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We calculate the production of hypothetical millicharged particles (MCPs) of sub-GeV masses by the 
J-PARC proton beam in the framework of T2K and future T2HK neutrino oscillation experiments. 
Concentrating on the region of model parameter space, where an MCP can hit the near neutrino detector 
twice, we adopt this background-free signature to estimate the sensitivity of T2K and T2HK experiments 
to MCPs. We find that a previously inaccessible in direct searches region of charges 5×10−4-10−2 e for 
MCP masses 0.1-0.5 GeV can be probed.
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1. Electric charge quantization remains inexplicable within the 
Standard Model of particle physics and may point at some Grand 
Unified Theory. Therefore it is worth searching for new particles 
with a fractional electric charge, widely called millicharged parti-
cles (MCPs): their observation would imply either a misconception 
in model building [1] or presence of additional Abelian gauge sym-
metries in particle physics at high energy [2]. Even dark matter 
particles can carry a tiny electric charge, see e.g. [3], with specific 
consequences for cosmology, and so MCPs can e.g. leave imprints 
on the anisotropy pattern of the cosmic microwave background 
[4,5].

All these make MCPs a physically well motivated example of 
feebly interacting massive particles (FIMPs), which may be light, 
naturally avoiding detection so far and requiring a new generation 
of high intensity frontier experiments [6,7]. They may be specif-
ically dedicated to searches for new physics projects like SHiP 
[8,9], or may aim at another physics but be capable of performing 
searches for FIMPs along with working on the main tasks. Among 
the latter are next generation experiments on neutrino oscillations, 
and accelerator neutrino experiments, like DUNE and T2HK, cover 
a wide range of MCP masses [10]. With huge statistics of protons 
hitting a target and highly sensitive near detectors primarily de-
vised to control the neutrino fluxes these experiments perfectly 
meet the criteria of FIMP’s hunters.
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In this letter, we investigate T2K and T2HK prospects in 
searches for MCP using the upgraded T2K near detector. Generi-
cally neutrino detectors are not suited for the detection of FIMP, 
since its interaction inside the detector closely mimics that of 
neutrino. To circumvent this obstacle in a neutrino experiment, 
ArgoNeut, Ref. [11] suggested exploiting the signature of two sub-
sequent hits inside the detector volume as an MCP candidate. It is 
feasible for not very tiny electric charge. Simple estimations show 
almost no background from neutrinos produced by the beams. For 
T2HK oscillation measurements with N P O T = 2.7 × 1022 protons 
on target to be collected for about 10 years of operation and the 
upgraded T2K near detector designed as described in Ref. [12], we 
find this signature very promising. In particular, in models with 
MCP masses mχ � 0.1 − 0.5 GeV T2HK will be able to probe pre-
viously unattainable region of charges εe � 10−3-10−2 e, where e
is electron charge.

It should be mentioned that a dedicated experiment to search 
for MCPs at J-PARC with a sensitivity to ε of ∼ 10−4 was proposed 
in Ref. [13]. The concept of the detector is based on the idea of 
a segmented detector comprised of long scintillator bars with a 
high photo-electron yield from ionization produced by a charged 
particle that travels along a bar.

2. A pair of MCPs can emerge through a virtual photon in me-
son decays. This is the main mechanism of the MCP production at 
JPARC, where a 30 GeV high intensity proton beam hits the carbon 
target [14] hence generating light mesons. Light vector flavourless 
mesons ρ , ω, φ, can exclusively decay into the MCP pair χχ̄ with 
branching ratios
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obtained by modifying that into muon pair (due to the lepton uni-
versality the difference stems from the phase space only) [15,16]. 
Pseudoscalar mesons π0, η, η′ produce a pair of MCPs only in 
three-body decays, which branching ratios are suppressed with 
respect to (1) by a phase space factor and additional coupling con-
stants. Vector mesons can decay similarly. Two-body decays are 
kinematically preferable for a heavier MCP, however, the pseu-
doscalar mesons are easier to produce in proton collisions, and 
we account for the three-body processes as well. Their partial de-
cay widths can be derived by generalizing those for electrons and 
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,

