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We propose a candidate c-function in arbitrary dimensional quantum field theories with broken Lorentz
and rotational symmetry. For holographic theories we derive the necessary and sufficient conditions on the
geometric background for these c-functions to satisfy the c-theorem. We obtain the null energy conditions
for anisotropic background to show that they do not themselves assure the c-theorem. By employing them,
we find that it is possible to impose conditions on the UV data that are enough to guarantee at least one
monotonic c-function along the RG flow. These UV conditions can be used as building blocks for the
construction of anisotropic monotonic RG flows. Finally, we apply our results to several known anisotropic
theories and identify the region in the parameter space of the metric where the c-theorem holds for our
proposed c-function.
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I. INTRODUCTION

The renormalization group (RG) is a powerful method for
constructing relations between theories at different length
scales. Its existence is fundamental to the explanation of the
universality of critical phenomena. Exact general results for
RG flows are important as they may provide valuable
nonperturbative information about a strongly coupled sys-
tem. The c-theorem of Zamolodchikov [1] is a remarkable
result of this kind. It states, for two-dimensional quantum
field theories (QFTs), the existence of a positive real
function c that decreases monotonically along the RG flow
from the ultraviolet (UV) to the infrared (IR). The function is
stationary at the fixed point of the RG flow, with value given
by the central charge of the conformal field theory (CFT).
The generalization of the two-dimensional c-theorem to
higher dimensions was conjectured by Cardy [2] to hold for
any QFT in even dimensions, with the c-function given by
the anomaly coefficient associated with the A-type Euler
density anomaly. For Lorentz invariant theories, Cardy’s
conjecture has been proven in four dimensions [3,4] and
although the proof cannot be easily generalized to higher
dimensions, relativistic c-theorems have been reformulated
by using the gauge/gravity correspondence [5–8] where

monotonic c-functions have been proposed in arbitrary
dimensions.
In the Wilsonian formulation of renormalization, the

renormalization group flow is obtained when high energy
degrees of freedom are integrated out and removed from the
description. As the quantum entanglement provides a
useful measure of the quantum information aspects of
the theory, quantities related to the entanglement entropy
appear to be natural candidates for the c-function. Indeed,
for two-dimensional QFT, Casini and Huerta [9,10] were
able to prove the c-theorem by employing the c-function

c ≔ 3l
∂S
∂l ; ð1:1Þ

where S is the entanglement entropy of a strip of length l.
Properties such as the subadditivity of the entanglement
entropy, the Lorentz symmetry and unitarity of the QFT
were enough to provide the proof of the c-theorem in
this framework. The entanglement entropic construction of
the c-function immediately suggests a straightforward
generalization to higher dimensions that would provide
an intuitive understanding of the c-theorem in terms of the
renormalization property of the entanglement entropy.
While a direct study of the renormalization group property
of entanglement entropy is an involved problem in QFT,
the use of AdS/CFT duality transforms it to a much more
tractable one due to the availability of the Ryu-Takayanagi
formula for the entanglement entropy [11]. Indeed the
holographic entropic c-function has been shown to
obey the c-theorem for Lorentz invariant QFT [12,13].
Interesting studies along this direction on RG flows include
also Refs. [14–17].

*cschu@phys.nthu.edu.tw
†dgiataganas@phys.uoa.gr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 046007 (2020)

2470-0010=2020=101(4)=046007(11) 046007-1 Published by the American Physical Society

https://orcid.org/0000-0003-2003-3902
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.046007&domain=pdf&date_stamp=2020-02-05
https://doi.org/10.1103/PhysRevD.101.046007
https://doi.org/10.1103/PhysRevD.101.046007
https://doi.org/10.1103/PhysRevD.101.046007
https://doi.org/10.1103/PhysRevD.101.046007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Interestingly enough the validity for an entropic
c-function in theories that exhibit Lorentz violation has
been questioned. There is evidence from the weak coupling
analysis that the entanglement entropy does not decrease
monotonically under RG flow [18]. The breakdown of the
candidate c-theorem has also been revealed for holographic
Lorentz-violating QFTs [19]. Since broken Lorentz sym-
metry and broken rotational symmetry are not uncommon
in many condensed matter systems, the study of the
entanglement RG flow under the breaking of Lorentz
or/and rotational symmetry is interesting and important.
One of the main goals of this work is to examine the status
of the c-theorem in anisotropic QFTs.
In this paper, we will adopt a definition of the c-function

similar to the one in (1.1). However it is important to note
that in anisotropic theories, one can in principle have many
different c-functions since one can place the strip in the
different anisotropic directions where the behavior of the
entanglement entropy could be different for each one of
them. We remark that in relativistic holographic CFTs, the
monotonicity of the c-function is assured as long as the null
energy conditions are satisfied for the bulk gravity theory
[13]. This is not necessarily the case for anisotropic or
Lorentz violating holographic QFT. We show that for
anisotropic theories, the monotonicity of the c-function
depends also on the satisfaction of certain geometric
background conditions which are complementary to the
null energy conditions. Interestingly there exist UV and/or
IR boundary conditions for generic anisotropic RG flows
which when imposed are enough to guarantee the existence
of at least one monotonically decreasing c-function along
the entire anisotropic flow. Our result offers new perspec-
tives on the extension of the application of the c-function
from isotropic to anisotropic theories, with potential
application to systems admitting such broken symmetry.
The paper is organized as follows. In Sec. II, we propose

a definition of the c-function for anisotropic theories. Then
for a generic RG flow, we evaluate the derivative of the
proposed c-function in terms of the geometric quantities of
the background and show that the validity of the c-theorem
implies an integrated condition on the metric fields. In
Sec. III we derive the null energy conditions and we discuss
how they depend on the way that the rotational symmetry is
broken. In Sec. IV we show that the null energy conditions
are not enough to guarantee the monotonicity of the
proposed c-function under RG flow. We also derive a
set of sufficient conditions, expressed in terms of local
properties of the metric, that when satisfied would assure a
monotonically decreased c-function. In Sec. V we show the
existence of the UV/IR conditions on the boundary, which
when satisfied would guarantee the monotonicity of the
c-function along the entire RG flow. In Sec. VI, we apply
our analysis to theories with Lifshitz-like anisotropy and to
theories with anisotropic hyperscaling violation, and iden-
tify the regime of parameters where the c-theorem holds.

