
Eur. Phys. J. C (2023) 83:646
https://doi.org/10.1140/epjc/s10052-023-11745-y

Regular Article - Theoretical Physics

Physical characteristics and maximum allowable mass of hybrid
star in the context of f (Q) gravity

Piyali Bhar1,a, Sneha Pradhan2,b, Adnan Malik3,4,c, P. K. Sahoo2,5,d

1 Department of Mathematics, Government General Degree College Singur, Hooghly, West Bengal 712409, India
2 Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
3 School of Mathematical Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
4 Department of Mathematics, University of Management and Technology, Sialkot Campus, Sialkot, Pakistan
5 Faculty of Mathematics & Computer Science, Transilvania University of Brasov, Eroilor 29, Brasov, Romania

Received: 20 May 2023 / Accepted: 20 June 2023 / Published online: 21 July 2023
© The Author(s) 2023

Abstract In this study, we explore several new characteris-
tics of a static anisotropic hybrid star with strange quark mat-
ter (SQM) and ordinary baryonic matter (OBM) distribution.
Here, we use the MIT bag model equation of state to con-
nect the density and pressure of SQM inside stars, whereas
the linear equation of state pr = αρ − β connects the radial
pressure and matter density caused by baryonic matter. The
stellar model was developed under a background of f (Q)

gravity using the quadratic form of f (Q). We utilized the
Tolman–Kuchowicz ansatz (Tolman in Phys. Rev. 55:364–
373, 1939; Kuchowicz in Acta Phys Pol 33: 541, 1968) to
find the solutions to the field equations under modified grav-
ity. We have matched the interior solution to the external
Schwarzschild spacetime in order to acquire the numerical
values of the model parameters. We have selected the star Her
X-1 to develop various profiles of the model parameters. Sev-
eral significant physical characteristics have been examined
analytically and graphically, including matter densities, tan-
gential and radial pressures, energy conditions, anisotropy
factor, redshirt, compactness, etc. The main finding is that
there is no core singularity present in the formations of the
star under investigation. The nature of mass and the bag con-
stant Bg have been studied in details through equi-mass and
equi-Bg contour. The maximum allowable mass and the cor-
responding radius have been obtained via M − R plots.
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1 Introduction

The spatial structure of the universe’s rapid expansion has
drawn a lot of emphasis in the latest developments of cos-
mology and astronomical physics [1,2]. Modern innovations
in this cosmological period have shown novel ways to famil-
iarise the essential and empirical changes for the fast evo-
lution of the galaxy. Various findings could offer persua-
sive evidence of the rapid growth caused by extreme red-
shift supernova observations [3], whereas massive forma-
tions [4] and changes in the celestial microwave radiation
[5] present implicit support. An unidentified aspect known
as dark energy (DE), which sustains an intense adverse
force, is responsible for the universe’s accelerated expan-
sion. Also, unexplained DE is believed to include around
68% of the universe’s overall energy. Therefore, it is neces-
sary to make certain adjustments to the conventional theory
in order to evaluate the occurrence of rapid growth. These
sorts of trials encourage researchers to explore possibilities
for modified or expanded theories of gravity that may be
capable of illustrating scenarios when the general theory of
relativity (GR) generates unacceptable conclusions. Due to
the constraints of GR, cosmologists are curious about ana-
lyzing modified gravitational theories. Some of these theo-
ries are f (R), f (G), f (Q), f (T ), f (R,G), f (R, T ), and
f (R, φ) gravitational theories [6–20]. The alterations of GR
seem enticing to explain the late-time of cosmic evolution
and DE difficulties. In addition, the various astronomical
perspectives and concepts offered by these theories assist in
elucidating the mysteries underlying the occurrence of the
galaxy’s rising expansion [21]. Scientists need to verify the
reliability of these kinds of modified theories of gravity in
all scales, like cosmological scales and astrophysical ones.
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It is reasonable to assume that altering the gravitational field
action will have an impact on the astrophysical point of view.
In the weak field limit, modified theories of gravity reduce
to GR, whereas the strong field regimes may be able to dis-
tinguish between GR and its potential extensions. It is com-
monly known that relativistic compact objects (neutron stars)
live in strong gravitational fields, so this kind of astrophys-
ical object can be studied to check the possible deviation of
the newly proposed modified gravity theory from Einstein’s
GR. Additionally, new phenomena that Einstein could not
explain can be discovered in stellar astrophysics through this
modified theory of gravity.

A hybrid star is an assumed particular kind of star in which
a neutron star that is located at the center of a red giant or
red supergiant, produced through an explosion of the mas-
sive with neutron star and extremely high density. Hybrid
stars are yielded as an outcome of gravitational deformation
when the nucleus of a star loses out of energy and is unable
to sustain its weight despite the force of gravity. One of the
universe’s strangest and weirdest things is the hybrid object.
They are typically connected to phenomena like eruptions
of supernovae, cosmic rays, and bursts of gamma radiation.
Researching dense stars may assist scientists in better under-
standing the properties of matter at very high densities and
how energies and matter behave under very intense fields of
gravity. According to the altered ideas, a hybrid stellar is an
exclusive type of celestial object that occurs by the collapse of
matter against the pressure of powerful gravitational forces,
also defined by modified equations. One of the important
characteristics of modified gravity is the ability to accommo-
date non-singular hybrid stars, which does not anticipate by
the standard GR. The core of these non-singular giant stars
is uniform and smooth and it is linked to the external geom-
etry. According to research on the behavior of hybrid stars in
modified gravity, the features of these structures can be quite
distinct from those believed by GR. One of the important
characteristics of modified gravity is the ability to accom-
modate non-singular hybrid stars, which does not anticipate
by the standard GR. The core of these non-singular giant
stars is uniform and smooth and it is linked to the external
geometry. According to research on the behavior of compact
stars in modified gravity, the features of these structures can
be quite distinct from those believed by GR.

