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Abstract In this work, inspired by the definition of the pho-
ton surface given by Claudel, Virbhadra, and Ellis, we give an
alternative quasi-local definition to study the circular orbits
of single-pole particles. This definition does not only apply
to photons but also to massive point particles. For the case
of photons in spherically symmetric spacetime, it will give a
photon surface equivalent to the result of Claudel, Virbhadra,
and Ellis. Meanwhile, in general static and stationary space-
time, this definition can be regarded as a quasi-local form of
the effective potential method. However, unlike the effective
potential method which can not define the effective poten-
tial in dynamical spacetime, this definition can be applied
to dynamical spacetime. Further, we generalize this defini-
tion directly to the case of pole–dipole particles. In static
spherical symmetry spacetime, we verify the correctness of
this generalization by comparing the results obtained by the
effective potential method.

1 Introduction

Black hole is one of most important prediction of general
relativity. To confirm its existence, scientists have made a
lot of efforts. In 2019, the Event Horizon Telescope (EHT)
Collaborations published the first images of a supermassive
black hole at the center of the M87 galaxy [1]. Later, in 2021,
the EHT Collaborations released the polarized images of the
black hole [2,3]. Very recently, the EHT announced the image
of the Galactic Center Supermassive Black Hole [4].
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To analysis these images, it is important to study the
geodesic circular orbits of the astrophysical black holes [5,6].
On the one hand, to study the black hole shadow, we first need
to study the circular orbits of photons. In static spherically
symmetric spacetime, the photon sphere, where the location
of the circular photon orbits, describes the boundary of the
black hole shadow which corresponding to the shaded part of
the image [7,8]. On the other hand, in black hole accretion
disk theory, the circular geodesic motion in the equatorial
plane is of fundamental importance, the detail one can see
[9]. The luminous part of the image corresponds to the accre-
tion disk which is located at the stable circular orbit of the
black hole [9,10].

In static spacetime and stationary spacetime, one can
solve the geodesic equations and define the effective poten-
tial of the system to get the circular orbits of a timelike or
null geodesic. However, astrophysical black holes in real-
ity involve evolution, and one can not use this method to
get the circular orbits because the effective potential of a
dynamical system can not be defined. So, in recent years, the
quasi-local studies of photon sphere, photon surface and their
generalization definitions have attracted some attention. The
first quasi-local definition of the photon surface is given by
Claudel, Virbhadra, and Ellis which based on the umbilical
hypersurface [11]. Based on this definition, they studied the
photon surfaces in general spherically symmetric spacetimes.
However, there are some problems in this definition [12]: (i).
The definition allows that spacetime, which in the absence
of gravity, exists a photon surface. (ii). From their definition,
one can not to get the boundary condition when solving the
equation of the photon surface. (iii). The umbilical condi-
tion, i.e., the shear tensor of a hypersurface is vanishing, is
too restrictive and makes their definition does not work in an
axisymmetric stationary spacetime. (iv). Their definition is
for photon, so, it can not deal with the case of massive point
particle. The problem (i) and (ii) has been solved by [12]
in general spherically symmetric spacetimes which based on
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the codimension-2 surface of the spacetime. For the problem
(iii), there are many generalized studies. Such as Yoshino
et al. generalize the photon surface to be a loosely trapped
surface [13] and (dynamically) transversely trapping surface
[14–16]; Kobialko et al. generalize the photon surface to be a
fundamental photon hypersurfaces and fundamental photon
regions [17,19]. The problem (iv) has been solved by [20]
which generalize the photon surface to massive particle sur-
face and [18] which generalize the photon surface to (partial)
particle surface.

In this paper, we ask and discuss some questions about
the quasi-local study of circular orbits. Firstly, in static and
stationary spacetimes, one always uses the effective potential
method to obtain the circular orbits of the spacetime. How-
ever, the method given by Claudel, Virbhadra, and Ellis for
quasi-local study of circular orbits seems to have no connec-
tion with the effective potential method. So, is there any rela-
tionship between them? Secondly, previous work all consider
the point particles, but in reality, particles may have intrinsic
properties, such as spin. The circular orbits of a spinning test
particle in different spacetimes have been studied [21–23].
But, how to study the circular orbit of spinning test parti-
cles quasi-locally is still a question worth studying. Here, we
only focus on spinning extended test bodies up to pole–dipole
order. Unlike the point particle or the single-pole particle, it
does not satisfy the geodesic equation but the Mathisson–
Papapetrous–Dixon (MPD) equation [24–39]. A direct gen-
eralization of the quasi-local definition given by [11,18] is
hard to check its correctness, and we will discuss this point in
Appendix A. In this paper, we give an alternative definition
to study the circular orbit of a single-pole particle which is
equivalent to the definition given by [11,18]. This definition
can be regarded as a quasi-local form of the effective potential
method in general static and stationary spacetime, and can
be easily generalized to the case of pole–dipole particles.

This paper is organized as follows: In Sect. 2, we will give
the quasi-local definition of a single-pole particle surface and
study its circular orbits in static spherical symmetric space-
time by using the effective method and the quasi-local defini-
tion. Further, as an example in dynamical spacetime, we will
study the photon surface in vaidya spacetime by using this
definition. In Sect. 3, at first, we will give a brief review of
the equations of motion of spinning extended test bodies, i.e.,
MPD equations. Then, we will generalize the quasi-local def-
inition of the single-pole particle surface to pole–dipole par-
ticle surface. At last, we will demonstrate the equivalence of
the quasi-local definition and the effective potential method
in static spherical symmetic spacetime. Section 4 is devoted
to the conclusion and discussion. In Appendix A, we will
give a disussion about the definition of the pole–dipole par-
ticle surface based on the definition given by [11,18].