In Sec. VII, we discuss the necessary conditions for well-
behaved RG flows, i.e., flows that satisfy the c-theorem.
This analysis provides further evidence on the definition of
our anisotropic c-function. We conclude with a discussion
of our results in Sec. VIII.

II. A c-FUNCTION FOR THEORIES WITH
BROKEN SPACETIME SYMMETRY

To motivate the definition of a candidate c-function for
anisotropic theory, let us first recall the situation in the
standard QFT with Lorentz symmetry. In two-dimensional
Lorentzian QFT, the c-theorem has been proven for the
c-function (1.1) where S is the entanglement entropy of an
interval of length l [9,10]. For a Lorentzian quantum field
theory in higher d-dimensional space, the authors of [13]
proposed to consider a “slab” geometry whose entangling
surface consists of two parallel flat (d − 1)-dimensional
planes separated by a distance l in a flat spacetime metric.
For CFT, it is known that the entanglement entropy for the
slab takes the simple form [11,12]

SCFT ¼ α
Hd−1

ϵd−1
−

1

βðd − 1ÞC
Hd−1

ld−1
; ð2:1Þ

where α and β are dimensionless quantities that depend on
the spacetime dimension, ϵ is a UV cutoff and H ≫ l is an
infrared regulator for the large distance along the entan-
gling surface. The second term is proportional to the central
charge C and, by natural induction of (1.1), it has been
proposed as a candidate for a c-function along the RG flow
the function [12,13]

c ≔ β
ld

Hd−1
∂S
∂l : ð2:2Þ

The c-function (2.2) has been shown to satisfy the
c-theorem for RG flows of Lorentz invariant holographic
theories [13].
In this paper, we are interested in theories that admit

Lorentz violation and anisotropy. Without loss of general-
ity, let us consider d-dimensional anisotropic space where
the rotational symmetry group is broken down to
SOðd1Þ × SOðd2Þ, with d1 þ d2 ¼ d. Let us denote the
two subfactors of isotropic space by x⃗ and y⃗. The presence
of more than two isotropic factors can be treated similarly.
By definition, the metric of a space is of length dimension
two and in general, time coordinate t and spatial coor-
dinates ðx⃗; y⃗Þ can be of different length dimensions and
they can be parametrized as

½t� ¼ Lnt ; ½xi� ¼ Ln1 ; ½yj� ¼ Ln2 : ð2:3Þ

For isotropic space, it is n1 ¼ n2 and for Lorentz invariant
space, we have additionally nt ¼ n1. Let us now consider a
slab geometry with its entangling surfaces separated by
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distance lx in the x-direction and let Hx, Hy ≫ lx; ly be the
large distances regulating the infinity along the entangling
surface in the x⃗, y⃗ directions. We propose the following
natural generalization for the c-function in anisotropic
theories:

cx ≔ βx
ldx−1x

Hd1−1
x Hd2

y

∂Sx
∂ ln lx ; ð2:4Þ

where βx is a constant of normalization that is not important
for the current study, Sx is the entanglement entropy of the
strip with its complement, and

dx ≔ d1 þ d2
n2
n1

ð2:5Þ

is the effective number of the spatial dimension measured
with respect to the spatial coordinate x⃗. The appearance of
dx in (2.4) can be understood since the dimensionless

combination ð lxHx
Þd1−1ðln2=n1x

Hy
Þd2 is needed on the right-hand

side of the expression in order for the definition of cx to be a
dimensionless quantity. In a similar way, an independent
c-function can be defined for a slab geometry placed in the
y-direction,

cy ≔ βy
l
dy−1
y

Hd1
x Hd2−1

y

∂Sy
∂ ln ly ; ð2:6Þ

where

dy ≔ d1
n1
n2

þ d2 ð2:7Þ

is the effective number of spatial dimensions measured with
respect to the spatial coordinate y⃗. The existence of
independent c-functions is natural in anisotropic quantum
theory. In fact, in general there are more curvature
invariants that are consistent with the symmetries of the
anisotropic theory and hence can appear in the Weyl
anomaly. Each of such invariants is accompanied by a
central charge and in principle corresponds to a c-function.
We note that for isotropic theories n1 ¼ n2 so cx ¼ cy and
we recover the single c-function (2.2).
Our definition of the c-function is also motivated by the

holographic framework, where the most generic dual
spacetime metric for such an anisotropic theory is

ds2dþ2¼−e2BðrÞdt2þdr2þe2A1ðrÞdx2i þe2A2ðrÞdy2i : ð2:8Þ

The space is d-dimensional, the xi coordinates extend along
d1 dimensions and the yi coordinates describe d2 dimen-
sions, such that d1 þ d2 ¼ d. The boundary of the space
is taken to be at r → ∞. Then the parameter dx of the
c-function definition (2.4) is holographically defined at the

fixed points. Here we choose to define it with respect to the
UV fixed point; alternatively it could have been defined
with respect to the IR fixed point producing different dx.
The parameter dx takes the form

dx ≔ d1 þ d2α; α ≔ lim
r→∞

A2ðrÞ
A1ðrÞ

; ð2:9Þ

which is the total scaling of the boundary spatial system
relative to that of the x-direction.
In the following we provide holographic monotonicity

conditions of the c-function in terms of the bulk metric.
For presentation purposes, we normalize the entangling

action by setting 4Gðdþ2Þ
N as well as the constant βx in (2.4)

to unity. We restore the normalization of the constants in
the final results presented at the end of this section. The
entanglement entropy for the strip with length lx along the
x-direction reads