Plenty of researchers have implemented some important
refinements to GR in the last couple of decades. In these
beneficial amendments, one of the most intuitive and promi-
nent theory is obtained by replacing the expression of Ricci
scalar R with an arbitrary function f (R) [15]. Such dif-
ferent models of gravity serve as essential for the acceler-
ating proliferation of space give better explanation for the
enigmatic composition of the cosmos. The fascinating the-
ory that gained prominence in recent decades is symmetric
teleparallel gravity [22], acknowledged as the f (Q) theory.

Jimenez et al. [23] proposed the idea of f (Q), in which the
nonmetricity Q essentially initiates the gravitational attrac-
tion. Studies into f (Q) gravity are progressing efficiently,
as have empirical obstacles to compare it to the conventional
GR interpretation. Lazkoz et al. [24] established an intrigu-
ing collection of limitations on f (Q) gravity by defining the
f (Q) Lagrangian as polynomial equations of the redshift
z. According to these investigations, feasible f (Q) models
have coefficients similar to the GR model namely �CDM
model. They have checked the validity of these models at
the background level to see if this new formalism offers any
viable alternatives to explain the late-time acceleration of
the universe. For this verification, they have used a variety of
observational probes, such as the expansion rate data from
early-type galaxies, Type Ia Supernovae, Quasars, Gamma
Ray Bursts, Baryon Acoustic Oscillations data, and Cos-
mic Microwave Background distance priors. This innovative
method offers an alternative viewpoint on developing a mod-
ified, observationally trustworthy gravity model. Apart from
this, there is some work [25,26] based on the observational
constraints in the background of f (Q) gravity which gives
the strong motivation to explore stellar models in this f (Q)

theory. Mandal et al. [27] investigated energy parameters for
the power-law and nonlinear f (Q) models that describe the
visible behavior of the cosmos. Jimenez et al. [28] discussed
the modified gravity theories built on nonlinear extensions
of the nonmetricity scalar, and investigated several intriguing
baseline cosmologies (such as accelerating solutions relevant
to inflation and dark energy), and examined the response of
cosmic disturbances. By giving the evolution equations and
enforcing certain functional forms of the functions, such as
power-law and exponential dependence of the nonminimal
couplings, Harko et al. [29] investigated a number of cos-
mological applications. Mandal et al. [30] reconstructed the
appropriate structure of the f (Q) function in f (Q)gravity by
employing cosmographic factors and also studied the differ-
ent sorts of energy constraints for the exploration of logarith-
mic and polynomial functions in the f (Q) gravity. Khyllep
[31] explored the cosmic nature of power-law structure and
the rapid evolution of matter perturbation in the modified
f (Q) gravity. Anagnostopoulos et al. [32] proposed a novel
model in the framework of f (Q) gravity, which has the same
number of free parameters to those of �CDM , however at a
cosmological framework it gives rise to a scenario that does
not have �CDM as a limit. Frusciante [33] focused on a
specific model in f (Q) gravity which is indistinguishable
from the �-cold-dark-matter model at the background level,
while showing peculiar and measurable signatures at linear
perturbation level. Lin and Zhai [34] explored the application
of f (Q) gravity to the spherically symmetric configurations
and demonstrated the effects of f (Q) by considering the
external and internal solutions of compact stars. Ambrosio
et al. [35] constructed several perturbative corrections to the
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Schwarzschild solution for different choices of f (Q), which
in particular include a hair stemming from the now dynami-
cal affine connection. De and Loo [36] proved that the energy
conservation criterion is equivalent to the affine connection’s
field equation of f (Q) theory.

Astronomers have observed that the Tolman–Kuchowicz
metric to be quite intriguing topic for studying the evolution
of astronomical formations. Jasim et al. [37] investigated a
singularity-free model for spherically symmetric anisotropic
peculiar stars using the Tolman–Kuchowicz metric. In the
setting of modified f (R,G) gravity, Javed et al. [38] studied
a variety of anisotropic star spheres and developed equations
of motion that take into account anisotropic matter distribu-
tion and Tolman–Kuchowicz spacetime. Shamir and Naz [39]
examined certain relativistic stellar object configurations for
static spherically symmetric structures under modified grav-
ity using the Tolman–Kuchowicz spacetime. Biswas et al.
[40] offered a relativistic model of a static, spherically sym-
metric, anisotropic odd star based on Tolman–Kuchowicz
metric potentials and they further employed the most basic
version of the phenomenological MIT bag equation of state
to characterize the distribution of SQM across the star sys-
tem. Majid and Sharif [41] created an anisotropic model of
strange stars in the context of massive Brans-Dicke grav-
ity and used the MIT bag model to obtain the field equa-
tions for the Tolman–Kuchowicz ansatz. Within the context
of Einstein-Gauss-Bonnet gravity in five dimensions, Bhar et
al. [42] studied the distribution of anisotropic compact matter
by solving the corresponding field equations using the inner
geometry of Tolman–Kuchowicz spacetime. Naz and Shamir
[43] explored the effect of electric charge on static spheri-
cally symmetric star models in the presence of anisotropic
matter distribution using the Tolman–Kuchowicz space-time
and the simplified phenomenological MIT bag equation
of state. Zubair et al. [44] introduced stellar models for
anisotropic matter distribution under f (T ) gravity and gener-
ated matching conditions by combining the interior geometry
of Tolman–Kuchowicz spacetime with exterior spacetimes.
Saklany et al. [45] provided a simple description for mod-
eling the coupling of dark energy with OBM by employing
the super-dense pulsar PSRJ1614-2230 as the model star,
and the field equations are solved in the stellar interior using
the generalized framework of Tolman–Kuchowicz spacetime
metric. The authors of the article [46] examine the anisotropic
stellar solutions admitting Finch-Skea symmetry (viable and
nonsingular metric potentials) in the presence of some exotic
matter fields. In the work [47], authors derived the exact solu-
tions for the relativistic compact stars in the presence of two
fields axion (Dante’s Inferno model) and with/without the
complex scalar field (with the quartic self-interaction) cou-
pled to gravity. Recently, Astashenok, et al. [48] investigated
the Chandrasekhar mass limit of white dwarfs in various
models of f (R) gravity by taking two equations of state

for stellar matter: the simple relativistic polytropic equation
with polytropic index and the realistic Chandrasekhar equa-
tion of state. Astashenok along with his collaborators [49]
investigated the upper mass limit predictions of the baryonic
mass for static neutron stars in the context of f (R) gravity
by using the most popular R2 gravity model. Astashenok and
Odintsov [50] investigated realistic neutron stars in axion R2

gravity and obtained the increase of star mass independent
from central density for wide range of masses. The same
authors [51] investigated the equilibrium configurations of
uniformly rotating neutron stars in R2 gravity with axion
scalar field for GM1 equation of state for nuclear matter.
Some interesting work related to the stellar structures can be
seen in [52–57].