Convention of this paper: We choose the system of
geometrized unit, i.e., set G = c = 1. We use the symbol

(M,∇a, gab) to denote a manifold M with metric gab and
covariant derivative operator ∇a , and (gab,∇a) satisfies the
compatibility condition, i.e., ∇agbc = 0. The abstract index
formalism has been used to clarify some formulas or calcu-
lations. The curvature Rabcd of the spacetime is defined by
Rabcdv

d = (∇a∇b−∇b∇a)vc for an arbitrary tangent vector
field va .

2 Single-pole particles

2.1 Quasi-local definition

Inspired by the definition given by [11,18], we give the fol-
lowing quasi-local definition of the single-pole particle sur-
face:

Definition 1 Let (S, Da, hab) be a timelike hypersurface (or
a subset of a timelike hypersurface) of (M,∇a, gab). Let va

be a unit normal vector to S, i.e., it satisfies vava = 1. The
metric gab can be decomposed as

gab = hab + vavb , (2.1)

Let γ be the geodesic of a single-pole particle that intersects
S at point p. At point p, the tangent vector Ka of the geodesic
can be decomposed as

Ka = Ka‖ + Ka⊥ = habK
b + vavbK

b = ka + vavbK
b .

(2.2)

where ka ≡ Ka‖ = habKb is parallel toS and Ka⊥ = vavbK b

is normalized to S. If for ∀p ∈ S, there exists at least one
γ ∈ S passing through p and satisfies

Kava |p = 0 , (2.3)

and

Kb∇b(k
aka)|p = 0, (2.4)

Then S is called a (partial) single-pole particle surface.

Definition 2 A (partial) single-pole particle surface is called
stable if it satisfies vc∇c[Kb∇b(kaka)]|p ≥ 0, and unstabe
if it satisfies vc∇c[Kb∇b(kaka)].

Below, we give some remarks:

(i). Here, we have assumed that va is out pointing. Roughly
speaking, the out pointing requirement refers to a direc-
tion from the center of the system to infinity.

(ii). From the geodesic equation Ka∇aK b = 0, one can
always have Kb∇b(KaKa) = 0. But, Kb∇b(kaka) is
not vanished in general, and condition (2.4) will give a
non-trivial condition.
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(iii). This definition is equivalent to the definition of the
particle surface given by [18]. The condition of par-
ticle surface in [18] is kakbKab = 0,1 where Kab =
hachbd∇cvd is the second fundamental form ofS. Then,
for ∀p ∈ S, we have

kakbKab = kakb∇avb

= (Ka − vavcK
c)(Kb − vbvd K

d)∇avb

= KaKb∇avb = Ka∇a(vbK
b)

= Kc∇c(
√
KaKa − kaka)

= 1

2
√
KaKa − kaka

K c∇c(K
aKa − kak

a)

= − 1

2vaKa
Kb∇b(k

aka) , (2.5)

where we have used Eqs. (2.2), (2.3) and the geodesic
equation Ka∇aK b = 0. So, when kakbKab = 0, we
have Kb∇b(kaka) = 0.

(iv). In static and stationary spacetime, this definition will
be equivalent to effective potential method, and we will
illustrate the equivalence in static spherical symmetric
spacetime in the next subsection. For the case of sta-
tionary spacetime, a similar argument follows.

(v). Definition 2 is a direct modification of the stability
condition given by [18]. From the condition
vc∇c[Kb∇b(kaka)] = 0, one can get the innermost sta-
ble circular orbits.

(vi). The above definitions may have a widely application
and they can be easily generalized to other situations.
In next section, we will generalize this definition to
the case of pole–dipole particles, and study the circu-
lar orbits of a pole–dipole particle in static spherical
symmetric spacetime.

2.2 The circular orbits of single-pole particle in static
spherical symmetric spacetime

The metric of the general static spherical symmetric space-
times in the {t, r, θ, φ} coordinates can be written as

ds2 = −F(r)dt2 + H(r)dr2 + r2(dθ2 + sin2 θdφ2) (2.6)

where F and H are functions of radial coordinate r . Consid-
ering the untraped region, we have F(r) > 0 and H(r) > 0.
Due to the spherical symmetry of the metric (2.6), we can
focus our analysis on the equatorial plane, i.e., θ = π/2. A
single-pole particle that behaves like a point particle follows
a geodesic trajectory in spacetime. The four-velocity of the

1 In the definition given by [18], ka or Ka does not matter, because the
projection operator hab is implied in Kab. But, in our definition, one
must distiguish between Ka and ka .

geodesic can be expressed as

Ka = dxμ(λ)

dλ

(
∂

∂xμ

)a

= dt (λ)

dλ

(
∂

∂t

)a

+ dr(λ)

dλ

(
∂

∂r

)a

+ dφ(λ)

dλ

(
∂

∂φ

)a

,

(2.7)

where λ is the parameter of the geodesic. The normalized
condition of the four-velocity is

KaKa = δ, (2.8)

where δ = 0 for a photon and δ = −1 for a massive point
particle. Then, we have

− F(r)

(
dt

dλ

)2

+ H(r)

(
dr

dλ

)2

+ r2
(
dφ

dλ

)2

= δ. (2.9)

Along the geodesic, there are two conserved quatities, i.e.,

e = Ka

(
∂

∂t

)a

= −F

(
dt

dλ

)
, (2.10)

l = Ka

(
∂

∂φ

)a

= r2
(
dφ

dλ

)
. (2.11)

where e is the conserved orbital energy and l is the conserved
orbital angular momentum of the geodesic.