Sx ¼ Hd1−1
x Hd2

y

Z
rc

rm

drekðrÞ−A1ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2A1ðrÞx02

p
;

kðrÞ ≔ d1A1ðrÞ þ d2A2ðrÞ; ð2:10Þ

while for the strip with length ly along the y-direction, it
reads

Sy ¼ Hd1
x Hd2−1

y

Z
rc

rm

drekðrÞ−A2ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2A2ðrÞy02

q
; ð2:11Þ

where rm is the turning point of the minimal surface and rc
is the boundary cutoff. In general Sx ≠ Sy, and they
converge to each other in the isotropic limit A1ðrÞ ¼
A2ðrÞ. In the following let us demonstrate the methodology
with Sx and at the end of the analysis we present the results
for both Sx and Sy. The equations of motion are written as

x02 ¼ e2km

e2A1ðrÞðe2kðrÞ − e2kmÞ ; ð2:12Þ

where A1m ≔ A1ðrmÞ, A2m ≔ A2ðrmÞ and km ¼ kðrmÞ is
the constant of motion reflecting the explicit independence
of the Lagrangian to x. The interval distance in terms of the
turning point rm of the surface is

lx ¼ 2

Z
rc

rm

dr
ekm−A1ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2kðrÞ − e2km

p : ð2:13Þ

The lxðrmÞ is a monotonic decreasing function for minimal
stable surfaces, since as the width of the strip increases, the
minimal area surface extends to deeper regions in the bulk
geometry towards IR. The behavior is similar to the
isotropic minimal entangling surfaces. To compute the
central charge in anisotropic theory, we provide here an
alternative derivation to [13]. Since Eq. (2.13) is in
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principle not analytically integrable and solvable for rmðlxÞ,
we use the chain rule to compute the derivative ∂S=∂l by
computing the ratio of ∂S=∂rm and ∂l=∂rm. By substituting
(2.12) in (2.10) and differentiating we obtain

1

Hd1−1
x Hd2

y

∂Sx
∂rm¼−

e2km−A1mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2kðrÞ−e2km

p
����
r→rm

þk0me2km
Z

rc

rm

e2kðrÞ−A1ðrÞ

ðe2kðrÞ−e2kmÞ3=2dr ð2:14Þ

and by acting similarly for (2.13) we get

∂lx
∂rm ¼ −

2ekm−A1mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2kðrÞ − e2km

p
����
r→rm

þ 2k0mekm
Z

rc

rm

e2kðrÞ−A1ðrÞ

ðe2kðrÞ − e2kmÞ3=2 dr: ð2:15Þ

This gives the simple result

1

Hd1−1
x Hd2

y

∂Sx
∂lx ¼ 1

2
ekm; ð2:16Þ

which when combined with (2.4) relates in a compact way
the central function with the length of the strip and the
turning point of the entangling surface in the bulk:

cx ¼
1

2
ldxx ekm: ð2:17Þ

To study the monotonicity of the function along the RG
flow, we compute its derivative with respect to the holo-
graphic direction

∂cx
∂rm ¼ 1

2
ekmldx−1x

�
dx

∂lx
∂rm þ lxk0m

�
: ð2:18Þ

Let us take rc ¼ ∞ and rewrite the lx integrand in a
convenient form to integrate by parts:

lx ¼ 2

Z
∞

rm

drFðrÞ · e
kðrÞ
dx

−A1ðrÞ

k0ðrÞ ;

FðrÞ ≔ ekm−
kðrÞ
dx k0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2kðrÞ − e2km
p ; F ðrÞ0 ≔ FðrÞ; ð2:19Þ

where the F function can be integrated to give

F ðrÞ ¼ −idxe
−kðrÞ

dx
2F1

�
1

2
;−

1

2dx
; 1 −

1

2dx
; e2kðrÞ−2km

�����
r

rm

;

ð2:20Þ

which is a real function as it should be. Its derivative with
respect to rm reads

∂F ðrÞ
∂rm ¼ −

k0me
km−

kðrÞ
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2kðrÞ − e2km
p −

k0m
dx

F ðrÞ: ð2:21Þ

On the other hand, the integration by parts of lx leads to

lx
2
¼ F∞e

k∞
dx
−A1∞

k0∞
þ i

ffiffiffi
π

p
dxe−A1m

k0m

Γ½1 − 1
2dx

�
Γ½1

2
− 1

2dx
�

−
Z

∞

rm

dr
e
kðrÞ
dx

−A1ðrÞ

k0ðrÞ EðrÞF ðrÞ;

where EðrÞ ≔ k0ðrÞ
dx

− A0
1ðrÞ − k00ðrÞ

k0ðrÞ and we have used

Fm ¼ −i
ffiffiffi
π

p
dxe

−km
dxΓ½1 − 1

2dx
�=Γ½1

2
− 1

2dx
�. The expression

of lx is real; the imaginary parts between Fm and F∞
cancel out. The derivative of lx with respect to the turning
point in the bulk is given by

1

2

∂lx
∂rm ¼ ∂rmF∞e

k∞
dx
−A1∞

k0∞
− i

ffiffiffi
π

p
e−A1m

Γ½1 − 1
2dx

�
Γ½1

2
− 1

2dx
�

þ k0mekm
Z

∞

rm

dr
e−A1ðrÞ

k0ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2kðrÞ − e2km

p EðrÞ

þ k0m
dx

Z
∞

rm

dr
e
kðrÞ
dx

−A1ðrÞ

k0ðrÞ EðrÞF ðrÞ: ð2:22Þ

By substituting the above expressions into (2.18), we find
that the derivative of the c-function can be rewritten in a
fairly compact form as