(2)

with mχχ denoting the invariant mass of the MCP pair and form 
factors taken from Refs. [17–20,22–24] as follows
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The branching ratios entering Eqs. (1), (2) are given in [25] as

Br(π → γ γ ) = 0.988 , Br(η → γ γ ) = 0.394 ,

Br(η′ → γ γ ) = 0.0221 Br(ρ → e+e−) = 4.72 × 10−5,

Br(ω → e+e−) = 7.28 × 10−5, Br(φ → e+e−) = 2.95 × 10−4

Br(ω → π0γ ) = 0.0828 , Br(φ → π0γ ) = 1.27 × 10−3 ,

Br(φ → ηγ ) = 0.0131
2

Fig. 1. Meson branching ratios into MCP for ε2 = 1.

Table 1
The light meson production per initial 
30 GeV proton collision with the T2K 
target for different GEANT4 physics 
lists.

Meson QGSP_BERT FTF_BERT

π0 3.12 4.17
η 0.40 0.31
η′ 0.15 0.14
ρ 0.21 0.40
ω 0.12 0.27
φ 0.0051 0.0051

The corresponding partial decay ratios are presented in Fig. 1.
The light mesons are produced by protons scattering off the 

target and initiating hadronic showers. The meson spectra are esti-
mated with the GEANT4 [26] package. The choice of the model of 
hadronic interactions affects this study, thus various physics lists 
were considered. The GEANT4 toolkit defines roughly two kine-
matic regions split with ≈ 10 GeV threshold where different mod-
els are applied. Above 10 GeV, the most widely used models in 
HEP are: Quark gluon string model (QGSP) and Fritiof (FTF). At the 
energy region below 10 GeV we considered BERTini (BERT) and 
binary cascade (BIC) models. The light meson production was esti-
mated with all the above models and their results were compared. 
We found nearly no difference (<1%) between the low-energy 
BERT and BIC models. While the predictions of QGSP and FTF were 
quite different. The results of the latter models are summarized in 
Table 1.

The QGSP_BERT physics list was considered more reliable as it 
provides better agreement with known T2K π0 production and we 
use it in what follows. However, we found no experimental mea-
surements of the production rates of other light mesons, thus the 
number of initial mesons is a possible source of uncertainties in 
the current study. The largest difference between the models was 
observed for ρ and ω yields. The kinematic distributions of the 
produced mesons are shown in Fig. 2.

We performed simulations for Nsim = 2 × 106 protons on target 
(POT) which reveal the following (approximate) numbers of pro-
duced light mesons participating in the MCP phenomenology:

Nπ = 6.24 × 106 , Nη = 7.94 × 105 , Nη′ = 2.96 × 105 ,

Nρ = 4.16 × 105 , Nω = 2.32 × 105 , Nφ = 1.01 × 104 .
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Fig. 2. Light meson kinematic distributions over 3-momentum and angle with respect to the J-PARC proton beam.
Directions of outgoing MCPs are obtained 1) adopting isotropic dis-
tribution in the rest frame of decaying mesons in case of two-body 
decays, and for the three-body decays we choose the invariant 
mass of MCPs (and thus the energy of the third particle) randomly 
in accordance with distribution (2) and assigning the third parti-
cle’s momentum a random direction in the rest frame we restore 
the momenta of MCPs accordingly, and 2) performing the Lorentz 
transformation back to the laboratory system with a help of boost 
along the decaying meson 3-momentum. To be detected, the pro-
duced MCP must make the selected signature of two subsequent 
hits inside the detector volume, and so we require for the tra-
jectory of observable MCP to pass through the T2K near detector, 
which is placed at a distance of d = 280 m from the target and at 
2.5◦ off the proton beam axis.