2.2.1 Effective potential method

Considering Eqs. (2.10) and (2.11), Eq. (2.9) can be refor-
mulated as
(
dr

dλ

)2

= 1

H

(
e2

F
− l2

r2 + δ

)
, (2.12)

Then, the effictive potential can be defined as [10]

Veff = 1

H

(
e2

F
− l2

r2 + δ

)
. (2.13)

The particle moves along a circular orbit when two conditions
are satisfied simultaneously which has been pointed out in
[21,23]:

(1). The particle has zero radial velocity, i.e.

dr

dλ
= 0. (2.14)

(2) The particle has zero radial acceleration, i.e.

d2r

dλ2 = 0, 
⇒ dVeff

dr
= 0. (2.15)

It should be noted that condition (2.14) and (2.15) only need
to hold at one point. As long as the particle has zero radial
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velocity and radial acceleration at one point, its trajectory
will be a circular orbit.

The stability condition of a circular orbit is

d2Veff

dr2 =

⎧
⎪⎨

⎪⎩

< 0 unstable,

≥ 0 stable.

(2.16)

When d2Veff/dr2 = 0, the circular orbits correspond to the
innermost stable circular orbit (ISCO).

From Eq. (2.14), we can get

e2 − Fl2

r2 + Fδ = 0. (2.17)

And frome Eq. (2.15), we have

2Fl2

r3 +
(

δ − l2

r2

)
F ′ = 0. (2.18)

Combining Eqs. (2.17) and (2.18), we can get the equation of
the circular orbits in the general static spherical symmetric
spacetimes as follows

e2 = 2δF2

r F ′ − 2F
, l2 = δr3F ′

r F ′ − 2F
. (2.19)

where a prime denotes a derivative with respect to areal radius
r . The stability condition becomes
√

δF2

−4F + 2r F ′
−2r F ′2 + 3FF ′ + r FF ′′

r F2

=
⎧
⎨

⎩

< 0 unstable,

≥ 0 stable.

For a photon, the circular orbits can not be directly derived
from the above equations,2 it should be derived by solving
Eqs. (2.17) and (2.18) which have been set δ = 0. Then, one
can get the circular orbit of a photon satisfies

2F = r F ′, e2

l2
= F

r2 . (2.20)

And the stability condition of a photon circular orbits can be
reduced to

r2F ′′ − 2F =
⎧
⎨

⎩

< 0 unstable,

≥ 0 stable.

For a massive point particle, the circular orbits satisfies

e2 = 2F2

2F − r F ′ , l2 = r3F ′

2F − r F ′ . (2.21)

2 For the case of null geodesic, the Eq. (2.19) and the stability condition
will become the form of 0/0. Here, we just write it in a uniform form
so that we can compare it with the subsequent results easily.

And the stability condition in this case can be reduced to

3FF ′/r − 2(F ′)2 + FF ′′ =
⎧
⎨

⎩

< 0 unstable,

≥ 0 stable.

2.2.2 Quasi-local method

In static spherical symmetric spacetime, there exists a family
of circular orbits with specific parameters located at a hyper-
surface which has r = constant. The normal vector va of this
hypersurface can be written as

va = √
H

(
∂

∂r

)a

, (2.22)

Consider a timelike or null geodesic intersects the hypersur-
face at point p and its tangent vector Ka in equatorial plane
can be written as

Ka = {kt , kr , 0, kφ} =
{

− e

F
,
dr

dλ
, 0,

l

r2

}
(2.23)

where we have used Eqs. (2.10) and (2.11). From the condi-
tion (2.3), at point p, we have

Kava |p = dr

dλ

√
H = 0, (2.24)

Then we get the equation kr = dr/dλ = 0 which corre-
sponding to the the first condition (2.14) of the circular orbits.
The vector ka can be written as

ka =
{

− e

F
, 0, 0,

l

r2

}
. (2.25)

And from the condition (2.4), at point p, we have

Kb∇b(k
aka)|p = kr

∂

∂r

(
− e2

F
+ l2

r2

)

= Hkr
∂

∂r

[
1

H

(
e2

F
− l2

r2 + δ

)]

= Hkr
dVeff

dr
, (2.26)

where we have used the Eqs. (2.13) and (2.24). Thus, we get

dVeff

dr
= 0 , (2.27)

which corresponds to the second condition (2.15) of the cir-
cular orbits. Further, from definition 2, one can easily get the
stability condition of the circular orbits which is the same as
(2.16).

2.3 Dynamic spacetime

As an example in dynamical spacetime, we study the evolu-
tion of the null circular orbits in Vaidya spacetime. For the
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case of a timelike geodesic, the calculation can be performed
similarly.