4Gðdþ2Þ
N

βx

∂cx
∂rm ¼ ekmldx−1x dx

�
k0m

Z
lx

0

dx
1

k0ðrÞ

×

�
k0ðrÞ
dx

− A0
1ðrÞ −

k00ðrÞ
k0ðrÞ

��
; ð2:23Þ

where the integral has been expressed with respect to x

using Eq. (2.12) and we have restored the 4Gðdþ2Þ
N =βx units

according to the discussion after Eq. (2.9). Similarly, the
c-function obtained from the strip along the y-direction
gives

4Gðdþ2Þ
N

βy

∂cy
∂rm¼ ekml

dy−1
y dy

×

�
k0m

Z
ly

0

dy
1

k0ðrÞ
�
k0ðrÞ
dy

−A0
2ðrÞ−

k00ðrÞ
k0ðrÞ

��
:

ð2:24Þ

To treat effectively the boundary terms on the above
equations, we have assumed that close to the boundary
the following conditions hold:
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lim
r→∞

k0ðrÞeA1ðrÞþkðrÞ ¼ ∞; lim
r→∞

k0ðrÞeA2ðrÞþkðrÞ ¼ ∞:

ð2:25Þ

We remark that these conditions can usually be easily
satisfied since we have limr→∞ eAiðrÞ ¼ ∞ at the spacetime
boundary.

III. THE NULL ENERGY CONDITIONS FOR
ANISOTROPIC THEORIES

In an isotropic theory, the employment of the null energy
conditions (NEC) ensures nonrepulsive gravity [20], to
avoid instabilities [21] and superluminal modes [22,23] in
the scalar correlators of the theory. Anisotropic theories
violating these conditions have similar pathologies, since
the relation of the NEC and the nonrepulsive gravity holds
in general for the theories under study. Therefore we
impose the NEC for the matter fields that drive the
holographic RG flow:

Tμνξ
μξν ≥ 0; ξμξμ ¼ 0; ð3:1Þ

where ξ are the null vectors. Eliminating ξ0, the NEC can be
written in the form

ξi2giiðTi
i − T0

0Þ þ ξj2gjjðTj
j − T0

0Þ þ ξr2grrðTr
r − T0

0Þ ≥ 0:

ð3:2Þ

Here i and j indices denote the x and y directions
respectively and the repeated indices above are summed
only one time. We have used the fact that a diagonal
anisotropic metric leads to a diagonal anisotropic tensor. By
contracting the Einstein gravity equations and allowing
sources we can rewrite the above equation in terms of the
Ricci tensor since

Rμνξ
μξν ¼ Tμνξ

μξν: ð3:3Þ

Note that ξi, ξj and ξr are independent in (3.2), so the NEC
read

Ri
i − R0

0 ≥ 0; Rj
j − R0

0 ≥ 0; Rr
r − R0

0 ≥ 0; ð3:4Þ

where no summation takes place. Notice that the number of
conditions increases with the number of subgroups that the
rotational symmetry of the space is broken into. In our case,
we break the rotational symmetry into a product of two
subgroups described by the directions x and y, encoded in
the first two independent conditions of (3.4). When the
isotropy is restored the first two conditions become
equivalent.
Applying our generic formulas (3.4) for the anisotropic

spacetime (2.8) we have three independent NEC,

g01ðrÞ ≔ ððB0ðrÞ − A0
1ðrÞÞeBðrÞþkðrÞÞ0 ≥ 0; ð3:5Þ

g02ðrÞ ≔ ððB0ðrÞ − A0
2ðrÞÞeBðrÞþkðrÞÞ0 ≥ 0; ð3:6Þ

N3ðrÞ ≔ −d1A0
1ðrÞ2 − d2A0

2ðrÞ2 þ B0ðrÞk0ðrÞ − k00ðrÞ ≥ 0;

ð3:7Þ

where the first two can be written in terms of the
monotonically increasing functions g1ðrÞ and g2ðrÞ. The
third condition can be written as

f0ðrÞe−kðrÞ=ðd1þd2ÞþBðrÞ −
d1d2

d1 þ d2
ðA0

1ðrÞ − A0
2ðrÞÞ2 ≥ 0;

ð3:8Þ

where

fðrÞ ≔ −k0ðrÞekðrÞ=ðd1þd2Þ−BðrÞ ð3:9Þ

is a monotonically increasing function since f0ðrÞ ≥ 0. The
reason we rewrite the NEC in terms of monotonic functions
is that in certain cases the boundary data will be enough to
ensure the monotonicity of the c-function along the whole
RG flow. This will become clearer in the next sections.

IV. SUFFICIENT CONDITIONS OF
MONOTONICITY OF THE c-FUNCTION

It is convenient to use the NEC (3.7) to eliminate the
second derivatives of Eqs. (2.23) and (2.24) and obtain

∂cx
∂rm ¼ βxekml

dx−1
x dx

4Gðdþ2Þ
N

k0m

Z
l

0

dx
k0ðrÞ2

�
N3ðrÞ þ d2A0

2ðrÞðA0
2ðrÞ

− A0
1ðrÞÞ þ k0ðrÞ

�
k0ðrÞ
dx

− B0ðrÞ
��

; ð4:1Þ

∂cy
∂rm ¼ βyekml

dy−1
y dy

4Gðdþ2Þ
N

k0m

Z
l

0

dy
k0ðrÞ2

�
N3ðrÞ þ d1A0

1ðrÞðA0
1ðrÞ

− A0
2ðrÞÞ þ k0ðrÞ

�
k0ðrÞ
dy

− B0ðrÞ
��

: ð4:2Þ

A. Sufficient condition for anisotropic theories

The necessary condition for the monotonicity of the
functions cx, cy along the RG flow is that the positive
expression N3ðrÞ is large enough to compensate the
contributions of the other terms when integrated over the
RG flow. However, the integration needs the knowledge of
the explicit form of the theory. Instead, a set of sufficient
conditions of monotonicity for general theories can be
formulated as local conditions in the form
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k0ðrÞ ≥ 0; ð4:3Þ

and

d2A0
2ðrÞðA0

2ðrÞ − A0
1ðrÞÞ þ k0ðrÞ

�
k0ðrÞ
dx

− B0ðrÞ
�

≥ 0;

for the monotonicity of cx; ð4:4Þ

d1A0
1ðrÞðA0

1ðrÞ − A0
2ðrÞÞ þ k0ðrÞ

�
k0ðrÞ
dy

− B0ðrÞ
�

≥ 0;

for the monotonicity of cy: ð4:5Þ

Note that the condition (4.3) implies that d1A0
1ðrÞ ≥

−d2A0
2ðrÞ. This allows for negative A0

1ðrÞ or A0
2ðrÞ as long

as their overall sum above is positive. This is different
already from isotropic (non)relativistic theories where the
single A0ðrÞ has to be positive. Furthermore, we note that
backgrounds with B0ðrÞ ≤ 0 and A0