3. For the MCP detection we consider the new neutrino detector 
SuperFGD [27] which will be installed inside the off-axis detector 
complex ND280. The main purpose of this detector is to reduce the 
systematic uncertainties in the prediction of a total number of sig-
nal neutrino events in the far T2K detector Super-Kamiokande, in 
presence of oscillations [12]. SuperFGD begins data taking within 
the T2K program, operating with Super-Kamiokande [28], and then 
will be used for measurement of CP asymmetry in neutrino oscil-
lations with the Hyper-Kamiokande detector (T2HK program). The 
highly granular scintillator detector SuperFGD of a mass of about 
2 tons is comprised of ∼ 2 × 106 small scintillator cubes of 1 cm 
side, each read out with WLS fibers in the three orthogonal direc-
tions coupled to compact photosensors, Multi-Pixel Photon Coun-
ters (MPPCs), as shown in Fig. 3.

SuperFGD will serve as an active neutrino target and a 4π de-
tector of charged particles from neutrino interactions. The size of 
SuperFGD is about 0.56 × 1.92 × 1.84 m3. A small angle 2.5◦ with 
respect to the neutrino beam doesn’t cause a strong reduction of 
the MCP flux. The main acceptance limitation comes from the de-
tector front surface area. The detector is placed so that its front 
side with respect to the beam has a size of 1.92×0.56 m2 and the 
1.84 m side is oriented along the beam direction. We define a ge-
ometrical factor ξX,i as the fraction of simulated MCP trajectories 
3

Fig. 3. 3D view of the SuperFGD structure. Also shown are cubes of 1×1×1 cm3

with 3 orthogonal wave-length shifting fibers inserted into holes.

entering SuperFGD. These factors are calculated for each MCP pro-
duction mode, the results are summarized for each parent meson 
in Fig. 4. The corresponding numbers and spectra of MCPs that 
reach the detector are presented in Fig. 5. One can check along the 
lines of Ref. [11] that for the reference value of ε = 10−3 the en-
ergy loss and trajectory deflections due to MCP multiple scattering 
in soil on the way of ∼ 200 m to the detector are negligible.

Prototypes of SuperFGD were tested in a charged beam at CERN 
and showed a very good performance [29,30]. Light yields per min-
imum ionizing particle (MIP) of 50-60 photoelectrons (p.e.) from 
individual cubes and from a single WLS fiber were obtained. The 
sum of signals from 3 WLS fibers gives the total light yield of 
150-180 p.e. per MIP for a single cube. Very good timing was also 
obtained in the beam tests. The time resolution of σ ∼ 1 ns for an 
individual cube for the light yield corresponding to about 2 MeV 
energy deposited in this cube and measured by one WLS fiber. For 
3 fiber readout the time resolution is expected to be about 0.6 ns 
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Fig. 4. The geometrical factor ξX,i for MCP as a function of its mass for each parent 
meson.

Fig. 5. The spectra of MCPs that reach the SuperFGD for a set of masses and ε =
10−3. Integrating the spectrum over E reveals the total number of MCPs that pass 
through the detector for N P O T = 3.2 × 1022: 2.01 × 109 for MMC P = 100 MeV, 
2.63 × 108 for MMC P = 200 MeV, 1.58 × 108 for MMC P = 300 MeV, 1.15 × 107 for 
MMC P = 400 MeV.

in this case. For a larger than 2 MeV energy deposit in SuperFGD 
(more than 1 cube is fired) the time resolution should be better 
than 0.5 ns. This parameter is important for the suppression of the 
neutron background produced by the neutrino beam as discussed 
below.

SuperFGD will be equipped with Hamamatsu MPPCs S13360-
1325 which have unique features: a very low dark rate of 60-70 
kHz and 0.5 kHz at the threshold of 0.5 p.e. and 1.5 p.e., re-
spectively, and a low cross-talk of about 1% [30]. The detection 
signature of MCPs in the SuperFGD detector is elastic scattering 
off atomic electrons, which results in knock-on δ-electrons above 
the detection threshold providing a detectable signal. Assuming 
that parameters of SuperFGD will be close to those obtained in 
the beam tests, one can expect that the energy of about 100 keV 
deposited by a recoil electron produces the light yield of 3.1-3.6 
p.e. per a WLS fiber. Given this result, the efficiency to detect a 
100 keV electron in one WLS fiber is estimated to be ≥ 82% for 
the threshold of 1.5 p.e. Since about 99% of recoil electrons have 
energies from 0.1 MeV to 10 MeV, the total efficiency to detect re-
4