In the in-going null coordinate {v, r, θ, φ}, the metric of
the 4-dimensional Vaidya spacetime can be written as [40]

ds2 = −
(

1 − 2M(v)

r

)
dv2 + 2dvdr

+r2(dθ2 + sin2 θdφ), (2.28)

where M(v) is a freely specifiable function of v. The unit
normal vector va of the particle surface in Vaidya spacetime
can be written as [11,18]

va = 1√
1 − 2M(v)/r − 2ṙ

(
∂

∂v

)a

+ 1 − 2M(v)/r − ṙ√
1 − 2M(v)/r − 2ṙ

(
∂

∂r

)a

. (2.29)

where “·” stands for the derivative with respect to the coordi-
nate time “v” . Due of the spherical symmetry of the system,
we can also focus the analysis on the equatorial plane, i.e.,
θ = π/2. The component of the tangent vector of a geodesic
can be supposed as Ka = {kt , kr , 0, kφ}, where kt , kr , kφ

can be considered as functions of v. Along the geodesic, the
orbital angular momentum l is conserved, so, we have

l = Ka

(
∂

∂φ

)a

= r2kφ. (2.30)

From Eq. (2.3), we have

Kava |p = ṙ kt − kr = 0. (2.31)

At point p, from the normalized condition of Ka , we have

KaKa |p = −
(

1 − 2M(v)

r

)
(kt )2 + 2kt kr + l2

r2 = 0 ,

(2.32)

and the geodesic equation Ka∇aK b = 0 will give

− l2

r3 + kt
[
M(v)

r2 kt + k̇t
]

= 0 , (2.33)

− [l2 + 2(kt )2M(v)2]r + M(v)[2l2 + r2(1 − 2ṙ)(kt )2]
+ r3kt [r k̇t + M(v)kt ] = 0 , (2.34)

The vector ka can be expressed as {kt , ṙ kt , 0, l/r2}. Com-
bining Eqs. (2.31), (2.32), (2.33) and (2.34), we get

kr = ṙ kt , (2.35)

kt = 1√
r [r − 2rṙ − 2M(v)] , (2.36)

k̇t = [r − 3M(v) − 2rṙ]l
r2

√
r [r − 2rṙ − 2M(v)] . (2.37)

From Eq. (2.4), we have

−2[l2+rM(v)(kt )2]kr −2r2[r−2M(v)−2rṙ ](kt )2k̇t +[Ṁ(v)+rr̈ ]kt
r3

=0 . (2.38)

Putting Eqs. (2.35), (2.36) and (2.37) into Eq. (2.38), we
finally get

r̈ = 1

r

[(
1 − 3M(v)

r

)(
1 − 2M(v)

r
− 3ṙ

)
− Ṁ(v) + 2ṙ2

]

(2.39)

Which is exactly equation of the photon surface in [11,18].

3 Pole–dipole particle

3.1 Review the Mathisson–Papapetrous–Dixon (MPD)
equations

In this section, we will give a brief review of the Mathisson–
Papapetrous–Dixon (MPD) equations. For more details, one
can find in the Refs. [24,25,28,29,31–35].

The equations of motion of spinning extended test bodies
up to the pole–dipole order are given by the MPD equations
which read

Ṗa = −1

2
Ra

bcdu
bScd , (3.1)

Ṡab = 2P [aub]. (3.2)

where ua = dxa/ds is the 4-velocity of the body along its
world line, and the dot denotes the covariant derivative with
respect to the proper time “s”, i.e., “·” = D/ds = ua∇a .
The antisymmetric tensor Sab is the spin tensor and Pa is
4-momentum of the test body.

In order to close the system of Eqs. (3.1) and (3.2), a
supplementary condition has to be imposed. In this work, to
restrict the spin tensor to generate rotations only, we focus
on the Tulczyjew spin-supplementary condition [26], i.e.,

SabPb = 0. (3.3)

From Eq. (3.3), it turns out that the canonical momentum
and the spin of the body provide two independent conserved
quantities given by the relations [37,38]

Pa Pa = −M2, (3.4)
1

2
SabSab = S2, (3.5)

where M is the ‘dynamical’, ‘total’ or ‘effective’ rest mass
of the body and S is the spin length of the body. The spin
four-vector can be defined as

Sa = 1

2M
εbacd PbS

cd , (3.6)
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where εbacd is the Levi-Civita tensor. It is easy to find out
Sa is orthogonal to Pa , i.e., Sa Pa = 0. In addition to the
conserved quantities resulting from the Tulczyjew condition,
there exist also the conserved quantities associated to the
spacetime symmetries given by the Killing vectors ξμ, which
can be expressed as

Paξa − 1

2
Sab∇bξa = Paξa − 1

2
Sab∂bξa = constant. (3.7)

3.2 Quasi-local definition

In this section, we will generalize the quasi-local definition
of the single-pole particle surface to pole–dipole particle sur-
face. The surface where the circular orbits of a pole–dipole
particle located can be defined as:

Definition 3 Let (S, Da, hab) be a timelike hypersurface (or
a subset of a timelike hypersurface) of (M,∇a, gab). Let va

be a unit normal vector to S. The metric gab can be decom-
posed as

gab = hab + vavb , (3.8)

Let xa(s) is the world line of a pole–dipole particle that inter-
sects S at point p. Let Pa be the 4-momentum of the pole–
dipole particle and can be decomposed as

Pa = Pa‖ + Pa⊥ = habP
b + vavb P

b = pa + vavb P
b .

(3.9)

where pa ≡ Pa‖ = habPb is parallel to S and Pa⊥ = vavb Pb

is normalized to S. If for ∀p ∈ S, there exists at least one
xa(s) passing through p and satisfies

Pava |p = 0 , (3.10)

and

Pb∇b(p
a pa)|p = 0, (3.11)

Then S is called a pole–dipoe particle surface.

Definition 4 A pole–dipoe particle surface is called stable
if it satisfies vc∇c[Pb∇b(pa pa)]|p ≥ 0, and unstabe if it
satisfies vc∇c[Pb∇b(pa pa)]|p < 0.

Below, we give some remarks:

(i). This definition is a direct generalization of the defini-
tion of single-pole particle surface. In this work, for sim-
plicity, we only focus on the static spherical symmetric
spacetime.