1ðrÞA0
2ðrÞ ≤ 0 always

satisfy the set of constraints as long as k0ðrÞ ≥ 0. We also
note that the above sufficient conditions can be expressed in
terms of monotonic functions as

fðrÞ ≤ 0; ð4:6Þ

f0ðrÞeBðrÞ−kðrÞ
d þ fðrÞe−ðdþ1ÞkðrÞ

d

d1 þ d2
ððd1 − d2Þg1ðrÞ

þ 2d2g2ðrÞÞ þ
k0ðrÞ2d2ð1 − αÞ

ðd1 þ d2Þðd1 þ d2αÞ
≥ 0; ð4:7Þ

f0ðrÞeBðrÞ−kðrÞ
d þ fðrÞe−ðdþ1ÞkðrÞ

d

d1 þ d2
ððd2 − d1Þg2ðrÞ

þ 2d1g1ðrÞÞ −
k0ðrÞ2d1ð1 − αÞ

ðd1 þ d2Þðd1 þ d2αÞ
≥ 0; ð4:8Þ

where fðrÞ and g1;2ðrÞ are the monotonically increasing
functions given by (3.9), (3.5) and (3.6) respectively, and α
is defined in (2.9). As we will show in the next section, the
form of inequalities (4.6)–(4.8) is useful for imposing the
UV and IR criteria on the RG flows in order to guarantee
the monotonicity of our proposed c-functions.

B. Sufficient condition for isotropic UV fixed points

For anisotropic RG flows with an isotropic UV fixed
point, the symmetries of the theory are restored in the UV
(i.e., α ¼ 1) and from the conditions (4.6)–(4.8) we obtain
the simple sufficient ones as1

fðrÞ ≤ 0; ðd1 − d2Þg1ðrÞ þ 2d2g2ðrÞ ≤ 0;

ðd2 − d1Þg2ðrÞ þ 2d1g1ðrÞ ≤ 0: ð4:9Þ

We note that for an isotropic and nonrelativistic RG flow,
A1ðrÞ ¼ A2ðrÞ ≠ BðrÞ and dx ¼ dy ¼ d, we recover from
(4.6)–(4.8) the sufficient conditions of [19]: fðrÞ ≤ 0 and
g2ðrÞ ≤ 0, with g1ðrÞ ¼ g2ðrÞ. If the background is also
conformal BðrÞ ¼ A2ðrÞ ¼ A1ðrÞ, then we have dx¼dy¼d
and kðrÞ ¼ dA2ðrÞ and the sufficient conditions of monot-
onicity follow directly from the NEC without the need
for any other condition on the metric. Finally we remark
that the sufficient conditions presented here are by no
means unique, but are the ones with a minimal number of
constraints imposed in addition to the NEC.Wewill present
in Appendix, for example, another set of sufficient con-
ditions on the metric which takes a simpler but more
restrictive form.

V. ASYMPTOTICS AND BOUNDARY CRITERIA
OF MONOTONICITY

The conditions (4.3)–(4.5), or equivalently (4.6)–(4.8),
are conditions imposed on the metric for all r. This
corresponds to conditions in the field theory that have to
be imposed for the whole range of energies. Physically, it is
desirable to have a weaker form of conditions. In this
section, we show that it is possible to replace these bulk
conditions with conditions on the boundary data such that
at least one of the c-functions is monotonic along the entire
RG flow.

A. Boundary condition on the geometry

Let us start with the condition (4.6). Due to the NEC
(3.8), f0 ≥ 0 and so (4.6) is guaranteed if the boundary
condition

fUV ≤ 0 ð5:1Þ
is imposed. As for the condition (4.7) for ∂cx=∂rm ≥ 0, we
find that it is guaranteed if the following condition is
satisfied:

α ≤ 1 and

8<
:

d1 > d2∶ g1UV; g2UV ≤ 0;

d1 ¼ d2∶ g2UV ≤ 0;

d1 < d2∶ g1IR ≥ 0; g2UV ≤ 0:

ð5:2Þ

Similarly, the condition (4.8) for ∂cy=∂rm ≥ 0 is guaran-
teed if the following condition is satisfied:

α ≥ 1 and

8<
:

d1 > d2∶ g1UV ≤ 0; g2IR ≥ 0;

d1 ¼ d2∶ g1UV ≤ 0;

d1 < d2∶ g1UV; g2UV ≤ 0:

ð5:3Þ

It is interesting to note that, except for the case of α ¼ 1 and
d1 ¼ d2, it is generally impossible to impose the boundary

1For the special case of an anisotropic theory with an equal
number of anisotropic dimensions d1 ¼ d2, the conditions are
further simplified to giðrÞ ≤ 0; fðrÞ ≤ 0.
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data to satisfy both (5.2) and (5.3) simultaneously.
Therefore, what we have shown is that it is possible to
impose the condition (5.2) or (5.3) at the UVor IR such that
the c-theorem holds for at least one of our proposed
c-functions. This does not preclude the other candidate
c-function from satisfying the c-theorem. In fact we will
show in Sec. VII that our proposed c-functions indeed
satisfy the c-theorem for several known anisotropic
backgrounds.