Many researchers proposed the model of compact star in
modified theory of gravity which has been discussed earlier.
In this paper our goal is to obtain a hybrid star model in f(Q)
gravity which can include the recent observation of different
compact star. From our analysis, with the help of the mass
radius profile we are able to attain the mass of different com-
pact star in the f(Q) gravity which has been discussed in this
paper and it is one of the most positive outcome of our present
paper. To the best of our knowledge, this is first attempt to
discuss the physical characteristics and maximum allowable
mass of hybrid star in the background of f (Q) gravity. The
arrangement of the current manuscripts is as follows: Sect. 2
deals with the basic formalism of f (Q) theory of gravity. In
Sect. 3, we discuss the Tolman–Kuchowicz ansatz and MIT
bag model equation of state. Matching condition has been
investigated in Sect. 4. Section 5 deals with the mass, surface
redshift and compactness factor. Mass radius relationship is
presented in Sect. 6 with details. The mass and bag constant
by using colored plots are represented in Sect. 7. Section 8
deals with the details discussion of physical analysis of con-
sidered stellar structures. Lastly, we conclude the outcome
of our findings.

2 Construction of f (Q) gravity

Now, we introduce the action for f (Q) gravity given by [58],

S =
∫ [

1

2
f (Q) + Lm

] √−gd4x, (1)

where f (Q) is a general function of Q, g represents the deter-
minant of the metric gμν and Lm is the matter Lagrangian
density. The non-metricity tensor is given as,

Qαμν = ∇αgμν = −Lρ
αμgρν − Lρ

ανgρμ, (2)

where the following equations serve as representations for
the non-metricity tensor’s two independent traces:

Qα = Q β
α β, Q̃α = Qβ

αβ, (3)
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and the deformation term is given by,

Lα
μν = 1

2
Qα

μν − Q α
(μν), (4)

whereas Q is given as,

Q = −gμν
(
Lα

βνL
β
μα − Lβ

αβL
α
μν

)
= −Pαβγ Qαβγ . (5)

Here, Pαβγ is the non-metricity conjugate and the corre-
sponding tensor is written as

Pα
μν = 1

4

[
−Qα

μν + 2Qα
(μν) − Qαgμν − Q̃αgμν − δα

(μQν)
]
.

(6)

The field equation of f (Q) gravity is obtained if we vary (1)
with respect to gμν and it takes the following form:

− 2√−g
∇a

(√−g fQ Pα
μν

)

+ fQ
(
Pαβ

ν Qμαβ − 2Pαβ
μQαβν

) + 1

2
gμν f = κTμν (7)

where fQ = ∂ f
∂Q and the energy-momentum tensor Tμν is

given by

Tμν = − 2√−g

δ
√−gLm

δ
√
gμν

, (8)

Now, by altering the action in relation to the affine connec-
tion, the following equation can be obtained:

∇μ∇ν

(√−g fQ Pμν
α

) = 0. (9)

Within the framework of f (Q) gravity, the field equations
guarantee the conservation of the energy-momentum tensor,
and given the choice of f (Q) = Q, the Einstein equations
are retrieved.

3 Modified field equation in f (Q) gravity

We have considered the following line element as:

ds2− = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (10)

where, λ and ν are functions of ‘r’ and 0 ≤ r < ∞. The
metric co-efficients λ and ν, only depend on r . If both ν(r)
and λ(r) tend to 0 as r → ∞, the spacetime will be asymp-
totically flat.

In the present article we have described a model of the
hybrid star which is made up of normal baryonic matter hav-
ing density ρ along with the strange quark matter having
density ρq and for the sake of simplicity we have not con-
sidered the interaction between these two matters. For the
presence of these two types of matter, the energy-momentum
tensor is changed as follows:

T 0
0 = ρeff = ρ + ρq , (11)

T 1
1 = −peff

r = −(pr + pq), (12)

and T 2
2 = T 3

3 = −peff
t = −(pt + pq). (13)

In the present scenario, ρ, pr , and pt refer to the matter den-
sity, radial pressure, and transverse pressure generated by tra-
ditional baryonic matter, while ρq and pq refer to the matter
density and pressure developed by quark matter, respectively.

Bhar [59] also used the same technique to model a com-
pact star in GR. Abbas and Nazar [60] recently used the same
approach to model a hybrid star in minimally coupled f (R)

gravity. In our present article, our goal is to study the effect
of the coupling parameter of f (Q) gravity on the model of
a hybrid star.

A crucial factor in the composition of ultra-dense strange
quark particles is the incorporation of SQM in the fluid dis-
tribution. It has been hypothesized that the neutrons’ phase
change into bosons, hyperons, and SQM may occur at the
core of the neutron star due to the immense pressure and
density present there. According to Cameron’s analysis [61],
the hyperon must be produced inside the neutron star. Some
nucleons may be converted into hyperons, which are more
supportive energetically, as a result of extremely massive
density and weak interaction. Quark matter, however, may
also be present in the neutron star’s interior. Due to the mas-
sive density and high central momentum conversion in the
neutron star’s core, the quarks become free of interaction.
According to a review of the literature, the (u) and (d) quarks
are currently undergoing strange matter transformations, and
the entire quark matter also undergoes strange matter trans-
formations [62–66]. As a result, the neutron star as a whole
gets converted into a strange quark object [67]. Some other
work related to the hybrid star can be found in [68–70].