coil electrons by one WLS fiber is estimated to be about 98%. As 
a result, one can expect to reach the MCP detection efficiency in 
an individual cube of about 96% for a coincidence of signals from 
two WLS fibers for the energy threshold of Emin

r = 100 keV. The 
idea to detect MCPs lays in using two separated hits from an MCP 
aligned with the upstream meson production target. This method, 
proposed in Ref. [11] and used for a search of MCPs in the Ar-
goNeuT experiment [31], allows us to achieve a good background 
rejection, as seen below.

4. It is important to investigate a two-hit background in Su-
perFGD from several sources. Signals caused by random electronics 
noise due to the MPPC dark rate can mimic the MCP signal. As-
suming the mentioned above MPPC dark rate of 0.5 kHz for the 
threshold of 1.5 p.e., the time window of 30 ns for each readout 
channel, and the two-fiber readout (both fibers are perpendicular 
to the beam direction) one can obtain the counting rate of about 
1.5 × 10−2 s−1 due to coincidence of noise signals from two MP-
PCs. The total dark rate from all 2 × 106 SuperFGD cubes will be 
about 3 ×104 s−1. Since the accidental hit events will be uniformly 
distributed in SuperFGD volume they will only rarely align with 
the meson production target. To estimate the number of two elec-
tronic noise hits (two distant cubes in a line with the production 
target provides signals above the threshold of 1.5 p.e.) we assume 
that the second hit occurs inside a 5× 5 cluster in a column of 
about 100 cubes that forms a straight line with the first cluster 
and the target. The rate of such coincidence is estimated to be 
≤ 4 × 10−12 s−1. Taking into account the beam structure with the 
spill width of 5 μs and the repetition period of 2.48 s for T2K (1.16 
s for T2HK) [28], accidentals in a cube due to the dark rate of MP-
PCs are expected to be suppressed by a factor of 2 × 10−6 for T2K 
and < 5 × 10−6 for T2HK. Assuming 2.7 × 1022 POT for Hyper-
Kamiokande that corresponds to about 108 s of data taking, the 
expected total number of background events due to the random 
electronics noise is ≤ 10−4.

Another source of accidental background can be the coincidence 
between the signal from a cube where MPPCs dark rate mimics the 
MCP signal (the first hit) and the real MCP signal from its interac-
tion in SuperFGD (the second hit). Assuming the interaction length 
of MCP (ε = 10−3) is about 1.3 × 106 cm2, for a cluster of 5 × 5
cubes which is on a straight line with the first cluster and the 
target, one can obtain the number of such coincidences is about 
2.5 × 10−2 for running time of 108 s.

The vast majority of neutrino induced events, for example, 
double-hit events from muon (electron) and neutron in the case 
of νμ charge current quasi elastic scattering (CCQE) will provide 
signals with a large number of cubes fired. By implementing the 
requirement that the track length should be ≤ 5 cubes that corre-
sponds to the electron energy deposit of ≤ 10 MeV these neutrino 
induced backgrounds can be significantly reduced.

The neutral current reactions in SuperFGD

ν + 12C → ν ′ + 11C� + n (9)

and

ν + 12C → ν ′ + 11C + n (10)

are the most serious sources of background. There are no measure-
ments of these cross sections on 12C at the T2K neutrino energies, 
but for the background estimation, we can use the value of the 
neutral-current elastic-like cross section on oxygen ∼ 10−38 cm2

measured by T2K [32] via detecting nuclear de-excitation γ -rays 
at Super-Kamiokande.