B. UV criteria on Fefferman-Graham expansion

The above boundary conditions (5.1), (5.2), and (5.3) are
in terms of the geometry. We will show next that for
asymptotically AdS geometry, it is possible to formulate
the sufficient conditions in terms of boundary data of the
field theory.
Let us implement a UV analysis with an asymptotically

AdS geometry. We employ the standard Fefferman-Graham
(FG) expansion to write the subleading corrections at the
UV (r → ∞) as

AiðrÞ¼ rþ1

2
γaie

−brþ��� ;

BðrÞ¼ rþ1

2
γbe−brþ���; b>0: ð5:4Þ

This just means that α ¼ 1 and we are looking at the
conditions (4.9) for asymptotically isotropic space. For a
flat boundary in the absence of sources, we have b ¼ d and
the coefficients γai ; γb are the VEVof the dual stress tensor:
γai ∼ hTiii, γb ∼ hT00i and they encode the breaking of
the Lorentz symmetry and isotropy. In order to acquire the
sufficient conditions for these parameters that ensure the
right monotonicity of the RG flow, we allow in principle
additional sources in the theory. Plugging (5.4) into the
definitions of f and gi, we obtain

fðrÞ ¼ −ðd1 þ d2Þ þ
1

2
e−brððb − 1Þðd1γa1 þ d2γa2Þ

þ ðd1 þ d2ÞγbÞ þ � � � ; ð5:5Þ

giðrÞ ¼
1

2
beðd−bÞrðγai − γbÞ þ � � � ð5:6Þ

near the boundary r → ∞. Without loss of generality, let us
assume that d1 ≥ d2. Let us first examine the NEC and spell
out the constraints on the background. The NEC (3.8)
implies the condition

ð1 − bÞðd1γa1 þ d2γa2Þ − ðd1 þ d2Þγb ≥ 0; ð5:7Þ

while the NEC (3.5), (3.6) reads

ðd − bÞðγai − γbÞeðd−bÞr ≥ 0: ð5:8Þ

If b ≥ d, then it follows from (5.8) that2

γai < γb: ð5:9Þ

This implies immediately that giUV < 0 and the monoto-
nicity condition (5.2) is satisfied for the function cx. On the
other hand, if b < d, then (5.8) implies that γai > γb. This
means giUV > 0 and the monotonicity conditions (5.2)
cannot be satisfied. Working similarly for d1 ≤ d2, we
reach similar conclusions for the cy function.
To summarize this subsection, we find the conditions for

the boundary data of the field theory that when satisfied
would guarantee a monotonic cx-function or cy-function.
Generic backgrounds which satisfy at the boundary one of
the inequalities (5.2) or (5.3), or in terms of the Fefferman-
Graham expansion, the NEC (5.7)–(5.9), are guaranteed to
have the desirable behavior along the RG flow for the
function cx or cy. For backgrounds with isotropic UV fixed
points and an equal number of anisotropic dimensions,
appropriate UV conditions can guarantee the monotonicity
for both cx and cy.

VI. SUFFICIENT CONDITIONS APPLIED ON
CERTAIN ANISOTROPIC THEORIES

Let us briefly demonstrate and discuss the sufficient
conditions of some interesting theories.

A. Lifshitz-like anisotropic symmetry

We first demonstrate our methods on the simpler
geometries that exhibit Lifshitz scaling symmetry:

ds2 ¼ −e2zrdt2 þ e2rðdx2 þ dy2Þ þ dr2; ð6:1Þ

where z is the Lifshitz scaling exponent measuring the
degree of Lorentz symmetry violation. The NEC (3.5)–
(3.7) require z ≥ 1, while the monotonicity conditions
(4.3)–(4.5) give z ≤ 1. So the sufficient condition is
guaranteed only for z ¼ 1, the AdS space, as also noted
in [19]. We note that this is only a sufficient condition. In
fact, the functions in the exponents of the metric are all
linear in r and it turns out that the integrand (2.23) is zero
for z ≥ 1. Hence the c-function theorem is satisfied. This is
expected from the scale invariance of the theory and wewill
elaborate further on this point in Sec. VII.
The analysis becomes more interesting when the

Lifshitz-like anisotropic symmetry is present, which is
realized by the following metric:

ds2 ¼ e2zrð−dt2 þ dx2Þ þ e2rdy2 þ dr2; ð6:2Þ

2The case γai ¼ γb is more subtle as higher order subleading
corrections need to be included in the analysis and will not be
considered here.
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where zmeasures the degree of Lorentz symmetry violation
and anisotropy. We compute the entanglement entropy
using Eqs. (2.10) and (2.13) and get

Sx ¼ N2Hd1−1
x Hd2

y

�
β1

ϵd1−1þ
d2
z

−
β2

l
d1−1þd2

z
x

�
; ð6:3Þ

Sy ¼ N2Hd1
x Hd2−1

y

�
β̃1

ϵd1þ
d2−1
z

−
β̃2

ld1zþðd2−1Þ
y

�
: ð6:4Þ

The constants βi, β̃i depend on dx and dy and are not
important for our discussion. Notice that the scaling
dimensions dx ¼ d1 þ d2=z and dy ¼ d1zþ d2 appear in
the entanglement entropy formula above. This demon-
strates explicitly that the definition (2.9) for dx and that for
dy are appropriate in our proposed c-functions (2.4), (2.6).
The NEC (3.5)–(3.7) give z ≥ 1. The treatment of the

boundary terms (2.25) gives the following conditions when
the NEC are applied: d2 þ zð1þ d1Þ ≥ 0 and 1þ d2 þ
d1z ≥ 0 which are satisfied trivially. Then the monotonicity
conditions (4.3)–(4.5) give

d2ð1 − zÞ ≥ 0; d1 þ
d2
z
≥ 0: ð6:5Þ

Therefore again the sufficient conditions and the NEC
together can be satisfied only for z ¼ 1, i.e., AdS spacetime.
So far our metrics have been restricted to linear expo-

nents; below we present more general backgrounds.