We have the following field equations for a hybrid star in
f (Q) gravity using all the aforementioned expressions:

κ(ρ + ρq) = e−λ

2r2

[
2r fQQQ

′(eλ − 1) + fQ
(
(eλ − 1)

(2 + rν′) + (1 + eλ)rλ′) + f r2eλ
]
, (14)

κ(pr + pq) = −e−λ

2r2

[
2r fQQQ

′(eλ − 1)

+ fQ
(
(eλ − 1)(2 + rλ′ + rν′) − 2rν′)

+ f r2eλ
]
, (15)

κ(pt + pq) = −e−λ

4r

[
− 2r fQQQ

′ν′ + fQ
(

2ν′(eλ − 2)

−rν′2 + λ′(2eλ + rν′) − 2rν′′) + 2 f reλ
]
.

(16)

where κ = 8π and (′) represents the derivative with respect to
the radial co-ordinate ‘r ’. Now, let us choose a linear function
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for f (Q) gravity, which is expressed as:

f (Q) = mQ + n, (17)

where ‘m’ and ‘n’ are characteristics without dimensions.
The expression of Q is described by [71],

Q = 1

r
(ν′ + λ′)(e−λ − 1). (18)

4 Model of hybrid star in f (Q) gravity

To obtain the model of the hybrid star, let us use the well-
known Tolman–Kuchowicz ansatz [72,73] given by,

ν(r) = Br2 + 2 ln D, (19)

λ(r) = ln(1 + ar2 + br4), (20)

where D is a free of dimensions parameter and a, B, and b
are parameter values that are constant having units of km−2,
km−2, and km−4, respectively. The metric potentials chosen
in this paper are well-motivated since they provide a model
which does not suffer from any kind of singularity.

To close the system we have to choose one extra constraint,
i.e., a well-motivated relation between the radial pressure pr
and density ρ of normal baryonic matter is needed. There
are several choices to describe a relation between pr and ρ.
For our present model, we have chosen a linear equation of
state given by

pr = αρ − β, (21)

where 0 < α < 1 with α �= 1/3. and 0 < β. Many authors
have used this EoS to model the compact star which can be
found in Refs. [60,74–76]. Our work is well motivated by
these articles.

Let’s further assume that the MIT bag model equation of
state provides the pressure-matter density relation for quark
matter as follows: [66,77],

pq = 1

3
(ρq − 4Bg), (22)

where Bg is the bag constant of units MeV/fm3 [78]. Now
solving the Eqs. (14)–(16) with the help of (17)–(22), we
obtain:

ρ = 1

4π(3α − 1)
(
ar2 + br4 + 1

)2

×
[
a2

(
r4(12πβ + 16πBg − n) − 2mr2

)

+a
(
m

(
−4br4 + 3Br2 − 3

)

−2r2
(
br4 + 1

)
(n − 4π(3β + 4Bg))

)

+3B
(
bmr4 + m

)
− br2

(
br4 + 2

)

×
(
r2(n − 16πBg) + 2m

)

+12πβ
(
br4 + 1

)2 + 16πBg − n
]
, (23)

pr = 1

4π(3α − 1)
(
ar2 + br4 + 1

)2

×
[
a2

(
r4(4π(β + 4αBg) − αn)2αmr2

)

− + αa
(
m

(
−4br4 + 3Br2 − 3

)

−2r2
(
br4 + 1

)
(n − 16πBg)

)

+8πaβr2
(
br4 + 1

)
+ α

(
3B

(
bmr4 + m

)

−br2
(
br4 + 2

) (
r2(n − 16πBg) + 2m

)

+16πBg − n
) + 4πβ

(
br4 + 1

)2 ]
, (24)

pt = 1

8π(3α − 1)
(
ar2 + br4 + 1

)2

[
− a2r2

(
2r2 (αn

−4π(β + 4αBg)
) + (α + 1)m

)
+a

(
−2α

(
2r2

(
br4 + 1

) (
n − 16πBg

)

+m
(
br4 + 3

))
− 2bmr4

+16πβr2
(
br4 + 1

)
+ (3α − 1)B2mr4

+(3α + 1)Bmr2
)

−b2r6
(

2r2(αn − 4π(β + 4αBg)) + (α + 1)m
)

+br2
(
Bmr2

(
(3α − 1)Br2 + 2

)

+4r2(4π(β + 4αBg) − αn) − 11αm + m
)

+8πβ + 3αB2mr2 − B2mr2 + 6αBm

+32παBg − 2αn
]
, (25)

and the anisotropic factor � can be gained as,

� = pt − pr

= mr2
(
a2 + ar2

(
2b + B2

) − aB + b
(
r4

(
b + B2

) − 2Br2 − 1
) + B2

)
8π

(
ar2 + br4 + 1

)2 .

(26)

Consequently the components related to the SQM are as fol-
lows:

ρq = 1

16π(3α − 1)
(
ar2 + br4 + 1

)2

[
a2r2

(
r2 (3(α + 1)n

−16π(3β + 4Bg)
) + 6(α + 1)m

)
+2a

(
m

(
9α + 6(α + 1)br4

−6Br2 + 3
)

+ r2
(
br4 + 1

)
(3(α + 1)n
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−16π(3β + 4Bg)
)) − 64πb2Bgr

8 + 6αb2mr6

+6b2mr6 + 3αb2nr8 + 3b2nr8

−12B
(
bmr4 + m

)
− 128πbBgr

4

+30αbmr2 + 6bmr2 + 6αbnr4

+6bnr4 − 48πβ
(
br4 + 1

)2

−64πBg + 3αn + 3n
]
, (27)

pq = 1

16π(3α − 1)
(
ar2 + br4 + 1

)2

[ (
a2r2

(
r2 ((α + 1)n

−16π(β + 4αBg)
) + 2(α + 1)m

)
+2a

(
m

(
3α + 2(α + 1)br4

−2Br2 + 1
)

+ r2
(
br4 + 1

)
((α + 1)n

−16π(β + 4αBg)
))

−64παb2Bgr
8 + 2αb2mr6 + 2b2mr6

+αb2nr8 + b2nr8 − 4B
(
bmr4 + m

)

−128παbBgr
4 + 10αbmr2 + 2bmr2

+2αbnr4 + 2bnr4 − 16πβ
(
br4 + 1

)2

−64παBg + αn + n
) ]

. (28)

Our next objective is to use various physical acceptance tests
to examine the current model’s reliability. Those will be dis-
cussed in the coming sections.