(ii). Definition 3 is based on the Tulczyjew spin-supplementary
condition. In static spherical symmetric spacetime, spin
can be chosen to be orthogonal to the equatorial plane,

i.e., the spin four-vector Sa perpendicular to equatorial
plane [41,42]. This make sure that the motion of the pole–
dipole particle is planar [43].

3.3 The equivalence between the effective potential method
and the quasi-local definition

In this section, we will illustrate the equivalence between
the effective potential method and the quasi-local definition
to study the circular orbits of a pole–dipole particle in the
general static spherical symmetric spacetimes.

Because of the spherical symmetry of the line element
(2.6), we can choose the equatorial plane, i.e., θ = π/2.
And we can suppose 4-momentum of the pole–dipole par-
ticle to be Pa = {pt , pr , 0, pφ}, where pt , pr , pφ can be
considered as functions of r . Along the world line, there are
two conserved quantities for the pole–dipole particle, i.e., the
energy E and the angular momentum L . From Eq. (3.7), the
conserved quantities can be expressed as

− E = pt + 1

2
F ′Str , (3.12)

L = pφ + r Srφ. (3.13)

where a prime denotes the derivative with respect to radial
coordinate r . From the Tulczyjew spin supplementary con-
dition (3.3), we have

Stφ = − pr
pφ

Str , (3.14)

Srφ = pt
pφ

Str . (3.15)

From Eq. (3.4), we can get

(pr )2 = 1

FH
p2
t − 1

H

( p2
φ

r2 + M2
)

. (3.16)

Combining Eqs. (3.14), (3.15) and (3.16), from the spin con-
servation Eq. (3.5), we have

Str = spφ√
FHr

, (3.17)

where s = S/M is specific spin parameter. It should be noted
that s can have both negative and positive values depending
on the direction of spin with respect to direction of pφ . From
the conservation of energy (3.12) and angular momentum
(3.13), we have

pt = −2r FHE + F ′√FHsL

2r FH − F ′s2 , (3.18)

pφ = 2r [FHL + √
FHsE]

2r FH − F ′s2 . (3.19)
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3.3.1 Effective potential method

In this subsection, we will review the effective potential
method to get the circular orbits of the pole–dipole particles
[23].

Putting Eqs. (3.18) and (3.19) into Eq. (3.16), we get the
result that

(pr )2 = A(E − V+)(E − V−), (3.20)

where

A = 4F(r2H − s2)

(2FHr − F ′s2)2 (3.21)

and

V± = (2F − r F ′)
√
FHsL

2(FHr2 − Fs2)

± F ′s2 − 2FHr

FH(s2 − Hr2)

√
H(L2 + M2r2) − M2s2. (3.22)

which is consistent with the result in [23]. According to Eq.
(3.20), the energy of the particle must satisfy the conditions

E ≥ V+, or E ≤ V−, (3.23)

in order to have (pr )2 ≥ 0. Below, we focus on the case of
the pole–dipole particle with positive energy which coincides
with the effective potential to be Veff = V+. Combining
Eqs. (2.14) and (2.15), one can get the circular orbits of a
pole–dipole particle on the equatorial plane in static spherical
symmetric spacetime.

3.3.2 Quasi-local study of the circular orbits

In this subsection, we will use the definition 3 to study the
circular orbits of a pole–dipole particle in static spherical
symmetric spacetime.

In static spherical symmetric spacetime, the circular orbits
of the pole–dipole particles are not evolved, and they satisfy
the condition that ro = constant, where ro is the location of
the circular orbit. Then, the normal vector va of the particle
surface can be written as

va = 1√
H

(
∂

∂r

)a

. (3.24)

From condition (3.10), we have

Pava |p = pr
√
H = 0, (3.25)

Then we get pr = 0. From Eq. (3.4) and considering (3.25),
we have the following result

(4FHs2 − 4FH2r2)E2 + (8FH
√
FHsL − 4H

√
FHF ′rsL)E + 4F2H2L2 − HF ′2s2L2

(2FHr − s2F ′)2 = −M2, (3.26)

Organizing the above result, we get

B(E − V+)(E − V−) = 0, (3.27)

where V± have been given by Eq. (3.22), and

B = 4FH(s2 − r2H)

(2FHr − s2F ′)2 . (3.28)

And pa = {pt , 0, 0, pφ}. From Eq. (3.11), we have

Pb∇b(p
a pa) = Pb∂b(pa p

a) = pr∂r (pμ p
μ). (3.29)

Considering the result in Eqs. (3.26) and (3.27), we can get

∂r (pμ p
μ) = ∂r (pμ p

μ + M2)

= ∂r [B(E − V+)(E − V−)]
= −B(E − V−)

∂V+
∂r

= 0, (3.30)

Then, we have

∂V+
∂r

= ∂Veff

∂r
= 0. (3.31)

Here, we make a summary of this section: In this sec-
tion, we give definition 3, which is a direct generalization of
definition 1, to study the circular orbits of a pole–dipole parti-
cle, and illustrated its equivalence with the effective potential
method in the general static spherical symmetric spacetimes.

(1). The condition dr/dt = 0 is equivalent to

pava = 0. (3.32)

(2). The condition dVeff/dr = 0 is equivalent to

Pb∇b(pa p
a) = 0. (3.33)

Further, it is not hard to find that the stability condition,
i.e., vc∇c[Pb∇b(pa pa)] ≥ 0, is equivalent to the fol-
lowing condition

∂2V+
∂r2 = ∂2Veff

∂r2 ≥ 0. (3.34)

Using the condition that vc∇c[Pb∇b(pa pa)] = 0, one
can get the ISCO of the pole–dipole particle in static
spherical symmetric spacetime.