B. Anisotropic hyperscaling violation symmetry

Next let us consider isotropic theories that exhibit
Lifshitz scaling and hyperscaling violation as described
by the following metric:

ds2 ¼ −
�
θr
d

�
2ð1−zd

θ Þ
dt2 þ

�
θr
d

�
2ð1−d

θÞðdx2 þ dy2Þ þ dr2;

ð6:6Þ
where θ is the hyperscaling violation exponent. The NEC
(3.5)–(3.7) give

ðz − 1Þðdþ z − θÞ ≥ 0; ðd − θÞðdðz − 1Þ − θÞ ≥ 0;

ð6:7Þ
while the monotonicity conditions (4.3) and (3.7) read

1 −
d
θ
≥ 0;

z − 1

θ
≥ 0: ð6:8Þ

As for the condition (2.25), it reads

dþ 1

θ
≤ 1: ð6:9Þ

We point out that the allowed region in the parametric
space is quite small and we depict this region in Figs. 1

and 2. We note that as we increase the number of
dimensions, the sufficient condition becomes more difficult
to satisfy.
The sufficient c-function conditions for theories that

exhibit anisotropic Lifshitz scaling and hyperscaling vio-
lation are more involved. These symmetries are described
by the following metric:

ds2 ¼ −
�
θr
d

�
2ð1−zd

θ Þð−dt2 þ dx2Þ þ
�
θr
d

�
2ð1−d

θÞ
dy2 þ dr2:

ð6:10Þ

The NEC (3.5) give

ðz − 1Þðd2 − θ þ zð1þ d1ÞÞ ≥ 0;

θðθ − zdÞ þ d2dðz − 1Þ ≥ 0; ð6:11Þ

while the monotonicity condition (4.3) gives

1 −
d2 þ d1z

θ
≥ 0; ð6:12Þ

and the monotonicity conditions (4.4) and (4.5) give the
same condition,

�
z − 1

θ

��
1 −

d
θ

�
≥ 0: ð6:13Þ

FIG. 1. The parametric volume ðθ; z; dÞ that is sufficient to
guarantee RG flows with the right c-function monotonicity. The
meshed lines on the surface represent the values of the integer
spatial dimensions d. Notice how drastically the increase of the
dimension d shrinks the allowed region in the parametric space
that gives a well-behaved RG flow. The necessary conditions of
Sec. VII are more tolerant.
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The elimination of the boundary terms (2.25) provides
extra conditions:

1 −
d2 þ zþ d1z

θ
≥ 0; 1 −

1þ d2 þ d1z
θ

≥ 0: ð6:14Þ

We have confirmed that the conditions (6.11), (6.12), (6.13)
and (6.14) are compatible with one another and they can be
satisfied simultaneously, for a small region in the para-
metric space, as shown in Figs. 1 and 2.
As seen from the form (6.10) of the metric, the isotropic

limit is obtained by setting d1 ¼ 0 and d2 ¼ d. Indeed by
doing so and ignoring in the above analysis all the con-
ditions derived corresponding to the xi dimensions, the
conditions (6.11), (6.12), (6.13) and the second condition in
(6.14) become (6.7), (6.8), (6.9) respectively for the
Lifshitz metric.
We note that our analysis can be applied to the vacuum

anisotropic hyperscaling violation theory which has the
same background form (6.6), derived by a generalized
Einstein-axion-dilaton action [24] with a potential propor-
tional to the exponential of the dilaton [25]. It can be checked
easily that this background satisfies our stated sufficient
conditions and hence its RG flows satisfy the c-theorem.

VII. NECESSARY CONDITIONS ON
ANISOTROPIC RG FLOWS

So far we have considered the sufficient conditions
for monotonic RG flows. In this section by performing
explicitly the integrations of (2.23) and (2.24), we confirm
that the necessary conditions are indeed much more
relaxed. The c-function integral can be written as

4Gðdþ2Þ
N

βx

∂cx
∂rm ¼ ekmldx−1x dx

�
k0m

Z
∞

rm

dr
ekm−A1ðrÞ

k0ðrÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2kðrÞ − e2km

p

×

�
k0ðrÞ2
dx

− A0
1ðrÞk0ðrÞ − k00ðrÞ

��
ð7:1Þ

and a similar expression exists for cy according to (2.24).
In the previous section, we have checked that for the

Lifshitz space (6.1) to give rise to a monotonic RG flow, the
sufficient condition allows only the case of z ¼ 1.
However, since the Lifshitz space has a scaling symmetry,
one can expect the dual field theory to have a conformal
symmetry and so the c-function should not run at all.
Indeed, a direct substitution of kðrÞ and A1ðrÞ which can be
read off the metric shows analytically that the integrand of
(7.1) vanishes identically for any value of z. Therefore as
long as the background is allowed by the NEC, i.e., z ≥ 1,
the dual theory has constant c-functions and satisfies the
c-theorem.
For the same reason one can expect that the same holds

for the Lifshitz-like anisotropic spaces (6.2). We have
checked this analytically and again the integrand cancels
out completely for any value of z. It is satisfying to see that
this cancellation takes place only because of our choice of
dx and dy in the definition of the c-function. As an example,
the field theories with space-dependent θ-term coupling,
which have a Lifshitz-like anisotropic symmetry with
z ¼ 3=2 [26], will satisfy the c-theorem for our choice
of the c-functions.
For a general background with a more complicated

metric, the analytic method cannot be applied and one
has to resort to the numerical method integrating Eq. (7.1).
Generically the analysis is complicated and the sufficient
condition obtained from the study conducted in this work
could provide valuable insights on what region in the
parameter space one should start focusing on.