5 Exterior spacetime and boundary conditions

The material content that threads the star’s interior must be
confined between the centre and the boundary. The so-called
junction conditions at the surface of the structure must be
examined in order to ensure the restriction of this matter
distribution. This process is carried out in GR by using the
well-known Israel–Darmois [79,80] matching requirements.
The vacuum Schwarzschild solution [81] is used to charac-
terize external spacetime in this case as we are working with
the uncharged fluid sphere and it is given by the following
line element:

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2
(
dθ2 + sin2 θdφ2

)
, (29)

where ‘M’ denotes the total mass within the boundary of
the compact star (Table 1). The continuations of the first and
second fundamental forms at the boundary give the following
relations:

1 − 2M

R
= eBR2+2 ln D, (30)

(
1 − 2M

R

)−1

= 1 + aR2 + bR4, (31)

M

R2 = BReBR2+2 ln D, (32)

and

pr (r = R) = 0. (33)

Resolving the aforementioned mathematical equations (30)–
(33), we get the following relations:

B = M

R3

(
1 − 2

M

R

)−1

, (34)

D = e−BR2/2

√(
1 − 2

M

R

)
, (35)

a = 1

R2

((
1 − 2

M

R

)−1

− 1 − bR4

)
, (36)

β = 1

4π(1 + aR2 + bR4)2

(
n − 16Bgπ

+bR2(2m + (n − 16Bgπ)R2)(2 + bR4)

−3B(m + bmR4)

+a2(2mR2 + (n − 16Bgπ)R4)

+a(2(n − 16Bgπ)R2(1 + bR4)

+m(3 − 3BR2 + 4bR4))
)
α (37)

6 Mass, surface redshift and compactness

The mass function m(r) is defined as
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Table 1 The corresponding numerical values of a, B and D for some discriminate stellar spheres by undertaking b = 0.04 × 10−5 km−4

Star Observed mass Observed radius Estimated Estimated a B D
M	 km mass (M	) radius (km) km−2 km−2

Her X-1 [82] 0.85 ± 0.15 8.1 ± 0.41 0.85 8.5 0.00576265 0.00289578 0.756246

EXO 1785-248 [83] 1.3 ± 0.2 8.849 ± 0.4 1.4 8.85 0.0111404 0.00558588 0.586810

Vela X-1 [84] 1.77 ± 0.08 9.56 ± 0.08 1.77 9.5 0.0134864 0.00676124 0.494630

PSR J1614-2230 [85] 1.97 ± 0.04 9.69 ± 0.2 1.97 9.7 0.0158465 0.00794205 0.435751

LMC X-4 [84] 1.04 ± 0.09 8.301 ± 0.2 1.04 8.3 0.00848444 0.00425600 0.685691

SMC X-4 [84] 1.29 ± 0.05 8.831 ± 0.09 1.29 8.8 0.0098081 0.00491954 0.622699

PSR J1903+327 [86] 1.667 ± 0.021 9.438 ± 0.03 1.67 9.4 0.012428 0.00623168 0.523832

4U 1538-52 [84] 0.87 ± 0.07 7.866 ± 0.21 0.87 7.8 0.00803612 0.00403023 0.724610

4U 1820-30 [87] 1.58 ± 0.06 9.316 ± 0.086 1.58 9.3 0.0115823 0.00580843 0.549392

Cen X-3 [84] 1.49 ± 0.08 9.178 ± 0.13 1.49 9.2 0.0107751 0.00540449 0.574909

m(r) =
∫ r

0
4πρ(x)x2dx,

= 1

6(3α − 1)

⎡
⎢⎢⎣

9
√

2m
(
B

(√
a2 − 4b − a

)
+ b

)
tan−1

( √
2
√
br√

a−√
a2−4b

)

√
b
√
a − √

a2 − 4b
√
a2 − 4b

+ 3mr

ar2 + br4 + 1

−
9
√

2m
(
b − B

(√
a2 − 4b + a

))
tan−1

( √
2
√
br√√

a2−4b+a

)

√
b
√√

a2 − 4b + a
√
a2 − 4b

− 2r3(n − 4π(3β + 4Bg)) − 12mr

⎤
⎥⎥⎦ (38)

Figure 1 displays the mass function profile. It is evident
from the figure that there are no singularities in the mass
function, which increases monotonically having the value
zero at its centre.

The surface redshift zs is a crucial observable parameter
that links the mass and the radius of a compact star and it is
defined by the following formula:

zs = (1 − 2m(r)/r)−1/2 − 1 (39)

The surface redshift zs in Fig. 1 exhibits a monotonic increas-
ing behavior towards the boundary, reaching its maximum
value at the boundary of the object. The values stated for
zs in this paper are below the maximum values, despite the
fact that Ivanov’s research [88] shows that the value of zs
in the presence of anisotropic fluids exceeds the Buchdahl
constraint [89].

For our current model, the compactness factor is calcu-
lated as u(r) = m(r)/r . To categorize compact objects as (i)
regular stars (u ∼ 10−5), (ii) white dwarfs (u ∼ 10−3),
(iii) neutron stars (0.1 < u < 0.25), (iv) ultra-compact
star (0.25 < u < 0.5), and (v) black holes (u = 0.5), the
compactness factor is crucial. Figure 1 depicts the compact-
ness profile for our current model, which is a monotonically
increasing function of ‘r’.

7 Mass radius relationship

In this section, we are interested to find the maximum allow-
able mass for different values of m. As m increases, the pre-
dicted masses cover a wider range of observed values which
can be shown in Fig. 2. An increase in m is accompanied by
a decrease in mass and radii, which is clear from the figure.
From literature, we have chosen four different compact stars:
lighter component of GW 190814 event with mass 2.50 −
2.67 M	, PSR J0952-0607 with mass (2.35±0.17)M	, PSR
J0740+6620 with mass (2.08 ± 0.07)M	 and 4U 1608-52
with mass (1.74 ± 0.14)M	. It is possible to generate stellar
structures with masses closer to the above compact star for
different values of m which has been presented in Table 2.

