terms of τ/τ0 or τ/τR.
By construction, the background evolution starts at τ/τ0 = 1

Since the background evolution of “hydrodynamic theories” is fully determined by the
initial values of energy density ϵin and that of π0, denoted by πin, we require the initial
profile of F is also fully specified by ϵin,πin to facilitate a comparison. According to eq. (4.13),
we use the parameterization:

Fin(cos θ) = ϵin + 15
4 (1− cos2 θ)πin . (5.1)

We use the same ϵin, πin for the first order and MIS theory. For MIS*, the dynamical field
is πµν

1 and will be initialized as πµν
1 (τ0) = (1 − δ)πin.

After obtaining the background evolution, we then turn on initial energy disturbance
δϵin (or momentum density gx

in, g
y
in) at τ ′ = 2τ0. Correspondingly, we set δF (θ) = δϵin (or

δF (θ) = δgx
in sin θ cosϕ, δg

y
in sin θ sinϕ) to solve the linearized kinetic equation (4.20). The

same values of initial hydrodynamic fields are used to solve linearized “hydrodynamic theories”.
We close this subsection by noting that the rescaled solution ϵ0/ϵin, π0/ϵin as well as the

rescaled response function do not depend on the magnitude of ϵin and δϵin, ga
in. Therefore, we

shall not set their values in practice but simply present results in terms of rescaled quantities.

5.2 Background solution

To determine the background evolution in different theories, we have solved the corresponding
equations derived in section 4.2 and section 4.3. In figure 5 we plot the dimensionless ratio
ϵ0(τ)/(ϵin(τ0/τ)4/3)) (left) and π0(τ)/w0(τ) (right) as a function of the rescaled proper time
τ/τR(ϵ) for kinetic, DNMR and MIS* theories. For definiteness, MIS* results are obtained
with the choice of MIS parameters (δ, γ) = (0.2, 0.8), as motivated by figure 3. The solid
and dashed curves correspond to πin/win = 0 and πin/ϵin = 3/4 respectively. We observe
differences among different theories in the background evolution are within a few percent.
This indicates that if we see any significant difference in response functions, it is mainly
due to the discrepancy in their description of the response. Finally, figure 5 (right) where
π0/w0 is plotted, we confirm that this ratio is indeed small, as we claimed earlier. We also
notice that background evolution is insensitive to the choice of πin/win and we shall compute
the response function for πin/win.

5.3 Response in Fourier space

The functions defined in eq. (4.5) describe the energy and momentum density distribution
at τ caused by the energy-momentum perturbation at τ ′ for a Bjorken expanding plasma.
Figure 6 compares Gϵϵ, GϵL, GT T in spatial Fourier space in RTA kinetic theory (black curves)
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Figure 5. Left: background solution with πin/win = 0 for rescaled energy density ϵ(τ)/(ϵin(τ0/τ)4/3)
from different “hydrodynamics theories” as compared to RTA solution. Right: the evolution of
π0/w. The upper and lower curves correspond to the solutions with πin/win = 0 and πin/win = 0.75
respectively.

with those in “hydrodynamic theories”. When solving MIS*, we use the same range of δ, γ that
gives a reasonable description of the RTA sound propagation in EHR. For better visualization,
we rescale the response functions by multiplying (τ/τ ′)a so that their magnitudes are of the
order of unity. The scaling exponent a = 4/3 for Gϵϵ and a = 1 for the others, guided by
the evolution of the background energy and momentum density for ideal hydrodynamics,
which behave as τ−4/3 and τ−1 respectively. We present results with three representative
values of ∆τ = τ − τ ′, i.e. ∆τ = 2, 8, 16τ0 in figure 6. Those plots reiterate that neither
first-order nor MIS theory describes the response beyond the small gradient regime, while
MIS* significantly improves the description to a larger gradient domain. Meanwhile, GT T (k),
corresponding to the shear channel, “hydrodynamizes” at a smaller value of ∆τ as compared
with other response functions. This further emphasizes the significance of describing sound
propagation for response at a non-hydrodynamic time scale.