VIII. DISCUSSION

Motivated by the relevant construction in two-dimen-
sional quantum field theories [9,10], we have constructed an
extension of the c-function (2.4) for higher dimensional
anisotropic theories. Our proposal suggests the presence of
as many independent c-functions as the number of inde-
pendent isotropic factors within the anisotropic geometry,
and that they would become at the IR fixed point the central
charges of the underlying (an)isotropic theories. Our pro-
posed c-function relies on the knowledge of the entangle-
ment entropy of a strip-shaped region and the relative scaling
between the spatial directions at the fixed points. It has no
UV divergences, although the entanglement entropy is
divergent itself. When the full rotational symmetry is
restored, our c-functions converge and reduce to the original
proposal [12,13] of the c-function for the isotropic case.
With the use of the null energy conditions, the sufficient

conditions ensuring a decreasing c-function towards the IR

–15 –10 –5 0 5 10 15
–10

–5

0

5

10

FIG. 2. The window of parameters that lead always to well-
behaved RG flows for d ¼ 3 spacetime dimensions. The different
coloring represents where the different conditions are satisfied
and the triangle is the common region in the parameter space that
is sufficient to guarantee well-behaved RG flow.
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take the form (4.3)–(4.5). These conditions can be
expressed in terms of monotonic functions as (4.6)–
(4.8). In the case when the anisotropic flow admits isotropic
UV fixed points, these conditions reduce to (4.9). We point
out that the null energy conditions in general do not
guarantee a well-behaved anisotropic RG flow, in contrast
to what happens in conformal theories.
We have also derived the necessary conditions for the

right monotonicity of the c-function. They are expressed in
terms of integrals of the metric fields and can be applied in
a straightforward way to known gravity dual theories.
For example, anisotropic RG flows with AdS UV asymp-
totics were recently constructed to study the effect of
the confinement/deconfinement phase transitions and the
inverse anisotropic catalysis effect [24]. A numerical
analysis of (7.1) could be applied to such vacuum gravity
solutions to examine if there is a need to constrain further
the parametric space in those theories. Other theories with
anisotropic flows that our analysis can be applied to include
those in Refs. [27–30].
It should be interesting to study the behavior of the

c-functions defined here at the quantum and topological
anisotropic phase transitions. The entanglement entropy is
an order parameter for such phase transitions and therefore
the c-function itself is expected to show certain signals of
discontinuity at the critical region. Moreover, it would be
very interesting to provide further evidence of our proposal
by looking at the properties of the c-function in the weakly
coupled anisotropic theories. The possibility that linear
combinations of cx and cy may form a candidate for a
holographic c-function cannot be excluded. In fact for
theories with isotropic UV asymptotics the sum of the
c-functions produces an invariant integral under inter-
changes x ↔ y, while for anisotropic UV dynamics the
combination needs to be more involved.
We would also like to comment on further alternative

applications of our work. In three-dimensional isotropic
CFTs, it has been shown that the free energy of the theory
on the S3 coincides with the entanglement entropy of a
spherical surface, and therefore it can be expressed
via the entropic formulation of the c-function [31,32].
Generalization to more dimensions has also been found
[33,34]. It would be interesting to extend the F-theorem for
anisotropic flows using the findings of our work. Moreover,
our study can be reformulated with the renormalized
entanglement entropy (REE) [15], where all the potential
divergent terms along the RG flow have been removed and
in certain cases can play the role of the F-function.
Furthermore, the technical methods developed in our work
may be applied to other nonlocal observables, like the
heavy quark observables. As long as the observables are
expressed holographically in terms of the metric fields for
general holographic backgrounds (i.e., as in [35]), our
methods can be applied to study their flow behavior along
the RG trajectory.
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APPENDIX: AN ALTERNATIVE FORM FOR THE
SUFFICIENT CONDITIONS OF MONOTONICITY

A set of more restricting sufficient conditions of monot-
onicity is derived by eliminating the second derivatives of
(2.23) and (2.24) using the null energy conditions to obtain

∂cx
∂rm¼βxekml

dx−1
x dx

4Gðdþ2Þ
N

k0m

×
Z

l

0

dx
1

k0ðrÞ2 ðPþx−ðB0ðrÞþA0
1ðrÞÞk0ðrÞÞ; ðA1Þ

∂cy
∂rm¼βyekml

dy−1
y dy

4Gðdþ2Þ
N

k0m

×
Z

l

0

dy
1

k0ðrÞ2 ðPþy−ðB0ðrÞþA0
2ðrÞÞk0ðrÞÞ; ðA2Þ

Pþx ≔
1

dx
k0ðrÞ2 þ d1A0

1ðrÞ2 þ d2A0
2ðrÞ2 þ N3ðrÞ ≥ 0:

ðA3Þ

The conditions below are sufficient to guarantee monoto-
nicity:

k0ðrÞ ≥ 0 and B0ðrÞ þ A0
1ðrÞ ≤ 0 and

B0ðrÞ þ A0
2ðrÞ ≤ 0: ðA4Þ

We remark that the conditions (A4) are sufficient to ensure
a well-behaved monotonic flow and take a simpler form
compared to (4.3)–(4.5). However, by gaining in simplicity
for the sufficient conditions, they become more restrictive.
Let us note that in the case of AdS UV asymptotics, the

expression of Pþx simplifies to

Pþx ¼ −f0bðrÞekðrÞ=ðd1þd2ÞþBðrÞ; ðA5Þ

where

fbðrÞ ≔ k0ðrÞe−kðrÞ=ðd1þd2Þ−BðrÞ: ðA6Þ

The NEC (3.7) can be expressed in terms of fb as
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f0bðrÞekðrÞ=ðd1þd2ÞþBðrÞ þ 2d21A
0
1ðrÞ2 þ 2d22A

0
2ðrÞ þ d1d2ðA0

1ðrÞ þ A0
2ðrÞÞ2

d1 þ d2
≤ 0; ðA7Þ

which implies that fb is a monotonically decreasing function. Therefore, an analysis along the lines of Sec. V can be
repeated here, which would lead to stricter UV boundary conditions that ensure the c-function monotonicity.
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