8 Measurements of mass and bag constant with the help
of contour plots

From Figs. 3, 4, 5 and 6, we analyzed the variation of mass
and the bag constant with the help of contour plots.

• The equi-mass contours are shown in the m − β plane
in Fig. 3 by keeping α, n, r and Bg fixed. The figure
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Fig. 1 The graphical analysis of m(r), zs , and u(r) against ‘r’

indicates that for a fixed value of β, the value of mass
increases for an increasing value of m. In contrast, with
a constant m, the value of mass falls as β grows.

• The equi-mass contours are displayed in the α −m plane
in the left panel of Fig. 4 by retaining the variables β, n, r
and Bg fixed. According to the picture, with a constant
value of α, the value of mass rises as m increases. With
a fixed amount of m, however, the value of mass grows
as α increases.
In the right panel of Fig. 4, we have drawn the equi-mass
contours in r − α plane taking β, m, n and Bg fixed. It
can be seen that for a fixed value of r , the value of mass
rises as α increases. Also, for a fixed value of α, the value
of mass increases as r increases.

• In the left panel of Fig. 5, the equi-mass contours are
displayed in the Bg − m plane by keeping the variables
β, n, r and α fixed. According to the figure, with a con-
stant value of Bg , the value of mass grows asm increases.
However, with a given quantity of m, the value of mass
decreases as Bg increases. We can see that, the mass takes
a higher value for the lower value of the bag constant Bg .

In the right panel of Fig. 5, the equi-mass contours are
shown in the Bg − α plane by keeping the variables
β, n, r and m fixed. One can see that, with a constant
value of Bg , the value of mass grows as α increases. How-
ever, given a constant amount of α, the value of mass falls
as Bg grows.

• The left panel of Fig. 6 we show the equi-Bg contours
in the m − α plane by keeping the variables β, n, r
and m fixed. This figure implies that with a constant
value of m, the value of the bag constant increases as
α increases. Similarly, for a fixed value of α, the value
of Bg increases as m grows. On the other hand, the right
panel of Fig. 6 shows the equi-Bg contour in the R − m
plane. Keeping R fixed, the value of bag constant Bg

increases as m grows, and by keeping m fixed, the value
of Bg decreases as R increases. Interestingly, one can
note that for our chosen range of m and α in the left
figure and for a chosen range of R and m in the right
figure we have achieved very interesting and physically
reasonable values for the bag constant Bg which is very
much consistent with the CERN data about quark–gluon
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Fig. 2 Mass–radius relationship are shown

Table 2 Maximum mass and the corresponding radius for different
values of m

m Maximum
mass M(M	)

Corresponding
radius (in km)

Matched with the mass of the
compact star

0.2 2.62 9.18 lighter component of GW
190814 event with mass [90]

0.3 2.4 8.6 PSR J0952-0607 [91]

0.4 2.09 7.3 PSR J0740+6620 [92]

0.5 1.8 6.2 4U 1608-s52 [93]

plasma (QGP) as well as compatible with the RHIC pre-
liminary results [94,95]. Witten’s conjecture successfully
explains the non-interacting, mass-less quarks with Bg

values between 57 and 94 MeV/fm3, which has already
been demonstrated by Farhi and Jaffe [96].

9 Physical analysis

We have discussed the analysis of the hybrid star model for
a specific range of m by fixing n in this section. To check the
behavior of the physical parameters and ensure the viability
of the solution, we have chosen m lies between 10 to 15 for
our current article. The acquired solutions for the hybrid star
model need to be put to the test under a number of different
physical conditions, each of which will be addressed sepa-
rately in this section. To create all of the curves of different
model parameters, we utilized the stellar structures whose
mass and radius are shown in Table 1.

Fig. 3 Equi-mass in m − β plane

9.1 Metric potentials

Both metric potentials are singularity-free within the bound-
ary of the star. Additionally, eν(0) = D2, a non-zero con-
stant, and e−λ(0) = 1 for our current stellar model. The
derivative of the metric coefficients results in the expres-
sions (eλ)′ = 2ar + 4br3, (eν)′ = 2BD2reBr

2
. At the core

of the star, the derivative of the metric potentials equals zero.
Additionally, they are continuous and monotonic increasing
inside the star as shown in Fig. 7. At the boundary, the metric
components of the external Schwarzschild line element are
perfectly aligned to the interior metric potentials, which will
be addressed later.

9.2 Nature of pressure, density and anisotropic factor

The behavior of the three most important significant features
of the model -matter density, radial pressure, and tangential
pressure-is examined and analyzed in this subsection. We
additionally examine the function that the anisotropy factor
Delta plays inside the stellar sphere. It is well established that
any compact object describing the interiors of stars should not
have any physical or mathematical singularities in its main
physical characteristics. The maximum values of matter den-
sity and pressure should also be associated at the centre of the
configuration and should be monotonically decreasing func-
tions of the radial coordinate towards its surface. These novel
characteristics are required to explain some real objects such
as white dwarfs, neutron stars, and even quark stars. In addi-
tion, there are additional components that are as important to
the study of compact structures and that offer a more accu-
rate picture of the behavior of celestial bodies. Anisotropies,
for instance, might be present in the material composition of
the fluid sphere. In this context, anisotropy refers to the fact
that the pressure in the radial direction and the pressure in
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Fig. 4 (Left) equi-mass in α − m and (right) equi-mass in r − α

Fig. 5 (Left) equi-mass in Bg − m and (right) equi-mass in Bg − α

Fig. 6 (Left) equi-Bg in m − α and (right) equi-Bg in R − m
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Fig. 7 Metric coefficients

Fig. 8 Matter density, radial pressure, transverse pressure, and anisotropic factor are shown against r

the angular directions are not equal, or pr �= pt . Therefore,
� = pt − pr is used to define the anisotropy factor.