4 Discussion and conclusion

In the Appendix A, we give a possible definition of the pole–
dipole particle surface based on the definition given by [11,
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18]. If this generalized definition is right, it can be applied to
quite general spacetimes. But by this definition, because of
the complicated calculation of the result, it is hard to check
its correctness even in Schwarzschild spacetime. So, we need
to find an another quasi-local definition of the pole–dipole
particle surface.

In this paper, by deforming the condition of the particle
surface in [11,18], we obtained an alternative form of the
quasi-local definition. Definition 1 can be regarded as a quasi-
local form of the effective potential method in static and
stationary spacetime. In dynamical spacetime, we verified
its correctness by taking the example of Vaidya spacetime.
Further, we generalized definition 1 into the case of pole–
dipole particles and illustrated its equivalence to the effective
potential method in static spherical symmetric spacetime.

At present, the study of the circular orbits of a spinning test
particle is focus on static and stationary spacetime. Although
the calculation may be very complicated, our definitions pro-
vide a method for solving the evolution of the circular orbit
of a spinning particle in a dynamical spacetime and lay the
foundation for studying the evolution of the accretion disk of
an astrophysical black hole.

When solving the equation of the particle surface, there
will be little difference between definition 1 and the defini-
tion in [11,18]. If one use definition 1 to get the evolution
equations of the circular orbits in a dynamical spacetime,
one need to consider the geodesic equation. This will make
the solving process a little more difficult. In this work, we
only considered some special cases, but for the more general
situation, it can be solved similarly.
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Appendix A: Quasi-local definition of the pole–diople
particle surface based on the concept of the photon sur-
face

Based on the quasi-local definition of the photon surface
given by [11], one may give the following possible defini-
tion for a pole–dipole particle surface:

Definition 5 Let S be a timelike hypersurface of (M,∇a,

gab). Let xa(s) is the world line of a pole–dipole particle on
S and ua = dxa/ds is the 4-velocity of the body along its
world line. Let va be a unit normal vector to S and pa be
the 4-momentum of the pole–dipole particle. If for ∀p ∈ S,
there exists at least one xa(s) ∈ S passing through p and
satisfies

− 1

2
Ra

bcdu
bScdva + paub∇bva = 0, (A1)

where Sab is the spin tensor, then S called is a pole–dipoe
particle surface.

Below, we give some discussion about this definition:

(i). The condition (A1) can be obtained by the following con-
sideration: The condition of the photon surface in [11] can
be expressed as

Kabk
akb = 0, (A2)

where Kab is the second fundamental form of the photon
surface and ka is the tangent vector of a null geodesic.
Consider the normal vector of the particle surface is va ,
Eq. (A2) can be obtained by

ka∇a(k
bvb) = 0 ⇒ Kabk

akb = 0, (A3)

where we have used the geodesic equation of ka . Then, for
a pole–dipole particle, following a similar consideration,
one may get the following condition for the pole–dipole
particle surface,

ub∇b(p
ava) = 0 ⇒ −1

2
Ra

bcdu
bScdva

+paub∇bva = 0, (A4)

where we have used the MPD equations. Further, Com-
bining the relation [37,44]

ua = m

M2

(
pa + 2SabRbcde pcSde

4M2 + Rabcd SabScd

)
, (A5)
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where m := −paua is a scalar parameter (the ‘kinemat-
ical’ or ‘monopole’ rest mass of a particle), one can get
the equation of the pole–dipole particle surface.

(ii). This definition is a natural generalization of the condition
of a photon surface. If this definition is correct, it holds not
only for static spherically symmetric spacetimes, but also
for arbitrary spacetimes. However, one can check that,
although it can be utilized to obtain the closed equation
of the pole–dipole particle surface, it is difficult to check
whether the result is right or not even in Schwarzschild
spacetime. So, in this paper, we used a different approach
to study the pole–dipole particle surface.

References

1. K. Akiyama et al. [Event Horizon Telescope], Astrophys. J.
Lett. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7.
arXiv:1906.11238 [astro-ph.GA]

2. K. Akiyama et al. [Event Horizon Telescope], Astrophys. J. Lett.
910(1), L12 (2021). https://doi.org/10.3847/2041-8213/abe71d.
arXiv:2105.01169 [astro-ph.HE]

3. K. Akiyama et al. [Event Horizon Telescope], Astrophys. J. Lett.
910(1), L13 (2021). https://doi.org/10.3847/2041-8213/abe4de.
arXiv:2105.01173 [astro-ph.HE]

4. K. Akiyama et al. [Event Horizon Telescope], Astrophys. J. Lett.
930(2), L12 (2022). https://doi.org/10.3847/2041-8213/ac6674

5. K. Akiyama et al. [Event Horizon Telescope], Astrophys. J. Lett.
875(1), L5 (2019). https://doi.org/10.3847/2041-8213/ab0f43.
arXiv:1906.11242 [astro-ph.GA]

6. K. Akiyama et al. [Event Horizon Telescope], Astrophys. J. Lett.
930(2), L17 (2022). https://doi.org/10.3847/2041-8213/ac6756

7. J.L. Synge, Mon. Not. Roy. Astron. Soc. 131(3), 463–466 (1966).
https://doi.org/10.1093/mnras/131.3.463

8. K.S. Virbhadra, G.F.R. Ellis, Phys. Rev. D 62, 084003
(2000). https://doi.org/10.1103/PhysRevD.62.084003.
arXiv:astro-ph/9904193