The excited 11C� emits γ -rays promptly and relaxes to the 
ground state. Assuming that the detection efficiency of γ -rays 
produced from the de-excitation of 12C� is 100%, one can find 
that about 3 × 105 such events will be detected in SuperFGD for 
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2.7 × 1022 POT. The neutron from the reaction (9) can mimic the 
MCP signal if its hit is in coincidence with the neutrino interac-
tion vertex time, both neutrino and neutron vertexes align with 
the target, and neutron deposits the energy of ≤ 15 MeV in its 
interaction because less than 1% of knock-on δ-electrons from the 
MCP interaction have the energy exceeding 15 MeV. Taking into ac-
count the time-of-flight between the first signal (de-excitation of 
11C�) and the second one from the scattered neutron, these back-
ground events will be suppressed using excellent time resolution 
of σ ∼ 0.2 − 0.3 ns. It can be obtained for events in which several 
cubes are fired that corresponds to energies of a few MeV. Neu-
trons with the kinetic energy below 300 MeV (about 90% of all 
events) are estimated to be rejected by a factor of 104 with the 
time-of-flight method. Neutrons in the energy range 300-600 MeV 
can be suppressed by three orders of magnitude. A small amount 
of neutrons with energies exceeding 600 MeV (< 10−2) will be re-
jected by about 20 times. The requirement for protons from (n, p)

scattering to have the kinetic energy of ≤ 15 MeV gives an ad-
ditional suppression factor of about 10. The cross section of the 
reaction (10) with 11C in the ground state is several times smaller 
than the cross section of (9). To mimic the MCP event, the neutron 
from this reaction should interact two times in the SuperFGD and 
pass through all selection criteria. Using the approach applied for 
the reduction of the background from the reaction (9), the back-
ground from the reaction (10) is expected to be suppressed to a 
much lower level.

Neutrons produced by the beam neutrinos in the sand around 
the ND280 pit and in the ND280 magnet interact many times 
and are slowed down during the propagation. A large fraction 
of reached SuperFGD neutrons are delayed with respect to the 
neutrino interaction time and produce signals between the beam 
bunches and microbunches (8 microbunches each of about 50 ns 
separated by 700 ns fill a beam bunch of 5 μs). Events in which 
neutrons coincide with the beam spill and interact 2 times in Su-
perFGD will be suppressed by the time-of-flight method and the 
required alignment of two hits with the target.

In total, we can expect less than 0.1 event contribution to the 
MCP background from the neutron current interactions in Super-
FGD. These estimations of background rates are used to calcu-
late the expected sensitivity of SuperFGD to MCPs. Eventually, the 
background will be determined from the data accumulated with 
the neutrino beam.

5. Upon entering the detector, an MCP can scatter off the ma-
terial electrons. The recoil electrons can be observed, if the recoil 
energy is above a certain threshold Emin

r , and so the interesting 
cross section σ(Emin

r ) depends on the energy carrying away by the 
electron. In the limit of a relativistic MCP the mean free path of 
MCP inside material with electron density Zndet reads [10]

λ = 1

Zndetσ(Emin
r )

= ε−2 me Emin
r

2πα2 Zndet
. (11)

For SuperFGD (made up of carbon-based scintillator) we have 
Z = 7, and the matter density is ρN D = 1.0 g

cm3 with molar mass 
ma(C H) = 13.0 g

mol [30], and hence ndet = ρN D
ma(C H)

= 4.64 × 1022

cm−3. Consequently, for the MCP mean free path one obtains

λ ≈ 1.2 × 104 ×
(

10−3

ε

)2

×
(

Emin
r

100 keV

)
m ,

normalized to the expected SuperFGD threshold of the electron re-
coil energy Emin

r = 100 keV.
In this study, we utilize a double-hit signature: the MCP has to 

scatter twice inside the detector, each time transferring to electron 
the energy above the threshold Emin

r . The possibility of 2 consecu-
tive hits, each observed with efficiency ξ , is [10]:
5

Fig. 6. The simulated number of the double-hit MCP events in SuperFGD for various 
parent mesons and ε = 10−3.

P2h = 1

2

(
ξ

L

λ

)2

= 1

2

⎛
⎜⎝ 0.96 ×

(
ξ

0.96

)
1.84 m(

10−3

ε

)2 (
Emin

r
100 keV

)
12 km

⎞
⎟⎠

2

≈ 1.1 × 10−8 ×
( ε

10−3

)4
. (12)

The detection efficiency ξ of each MCP hit with the electron energy 
≥ 100 keV is estimated to be about 96%. Remarkably, the probabil-
ity to produce the chosen signature does not depend on the MCP 
production channel.