All thermodynamic observables ρ, pr and pt along with
the anisotropy factor � are depicted in Fig. 8. For a broad
range of m, we may observe the behavior of matter den-
sity, radial pressure, and tangential pressure. It is important
to see that these physical quantities monotonically decrease
with increasing radial coordinates, with the highest values
at the centre of the configuration. This graphic also depicts

the behavior of the anisotropy factor �. It behaves positively
throughout the star, disappearing in the centre and increasing
function of ‘r’. The central values of density and pressure can
be obtained as,
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ρ(r = 0) = −3am + 12πβ + 3Bm + 16πBg − n

4π(3α − 1)
, (40)

pt (r = 0) = pr (r = 0)

= 3amα − 3Bmα + nα − 16Bgπα − 4πβ

4π − 12πα
.

(41)

The following two formulas will be utilized to determine the
numerical values of the core density and central pressure for
our current model, and they are shown in tabular form in our
study. Next, we are interested to find out the nature of the
density and pressure gradients. Due to the complexity of the
expressions of density and pressure gradients, we have taken
the help of a graphical representation which has been shown
in Fig. 9. In the interior, all gradients had negative values, as
depicted in the diagram.

9.3 Energy conditions

All four of the energy conditions-the null energy condition
(NEC), the weak energy condition (WEC), the strong energy
condition (SEC), and the dominant energy condition (DEC)-
are claimed to be met for a physically conceivable model if
the parameters of the model, such as ρ, pr , and pt satisfy the
aforementioned expressions.

• NEC: ρ + pr ≥ 0, ρ + pt ≥ 0;
• WEC: ρ + pr ≥ 0, ρ + pt ≥ 0, ρ ≥ 0;
• SEC: ρ + pr ≥ 0, ρ + pt ≥ 0, ρ + pr + 2pt ≥ 0;
• DEC: ρ − pr ≥ 0, ρ − pt ≥ 0, ρ ≥ 0

It plays an essential role in comprehending the nature of
matter as well [97]. In the context of GR, the wormhole model
was considered as a way to explain how the energy criteria
would be violated if exotic matter is present within the object.
If these conditions are satisfied, it is shown that ordinary
stuff exists. For m ∈ [0.2, 0.5], we graphically verified the
validity of these conditions in Fig. 10, and we can observe
that the previously stated energy requirements are all satisfied
by the suggested hybrid star model in f (Q) gravity.

9.4 Equation of state

Another crucial step is finding the equation of state, i.e., a link
between pressure and density. The radial pressure and mat-
ter density are assumed to be linearly related in the model by
solving the field equations; however, the relationship between
the transverse pressure and matter density is still uncertain.
The equation of state parameters, usually denoted by ωr and
ωt , are two dimensionless quantities that can be used to char-
acterize the relationship between matter density and pressure.
For our current model, the equations of state parameters ωr

and ωt are defined as follows:

ωr = pr
ρ

, ωt = pt
ρ

. (42)

For a particular range of m, we have drawn the profiles
of both ωr and ωt in Fig. 11. The results clearly show that
these two traits were most valuable near the star’s center and
decreased toward the edge. Furthermore, they fall inside the
range of radiation era, i.e., 0 < ωr , ωt < 1 [98].

10 Stability analysis of the present model

In this part, we will examine the stability of our current model
using (i) the causality condition, (ii) the adiabatic index, and
(iii) the TOV equation which will be explained separately.

10.1 Velocity of sound and cracking method

It is important to verify the causality requirement, which
states that the speed of sound inside the compact object must
be subluminal, in order to generate a physically accurate
model. The following formula can be used to calculate a
stellar fluid’s sound speed.

V 2
r = dpr

dρ
, V 2

t = dpt
dρ

. (43)

We have chosen a linear equation of state between the radial
pressure pr and the matter density ρ for our current model.
As a result, the speed of sound in the radial direction for our
current model is simply set at α and does not vary on m. The
tangential component, however, is dependent on the behavior
of the anisotropy factor. Figure 12 illustrates the variation of
the square of the radial and transverse velocity, and it can be
seen that the tangential velocity is increasing outward and
less than 1 for all values of m throughout the star. As a result,
we may assert that our model meets the causality constraint.

In a series of lectures [99–101], Herrera and colleagues in-
depth examined the idea of cracking for stellar structures by
taking into account anisotropic matter structures. The idea
of cracking (or overturning) was first suggested in 1992.
This method is beneficial for identifying potentially unstable
anisotropic matter structures. They looked at the possibility
of stability in the region of the star interior where the radial
velocity of sound is greater than the transverse velocity of
sound. We have generated the profile of V 2

r − V 2
t in Fig. 12

to confirm this criterion, and the profile guarantees the poten-
tial stability of the current model.

10.2 Adiabatic index

In this paragraph, we will analyze a crucial and important
ratio of the two specific temperatures offered by � in order
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Fig. 9 The density and pressure gradients are shown against ‘r’

to examine the area of stability of the hybrid star model. Chan
et al. [102] proposed the concept of the adiabatic index for
an isotropic fluid sphere, however, Chandrasekhar [103] was
one of the first in this age to examine using the adiabatic
index to look at the zone of stability for spherical stars. The
expression for the adiabatic index changes as follows in the
presence of pressure anisotropy:

�r = ρ + pr
pr

dpr
dρ

, (44)

�t = ρ + pt
pt

dpt
dρ

. (45)

The circumstances of stability are satisfied by the stellar
object when the above two expressions take a value of more
than 4/3 according to Heintzmann and Hillebrandt’s study
[104]. Since it is impossible to verify this requirement analyt-
ically for the complexity of the expressions. We have drawn
the profiles of �r and �t for various values in Fig. 13. The
graphic shows that both �r and �t take values greater than
4/3 across the fluid sphere, which ensures that the stability
criterion is fully met (Table 3).