When comparing the energy-energy response function Gϵϵ and the transverse momentum
density response function GT T to their counterparts for the static background (i.e., GL, GT

in figure 4), an interesting observation can be made. The responses in both backgrounds
are qualitatively similar and semi-quantitatively comparable. This can be explained by
considering a fluid background with a characteristic size of in-homogeneity l∗ (This scale in
a heavy-ion collision has been estimated in ref. [50] ). For gradients at k > 1/l∗, including
those living in the EHR, the response cannot resolve the long-wavelength structure of the
background. Consequently, the EHR response should be insensitive to the difference in
the background profile.

To better understand the preceding point, we simplify the first equation in eq. (4.23)
under the limit kτ > 1.

∂τδϵ+ ∂aδg
a = 0 . (5.2)

This equation is the same as the linearized energy conservation equation in the static
background upon replacing the Bjorken time τ with t. Consequently, the response function
for those two different backgrounds should be comparable. Moreover, this also implies that
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Figure 6. The energy-momentum response function Gϵϵ, GLϵ, GT T , defined in eqs. (4.6) and (4.7) (cf.
their analogs in the static background in figure 6), are plotted in the solid black curves from the first to
the third row as a function of k∆τ . Those functions are rescaled by multiplying (τ/τ ′)4/3, (τ/τ ′), (τ/τ ′)
respectively, see text. The results of RTA kinetic theory, first-order hydrodynamics, and MIS theory
are shown in the solid, dotted, and dashed curves, respectively. The MIS* results are plotted as
red bands, computed from 0.2 < δ < 0.3, 0.7 < γ < 0.8. Three values of ∆τ represent the response
function at an early, intermediate, and late time (from left to right). To test relation (5.3), we plot
(τ/τ ′)GLL and (τ/τ ′)GϵL/3 from the kinetic theory in the black dashed curve in the first and second
row, respectively. They are to be compared with rescaled Gϵϵ and GLϵ.

in this regime, the number of independent R.F. for the expanding background can be further
reduced, as there are only two in energy-momentum response in static background. Indeed,
we found in figure 6 that for Bjorken expansion, the following relation, which can be derived
by taking kτ ≫ 1 limit, holds approximately(

τ

τ0

)4/3
Gϵϵ ≈

τ

τ0
GLL GLϵ ≈

1
3GϵL . (5.3)

5.4 Response in real space

We obtain the real space response function by taking the Fourier transforming according
to eq. (4.6) where a smearing function e−k2/(2k2

UV) in its integrand is included to eliminate
contributions from high values of k. Introducing this UV cut-off is a common practice in
previous studies [41], and is necessary for several reasons. Firstly, we are interested in the
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Figure 7. The same as figure 6 but for the real-space response function GLϵ, GLL (defined in
eq. (4.5)) v.s r/∆τ for the Bjorken expanding plasma. The vertical dashed black lines correspond to
the value of conformal sound velocity cs =

√
1/3 ≈ 0.577.

response in EHR, which in general may not include arbitrarily large values of k Secondly, the
kinetic theory is invalid when the gradient is larger than the typical effective temperature,
as the mixing between particle and anti-particle can not be ignored in such cases. Thirdly,
in many physics situations, the source of energy-momentum perturbation should only have
finite support in the k-space. In practice, we use kUV = 3/τ0 and have checked the results
shown below are insensitive to the choice of kUV as long as kUV ≫ τ0.

In figure 7, we have graphed the rescaled response function GLϵ,GLLagainst r/∆τ for the
same set of values of ∆τ as we did in figure 6 (see ref. [1] for Gϵϵ). For causality to hold,
R.F. must disappear outside the causal circle r/∆τ ≤ 1. Due to the smearing function we
introduce, the numerical real space R.F. might be non-zero outside the causal circle, but
it will be of a small magnitude.

The most important qualitative feature of the real space R.F. associated with energy and
momentum response (e.g., GLϵ in the first row of figure 7) is the presence of a peak at a specific
value of veff = r/∆τ . This value represents the effective velocity for the propagation of energy
and momentum perturbation. The real space results are given by summing the contribution
from different k with an appropriate weight. Therefore veff also tells us the average phase
velocity of the sound. As time passes, veff approaches the hydrodynamic limit cs = 1/

√
3 at

late times. However, even at ∆τ = 16τR, veff is still visually different from cs. Going back in
time, veff is supersonic and becomes closer to 0.86, the maximum value of the sound velocity
in EHR (see figure 3). This indicates that unless ∆τ is very large, the contribution from
EHR is significant, and high-frequency sound mode plays a crucial role in early times.