9. M.A. Abramowicz, P.C. Fragile, Living Rev. Relat. 16,
1 (2013). https://doi.org/10.12942/lrr-2013-1. arXiv:1104.5499
[astro-ph.HE]

10. V. Cardoso, A.S. Miranda, E. Berti, H. Witek, V.T. Zanchin, Phys.
Rev. D 79(6), 064016 (2009). https://doi.org/10.1103/PhysRevD.
79.064016. arXiv:0812.1806 [hep-th]

11. C.M. Claudel, K.S. Virbhadra, G.F.R. Ellis, J. Math. Phys.
42, 818–838 (2001). https://doi.org/10.1063/1.1308507.
arXiv:gr-qc/0005050

12. L.M. Cao, Y. Song, Eur. Phys. J. C 81(8), 714 (2021). https://doi.
org/10.1140/epjc/s10052-021-09502-0. arXiv:1910.13758 [gr-
qc]

13. T. Shiromizu, Y. Tomikawa, K. Izumi, H. Yoshino, PTEP
2017(3), 033E01 (2017). https://doi.org/10.1093/ptep/ptx022.
arXiv:1701.00564 [gr-qc]

14. H. Yoshino, K. Izumi, T. Shiromizu, Y. Tomikawa, PTEP
2017(6), 063E01 (2017). https://doi.org/10.1093/ptep/ptx072.
arXiv:1704.04637 [gr-qc]

15. H. Yoshino, K. Izumi, T. Shiromizu, Y. Tomikawa, PTEP
2020(2), 023E02 (2020). https://doi.org/10.1093/ptep/ptz161.
arXiv:1909.08420 [gr-qc]

16. D.V. Gal’tsov, K.V. Kobialko, Phys. Rev. D 99(8), 084043 (2019).
https://doi.org/10.1103/PhysRevD.99.084043. arXiv:1901.02785
[gr-qc]

17. K.V. Kobialko, D.V. Gal’tsov, Eur. Phys. J. C 80(6), 527
(2020). https://doi.org/10.1140/epjc/s10052-020-8070-z.
arXiv:2002.04280 [gr-qc]

18. Y. Song, C. Zhang, Eur. Phys. J. C 83(1), 50 (2023). https://doi.org/
10.1140/epjc/s10052-022-11143-w. arXiv:2208.03661 [gr-qc]

19. K. Kobialko, I. Bogush, D. Gal’tsov, Phys. Rev. D 104(4),
044009 (2021). https://doi.org/10.1103/PhysRevD.104.044009.
arXiv:2104.02167 [gr-qc]

20. K. Kobialko, I. Bogush, D. Gal’tsov, Phys. Rev. D 106(8),
084032 (2022). https://doi.org/10.1103/PhysRevD.106.084032.
arXiv:2208.02690 [gr-qc]

21. P.I. Jefremov, O.Y. Tsupko, G.S. Bisnovatyi-Kogan, Phys. Rev.
D 91(12), 124030 (2015). https://doi.org/10.1103/PhysRevD.91.
124030. arXiv:1503.07060 [gr-qc]

22. B. Toshmatov, D. Malafarina, Phys. Rev. D 100(10), 104052
(2019). https://doi.org/10.1103/PhysRevD.100.104052.
arXiv:1910.11565 [gr-qc]

23. B. Toshmatov, O. Rahimov, B. Ahmedov, D. Malafarina, Eur.
Phys. J. C 80(7), 675 (2020). https://doi.org/10.1140/epjc/
s10052-020-8254-6. arXiv:2003.09227 [gr-qc]

24. M. Mathisson, Acta Phys. Polon. 6, 163–2900 (1937)
25. A. Papapetrou, Proc. Roy. Soc. Lond. A 209, 248–258 (1951).

https://doi.org/10.1098/rspa.1951.0200
26. W. Tulczyjew, Acta Phys. Pol. 18, 393 (1959)
27. A.H. Taub, J. Math. Phys. (NY) 5, 112 (1964)
28. W.G. Dixon, Nuovo Cimento 34, 317 (1964)
29. W.G. Dixon, PhD. thesis, University of Cambridge (1965)
30. J. Madore, Ann. Inst. Henri Poincaré A11, 221 (1969)
31. W.G. Dixon, Proc. R. Soc. A 314, 499 (1970)
32. W.G. Dixon, Proc. Roy. Soc. A 319, 509 (1970)
33. W.G. Dixon, Gen. Relat. Gravit. 4, 199 (1973)
34. W.G. Dixon, Philos. Trans. Roy. Soc. Lond. A 277, 59 (1974)
35. W.G. Dixon, Isolated gravitating systems in General Relativity. in

Proceedings of the International School of Physics “Enrico Fermi,”
Course LXVII, edited by J. Ehlers (North Holland, Amsterdam,
1979), p. 156

36. Y.N. Obukhov, D. Puetzfeld, Fund. Theor. Phys. 179, 67–
119 (2015). https://doi.org/10.1007/978-3-319-18335-0_2.
arXiv:1505.01680 [gr-qc]

37. O. Semerak, Mon. Not. Roy. Astron. Soc. 308, 863–875 (1999).
https://doi.org/10.1046/j.1365-8711.1999.02754.x

38. E. Hackmann, C. Lämmerzahl, Y.N. Obukhov, D. Puetzfeld, I.
Schaffer, Phys. Rev. D 90(6), 064035 (2014). https://doi.org/10.
1103/PhysRevD.90.064035. arXiv:1408.1773 [gr-qc]