10.3 The equilibrium under different forces

This subsection will examine the equilibrium of the model
under various forces that are currently acting on the sys-
tem. The four forces that constitute the equilibrium equa-
tion are the hydrostatic force (Fh), gravitational force (Fg),
anisotropic force (Fa), and lastly the force associated with
quark matter (Fq ). Additionally, the explicit form of these
forces is as follows:

Fg = −ν′

2
(ρ + pr ),

Fh = −dpr
dr

,

Fa = 2

r
(pt − pr ) = 2

r
�

Fq = −ν′

2
(ρq + pq) − d

dr
(pq),

The Tolman–Oppenheimer–Volkoff (TOV) equation for our
present model can be written as,

−ν′

2
(ρ + pr ) − dpr

dr
+ 2

r
(pt − pr )
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Fig. 10 All the energy conditions are shown against ‘r’

−ν′

2
(ρq + pq) − d

dr
(pq) = 0, (46)

Now the above equation can be denoted by,

Fg + Fh + Fa + Fq = 0. (47)

Figure 14 shows the formulation of various forces acting on
our system for different values of the coupling parameter m.
From the figure, we can see that the combined effects of all
four different forces make our model stable.

11 Discussion

In the present work, we propose a model of a hybrid star
in the realm of f (Q) modified gravity. We have chosen the
Tolman–Kuchowicz metric potential to solve the field equa-
tions. The obtained model has been matched successfully to
the exterior spacetime. The most significant findings include
the following: Our results show that the energy density ρ,
pressures pr , pt , of the investigated compact star approach
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Fig. 11 ωr and ωt are shown against ‘r’

Fig. 12 V 2
r , V 2

t and V 2
r − V 2

t are shown against ‘r’

their greatest value near the core, while they are at their min-
imum at the surface. It is crucial to note that the radial pres-
sure pr at the surface of the star vanishes. The central density
rhoc approaches a significantly enormous value when we are
dealing with the core of the star, and it makes the stars very

compact. The high compactness offers a proper justification
for the validation of the f (Q)-model that we propose. The
numerical values of central density, surface density, and cen-
tral pressure have been calculated for various values ofm, and
it is clear that as m rises, all three variables take on increas-
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Fig. 13 Relativistic adiabatic index �r and �t are shown against ‘r’

ing values. At the same time, the β increases as m grows.
The relevance of the surface redshift is increased by the exis-
tence of anisotropies in the stellar content, which improves
the stability and balancing processes. The contribution that
it will make to the equilibrium mechanism, however, relies
on the sign, or whether it is positive or negative, according
to pt > pr or pt < pr . In the first scenario, the system
experiences a repulsive force that reduces the gravitational
gradient, whereas in the second scenario, the force conveyed
by anisotropy contributes to the gravitational force compress-
ing the star. The structure will eventually keep collapsing till
its Schwarzschild radius if the pressure of nuclear force is
insufficient to push against gravity. The object then gener-
ates a black hole with a variety of peculiar characteristics.
This indicates that the equilibrium and stability of the con-
figuration are affected by the presence of an attracting force
caused by anisotropies. We developed a graphical diagram
to illustrate the anisotropic behavior. The anisotropic force
shown in Fig. 8 is repulsive in nature for our present model.

Taking into account the hybrid star, we also found that
a number of energy conditions are satisfied, which further
shows that there is no exotic matter present and that the under-
lying matter distribution is completely non-exotic matter. It
should be noted that stability analysis is crucial for model-
ing any compact object. The causality requirement is met by
the current model. In this case, stability is investigated using
cracking methods. Our recommended models are conceiv-
ably reliable against the variations, according to the stability
study proposed by Herrera. The relativistic adiabatic indices
�r and �t are shown, and they both assume values greater
than 4/3, satisfying the stability requirement. Two different
EoS parameters, ωr and ωt , are involved in the anisotropy
investigation. The range of realistic and normal distribution
of matter is determined by these two Eos parameters. The
maximum allowable mass and the corresponding radius are

obtained and it relates to the mass of compact stars found
in the literature. Another crucial point is that the measure-
ments of mass and bag constant Bg have been studied in
detail via contour plots. From our analysis, we have obtained
the range of bag constant Bg as 55–95 MeV/fm−3 which is
very much compatible with CERN data about quark–gluon
plasma (QGP) as well as compatible with the RHIC prelimi-
nary results [94,95] and the observational result by Farhi and
Jaffe [96].

Many stellar solutions has been obtained in f (R), f (R, T )

gravity, etc. to verify the reliability of these types of modified
gravity. These types of gravity are based on the Riemannian
geometry, where torsion and nonmetricity are zero. Within
this framework, the Ricci scalar curvature works as a build-
ing block of space-time. But here, we represent the work to
see the behavior of the stellar model when the gravitational
interaction between two particles in space-time is described
by the nonmetricity Q, upon which f (Q) gravity theory is
established. We have used f (Q) gravity to verify whether
it gives the same physical properties of the stellar model as
the previous result, like realistic gravity. There are a number
of works on compact stars in the framework of Einstein’s
GR as well as in modified gravity. To compare our results
with those types of realistic gravity like f (R), f (R, T ) grav-
ity etc. one can see the references [105–107]. The success
of our recommended model was confirmed throughout the
study in conjunction with a proper contrast of a large num-
ber of compact star candidates. As a result, the implications
of our chosen methodologies provide a better justification
for compact objects. As a result, we draw the conclusion
that our suggested hybrid star model behaves successfully
and adequately explains the physical characteristics in the
circumstances of f (Q) gravity.

123



Eur. Phys. J. C (2023) 83 :646 Page 17 of 19 646

Table 3 The numerical values
of central density, surface
density, central pressure, β, for
the compact star Her X-1 for
different values of ‘m’ by taking
b = 0.04 × 10−5, n = 0.005,
α = 0.3

m ρc ρs pc β

g/cm3 g/cm3 dyne/cm2

0.2 1.0016 × 1015 2.1428 × 1014 2.12577 × 1035 0.0000476416

0.3 1.44825 × 1015 2.67264 × 1014 3.18866 × 1035 0.0000594217

0.4 1.89489 × 1015 3.20248 × 1014 4.25154 × 1035 0.0000712018

0.5 2.34154 × 1015 3.73232 × 1014 5.31443 × 1035 0.0000829819

Fig. 14 The different forces acting on the system are shown against r
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