6. At this stage we can sum up contributions of various pro-
duction modes to the number of signal events N S . Our estimate of 
N S is based on the described above GEANT4 simulation of the pro-
duction of the meson of type X , its branching ratios in a particular 
decay mode Bri(X → . . . ), and calculation of the corresponding ge-
ometrical factor ξX,i , as follows

N S = N P O T ×
∑

X

N X

Nsim
×

∑
i

Bri(X → . . . ) × ξX,i × P2h .

In Fig. 6 we plot for each parent meson the number of expected 
events for MCP reference model with ε = 10−3. Since the signature 
we adopt depends on neither energy nor mass of the MCP, we can 
estimate the total number of expected signal events in SuperFGD 
for each MCP mass simply summing over all the production chan-
nels. Requiring this number to be smaller than 3 we estimate the 
T2HK sensitivity (at 95% CL) to the MCP charge: the region above 
the black dots in Fig. 7 will be excluded after 10 years of data tak-
ing (in case of no signal). We draw the exclusion curves for each 
parent meson to illustrate for which MCP mass they give a domi-
nating contribution.

7. To conclude, in this paper we propose to use the double-hit 
signature of hypothetical millicharged particles at presently under 
construction SuperFGD Near Detector of T2K-T2HK long-base line 
neutrino experiment. We evaluate the production of MCP particles 
and trace their trajectory passing through the detector. We argue 
that the signature is background free for the expected T2HK statis-
tics of protons on target. Since SuperFGD will operate for a few 
years within the T2K program and then switch to the T2HK pro-
gram we calculate the expected number of events for both stages 
of operation, assuming 0.5 × 1022 POT and 2.7 × 1022 POT respec-
tively. Assuming no signal events to be observed and exploiting 
the Poisson statistics we present in Fig. 8 the expected sensitivities 
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Fig. 7. The expected exclusion regions (above the dots) of ε in case of 3 signal events 
and no background.

(95% CL exclusion regions) for T2K and for the sum of both T2K 
and T2HK experiments. There are also limits placed by dedicated 
searches of MiiliQ@SLAC [33] and ArgoNeuT [31] and specific anal-
yses of other accelerator data, including recent LHC results [34]. 
Also, results of the Super-K experiment were used in Ref. [36] to 
constrain the model parameter space, considering possible MCP 
production by cosmic rays. While it is similar to the ArgoNeuT 
results, there are significant uncertainties associated with the de-
scription of the propagation and interaction of the particles in the 
atmosphere and a more detailed analysis of the signal signature 
and associated background conditions would be appropriate. The 
suggested searches at T2K and T2HK will investigate untouched by 
those searches region of masses 100-500 MeV and charges as low 
as ∼ 5 × 10−4 of the electron charge. Recently it was argued [37]
that a noticeable part of this region is disfavoured from the results 
of the BEBC experiment operated in the 1980s at CERN.

The sensitivity is obtained assuming the negligible background, 
for chosen cuts on the recoil electron energy and the expected 
detection efficiency. All that should be checked after the commis-
sioning stage of SuperFGD, which may allow one to optimize our 
set of cuts and efficiencies and further refine the obtained sen-
sitivity. Special attention should be paid to the background from 
non-relativistic neutrons since the signal recoil events are in a 
rather low, sub-MeV energy range.

There are also some uncertainties on the theoretical side of 
calculations that are associated with the observed dependence of 
GEANT4 simulations of the meson production on the chosen QCD 
model.

However, since the number of signal events scales as the sixth 
power of the MCP charge, the overall uncertainty of the presented 
in Fig. 8 sensitivity is small, and our predictions are robust. At 
the same time, this strong dependence on the MCP charge makes 
any further improvement in the presented techniques rather fruit-
less. To investigate models with a light particle of smaller electric 
charge one must rely on other signatures with the number of sig-
nal events involving lower powers of MCP charges, the potentially
most promising is just missing energy, so the number of events is 
proportional to the squared charge only, like e.g. in ongoing NA64 
[38].
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