Regarding the peak’s width, it measures the average sound attenuation rate, where
a larger attenuation rate implies a broader peak. We anticipate from figure 3 and now
confirm here that first-order theory (MIS/DNMR) will underestimate (overestimate) the
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peak width. In contrast, MIS* theory reasonably describes almost all the R.F. functions
under consideration with a suitable model parameter δ, γ. This confirms that MIS* can be
utilized to describe the response in the EHR.

Finally, we note that GLL(r), defined in relation (4.10) and shown in the second row
of figure 7, receive contributions from both sound and shear modes, but it exhibits the
sound peak in r/∆τ as its main feature. We have also checked that this peak is also in
GT T . This further makes us believe that describing non-hydrodynamic sound propagation
is more important than that for the shear mode.

6 Non-hydrodynamic response from the Euclidean correlators

In this section, we discuss the implications of the EHR scenario for extracting the real-
time properties of QGP from Euclidean correlators, which are directly accessible from
first-principle lattice QCD calculations.

We recall the relation between Euclidean correlator GE and the spectral density ρ:

GE(τE , k) =
∫ ∞

0
dωρ(ω, k)

coshω
(
τE − 1

2T

)
sinh ω

2T

. (6.1)

where τE is the Euclidean time. There have been extensive efforts in extracting the low-
frequency behavior of spectral density from the lattice QCD calculation of GE to determine
transport coefficients such as shear viscosity non-perturbatively (see ref. [51] for a review).
Nevertheless, since the characteristic frequency of the kernel that is convoluted with the
spectral density in eq. (6.1) is of the order ωT = πT , the resulting Euclidean correlators are
notoriously insensitive to the features in hydrodynamic regimes where the typical gradient
and frequency are expected to be smaller than ωT .

Here, we argue that the characteristic gradient/frequency in the conjectured EHR of
QGP should be of the order ωT — a frequency domain to which the Euclidean correlator
may still be sensitive. To support our claim, we consider the rescaled wave momentum
k̃ = k

(s/η)T c2
s
. While η/s can be different even by order of magnitude for different microscopic

theories, we hope that the dimensionless value of the characteristic k̃ in EHR, k̃EHR, is of
the same order in those theories. In fact, the study of ref. [27] indeed indicates that the
retarded correlator expressed in terms of k̃ is much less sensitive to the microscopic details.
For RTA kinetic theory, we can use eq. (2.54) and read from figure 3 that 9

16 < k̃ < 9
4 may

be considered as the domain of EHR. In ref. [10], the spectral density of EMT has been
calculated using the leading log Boltzmann equation for the QCD plasma. In sound channel,
the authors observe that while hydrodynamics ceases to be a good description for k̃ > 0.7,
the peak associated with high-frequency sound (in the view of the present paper) in the
spectral density persists up to k̃ ∼ 5.6 (see figure 2 of ref. [10]). On the other hand, for the
SYM correlator obtained from the AdS/CFT method, the EHR exists for k̃ > 1. Combining
all the information above, it is reasonable to assume that for QGP, k̃EHR = 1–2, or

kEHR = (1–2)
(
η

s

)−1
c2

s T . (6.2)

Taking η/s = 2 × (1/4π) as a crude estimate for QGP gives kEHR ∼ πT .
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We now investigate the sensitivity of the Euclidean correlator GE to the properties of
EHR. For definiteness, we consider the energy-energy Euclidean correlator so that spectral
density is given by ρ = −ImG00,00

R /π. Motivated by refs. [52, 53], we assume a very simple
EHR plus tree-level ansatz for the spectral function

ρ(ω, k) = ρEHR(ω, k)θ(k − ω) + ρtree(ω, k)θ(ω − k) , (6.3)

Here, ρEHR can be obtained by computing GR from the MIS* response function through
the relation (2.10). We find

ρEHR(ω, k) =
−1
π

Im
[

wk2

ω2 − c2
sk

2 + iν(ω)ωk2

]
, (6.4)

where we shall use the expression of ν(ω) in MIS* (3.9), which we copy below for convenience

ν(ω) = 4ν0
3

( 1− δ

1− iωτ1
+ δ

)
. (6.5)