39. J. Steinhoff, D. Puetzfeld, Phys. Rev. D 81, 044019 (2010). https://
doi.org/10.1103/PhysRevD.81.044019. arXiv:0909.3756 [gr-qc]

40. P.C. Vaidya, Phys. Rev. 83, 10–17 (1951). https://doi.org/10.1103/
PhysRev.83.10

41. M. Mohseni, Gen. Relat. Gravit. 42, 2477–2490 (2010). https://
doi.org/10.1007/s10714-010-0995-3. arXiv:1005.3110 [gr-qc]

42. S.A. Hojman, F.A. Asenjo, Eur. Phys. J. C 78(10), 843
(2018). https://doi.org/10.1140/epjc/s10052-018-6341-8.
arXiv:1803.03873 [gr-qc]

43. R.H. Rietdijk, J.W. van Holten, Class. Quantum Gravity 10, 575–
594 (1993). https://doi.org/10.1088/0264-9381/10/3/017

44. Y.N. Obukhov, D. Puetzfeld, Phys. Rev. D 83, 044024 (2011).
https://doi.org/10.1103/PhysRevD.83.044024. arXiv:1010.1451
[gr-qc]

123

https://doi.org/10.3847/2041-8213/ab0ec7
http://arxiv.org/abs/1906.11238
https://doi.org/10.3847/2041-8213/abe71d
http://arxiv.org/abs/2105.01169
https://doi.org/10.3847/2041-8213/abe4de
http://arxiv.org/abs/2105.01173
https://doi.org/10.3847/2041-8213/ac6674
https://doi.org/10.3847/2041-8213/ab0f43
http://arxiv.org/abs/1906.11242
https://doi.org/10.3847/2041-8213/ac6756
https://doi.org/10.1093/mnras/131.3.463
https://doi.org/10.1103/PhysRevD.62.084003
http://arxiv.org/abs/astro-ph/9904193
https://doi.org/10.12942/lrr-2013-1
http://arxiv.org/abs/1104.5499
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
http://arxiv.org/abs/0812.1806
https://doi.org/10.1063/1.1308507
http://arxiv.org/abs/gr-qc/0005050
https://doi.org/10.1140/epjc/s10052-021-09502-0
https://doi.org/10.1140/epjc/s10052-021-09502-0
http://arxiv.org/abs/1910.13758
https://doi.org/10.1093/ptep/ptx022
http://arxiv.org/abs/1701.00564
https://doi.org/10.1093/ptep/ptx072
http://arxiv.org/abs/1704.04637
https://doi.org/10.1093/ptep/ptz161
http://arxiv.org/abs/1909.08420
https://doi.org/10.1103/PhysRevD.99.084043
http://arxiv.org/abs/1901.02785
https://doi.org/10.1140/epjc/s10052-020-8070-z
http://arxiv.org/abs/2002.04280
https://doi.org/10.1140/epjc/s10052-022-11143-w
https://doi.org/10.1140/epjc/s10052-022-11143-w
http://arxiv.org/abs/2208.03661
https://doi.org/10.1103/PhysRevD.104.044009
http://arxiv.org/abs/2104.02167
https://doi.org/10.1103/PhysRevD.106.084032
http://arxiv.org/abs/2208.02690
https://doi.org/10.1103/PhysRevD.91.124030
https://doi.org/10.1103/PhysRevD.91.124030
http://arxiv.org/abs/1503.07060
https://doi.org/10.1103/PhysRevD.100.104052
http://arxiv.org/abs/1910.11565
https://doi.org/10.1140/epjc/s10052-020-8254-6
https://doi.org/10.1140/epjc/s10052-020-8254-6
http://arxiv.org/abs/2003.09227
https://doi.org/10.1098/rspa.1951.0200
https://doi.org/10.1007/978-3-319-18335-0_2
http://arxiv.org/abs/1505.01680
https://doi.org/10.1046/j.1365-8711.1999.02754.x
https://doi.org/10.1103/PhysRevD.90.064035
https://doi.org/10.1103/PhysRevD.90.064035
http://arxiv.org/abs/1408.1773
https://doi.org/10.1103/PhysRevD.81.044019
https://doi.org/10.1103/PhysRevD.81.044019
http://arxiv.org/abs/0909.3756
https://doi.org/10.1103/PhysRev.83.10
https://doi.org/10.1103/PhysRev.83.10
https://doi.org/10.1007/s10714-010-0995-3
https://doi.org/10.1007/s10714-010-0995-3
http://arxiv.org/abs/1005.3110
https://doi.org/10.1140/epjc/s10052-018-6341-8
http://arxiv.org/abs/1803.03873
https://doi.org/10.1088/0264-9381/10/3/017
https://doi.org/10.1103/PhysRevD.83.044024
http://arxiv.org/abs/1010.1451

	The particle surface of spinning test particles
	Abstract 
	1 Introduction
	2 Single-pole particles
	2.1 Quasi-local definition
	2.2 The circular orbits of single-pole particle in static spherical symmetric spacetime
	2.2.1 Effective potential method
	2.2.2 Quasi-local method

	2.3 Dynamic spacetime

	3 Pole–dipole particle
	3.1 Review the Mathisson–Papapetrous–Dixon (MPD) equations
	3.2 Quasi-local definition
	3.3 The equivalence between the effective potential method and the quasi-local definition
	3.3.1 Effective potential method
	3.3.2 Quasi-local study of the circular orbits


	4 Discussion and conclusion
	Acknowledgements
	Appendix A: Quasi-local definition of the pole–diople particle surface based on the concept of the photon surface
	References