In the estimation below, we always use w = 3
4wSB = 1

15dAπ
2T 4 with dA = N2

c − 1 and wSB

denotes the enthalpy density of a gluon plasma in Stefan-Boltzmann limit. The tree-level
spectral function of a gluon plasma is taken from ref. [52]:

ρtree(ω, k)θ(ω − k) = dAk
4

4(4π)2

∫ 1

0
dz

(1− z2)2 sinh
(

ω
2T

)
cosh

(
ω

2T − cosh kz
2T

) , (6.6)

We have calculated the rescaled Euclidean correlator G̃E ≡ GE/(dAT
5) from eq. (6.3) for

k = (1/2, 1, 2, 4)πT at τE = 1
2T . The results will depend on parameters entering eq. (6.5), i.e.

ν0 (or η/s) and MIS* parameters τ1, δ. We first perform the computation with the benchmark
values (η/s, τ1, δ) = (1/2π, 4η/(sT ), 0.1). Note that for SYM, Tτπ = 2.61(η/s) while a next
leading order QCD calculation show Tτπ ≈ 6.5(η/s) [54]. So we pick up a somewhat arbitrary
value in between for τ1 assuming τ1 and τπ should be of the same order. The value of δ is
inspired by the comparison between high-frequency sound dispersion in MIS* theory and that
in RTA kinetic theory and SYM theory [1]. Then we do the same but increase the value of
one of the parameters by a factor of two to explore the sensitivity of GE to those parameters.

The results shown in figure 8 are suggestive and encouraging. First, it confirms that at
small k, the Euclidean correlator is insensitive to the value of the transport coefficient and
MIS* parameters. For example, for k = πT

2 which might be considered as a gradient in the
hydrodynamic regime, a factor of two difference in η/s only results in a few percent difference
in GE . On the other hand, as k increases, we observe sizable difference in GE with varying
MIS* parameters τ1, δ. Furthermore, since the energy-energy response in EHR is determined
by MIS* parameters together with η/s, we also observe the sensitivity of GE to the value
of shear viscosity at a non-hydrodynamic gradient. Those results suggest that by studying
Euclidean correlators, we may be able to test the EHR scenario for QGP and could potentially
extract both shear viscosity and parameters that characterize the medium’s response in EHR.
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Figure 8. The rescaled Euclidean energy-energy retarded correlator GE computed using eqs. (6.1)
and (6.3) at Euclidean time τE = 1/(2T ) for four different values of k. The filled squares show results
obtained with the benchmark values of parameters in the parameterization of spectral density in
the extended hydrodynamic regime, (η/s, τ1, δ) = (1/2π, 4η/(sT ), 0.1). They are compared with GE

obtained from varying those parameters. See text.

7 Summary and outlook

We have studied the response of a QGP-like plasma to initial energy-momentum disturbance
at a gradient outside the hydrodynamic regime. By comparing RTA kinetic theories results
with those obtained from “hydrodynamic theories”, we demonstrate a naive extrapolation of
the first-order and second-order (or MIS/DNMR theory) outside hydrodynamic regime that
fails to describe the response. Nevertheless, high-frequency sound modes might dominate
the response at a non-hydrodynamic gradient. Under this extended hydrodynamic regime
scenario, the description of the response can still be simplified significantly. Notably, we
observe the significant improvement achieved by MIS* that we propose.

We have also compared the energy-momentum response function at static and Bjorken-
expanding. We learned that at a non-hydrodynamic gradient, the response as a function
of proper time is not very sensitive to the bulk background profile. This indicates that one
may use the response functions obtained in the static background to estimate that in the
expanding bulk profile, allowing for the simplification in the numerical studies. We also
learned that although hydrodynamics would eventually describe those response functions,
the “hydrodynamization time” of the response function would be numerically large. This,
in turn, suggests that jet-medium observables might be employed to extract the medium’s
properties outside the hydrodynamic regime, and MIS* theory, or its extension, can be
applied within this context.

We also hope the exploratory study presented in section 6 would arouse interest in
extracting the medium’s behavior at a non-hydrodynamic gradient from the lattice Euclidean
correlator. The latter should be sensitive to the response at the gradient of order πT . This is
precisely the key missing gap in our understanding of QGP’s behavior.
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