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Employing the thermodynamic geometry approach, we explore the phase transition of four-dimensional
spinning black holes in an anti–de Sitter (AdS) space and find the following novel results. (i) Contrary to
the charged AdS black hole, thermodynamic curvature of the spinning AdS black hole diverges at the
critical point, without needing normalization. (ii) There is a certain region with small entropy in the space of
parameters for which the thermodynamic curvature is positive and the repulsive interaction dominates.
Such behavior exists even when the pressure is extremely large. (iii) The dominant interactions in the
microstructure of extremal spinning AdS black holes are strongly repulsive, which is similar to an ideal gas
of fermions at zero temperature. (iv) The maximum of thermodynamic curvature, jRj, is equal to CP

maximum values for the Van der Waals fluid in the supercritical region, while for the black hole, they are
close to each other near the critical point.
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I. INTRODUCTION

Thermodynamic fluctuation provides a unique frame-
work for the geometrical description of thermodynamical
systems in equilibrium. We are particularly interested in
the covariant version, known as Ruppeiner geometry [1],
which consists of a metric that measures the probability of a
fluctuation between two thermodynamic equilibrium states.
The Riemannian scalar curvature, known as the thermo-
dynamic curvature, arises from such a metric and is a
fundamental object in the Ruppeiner geometry which
contains information about interparticle interaction. More
specifically, a negative (positive) sign of the thermody-
namic curvature determines an attractive (repulsive) inter-
action between particles, while a zero value for the
thermodynamic curvature means there is no interaction
between particles [2–4]. The absolute value of the thermo-
dynamic curvature in the asymptotic critical region is
related to the correlation length in fluids [3].
Since the discovery of entropy and temperature of black

holes [5,6], it has been well established that one can regard
a black hole as a thermodynamic system characterized by a
set of thermodynamic variables. It is particularly interesting
to investigate the critical behavior and phase transition of

black holes in the background of AdS spacetime [7–11]. It
has been confirmed that one can extend the thermodynamic
phase space by treating the cosmological constant as the
thermodynamic pressure, P ¼ −Λ=ð8πÞ, in an extended
phase space, with its conjugate variable as volume [12–17].
In this regard, continuous and discontinuous phase tran-
sitions between small and large charged AdS black holes
have been realized [18], which are analogous to the Van der
Waals liquid-gas phase transition and belong to the same
universality class [18,19]. Besides, these studies reveal
some interesting phenomena, such as the Van der Waals
liquid-vapor phase transition [18], the zeroth-order phase
transition [20], the reentrant phase transition [21,22],
the triple critical point [23], the superfluid-like phase
transition [24], and many others.
In the context of black hole thermodynamics, the

thermodynamic curvature in the Ruppeiner geometry pro-
vides a powerful tool to explore the microscopic behavior
of black holes. The results obtained can also be compared
with accessible experimental systems. Thermodynamic
curvature has been investigated for various types of black
holes (see e.g., [25–34] and references therein). It has been
disclosed that thermodynamic curvature does not diverge
at the critical point, contrary to the fluid systems. Recently,
two new normalized thermodynamic curvatures for a
charged AdS black hole have been proposed, which diverge
at the critical point of the phase transition [35–37]. These
thermodynamic curvatures are constructed via the heat
capacity at constant volume [35,36] and adiabatic com-
pressibility [37] and have the same behavior for large black
holes. In [37] it was shown that the normalized thermo-
dynamic curvature diverges to positive infinity for extremal
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black holes. More recently, the behavior of these two
normalized thermodynamic curvatures was studied for
several different black holes [38–43].
In this paper, we explore the thermodynamic phase

structure of four-dimensional rotating AdS black holes.
We consider an extended phase space in the pressure (P)
and entropy (S) plane, in which the small-like and large-
like black holes are separated by the maximum of the
specific heat at constant pressure in the supercritical region.
In addition, we provide simple analytical expressions for
critical quantities. From the thermodynamic fluctuation
metric in the entropy representation, we obtain a Ruppeiner
line element of rotating AdS black holes in the pressure-
entropy coordinates, where it is also valid for the ordinary
thermodynamic systems, such as the simple Van der Waals
fluid. Then, by using the thermodynamic curvature,
we explore the microscopic properties of the system and
compare them with those of the Van der Waals fluid system.
In particular, we investigate the behavior of the maximum
of the specific heat at constant pressure and the minimum
of the thermodynamic curvature for these systems in the
supercritical region. We find that, for both cases, the
thermodynamic curvature diverges at the critical point
and goes to positive infinity for the extremal black holes.
Finally, the critical behavior of the thermodynamic curva-
ture for the characteristic curves is studied and the critical
exponents are calculated.
The rest of the paper is organized as follows. In Sec. II,

we first give a brief review on thermodynamics of four-
dimensional rotating AdS black holes in the extended phase
space and then determine the thermodynamic phase struc-
ture in the P-S plane. Next, we obtain the Ruppeiner metric
in (P-S) coordinates, and using this, we study in detail
the microscopic properties of the black hole and Van der
Waals system in Sec. III. Section IV is devoted to inves-
tigating the thermodynamic curvature near the critical
region. In Sec. V, we present our summary and discussion.
In the Appendix, we calculate the thermodynamic curva-
ture of the Van der Waals system using the Ruppeiner
metric in (P-S) coordinates.

II. THERMODYNAMIC PHASE STRUCTURE

Let us begin with a brief review of the thermodynamics
of single spinning AdS black holes in four dimensions,
based on Refs. [14,44]. The mass of the Kerr-AdS black
hole with pressure (P) is [14]

MðS; P; JÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 8SP=3Þ½4π2J2 þ S2ð1þ 8SP=3Þ�

πS

r

;

ð1Þ

where S and J are the entropy and angular momentum,
respectively. We also take ðS; J; PÞ as the set of thermo-
dynamic parameters. This assumption can be justified if

one extends the phase space by treating the cosmological
constant as the thermodynamic variable, pressure, with its
conjugate variable as volume [18]. Next, we identify the
black hole mass as enthalpy and write down the first law of
thermodynamics as

dM ¼ TdSþ ΩdJ þ VdP; ð2Þ

where T is the Hawking temperature, Ω the angular
velocity, and V the thermodynamic volume, which are
given by

Ω ¼ πJ
SM

ð1þ 8SP=3Þ; ð3Þ

V ¼ 2

3πM
ðS2½1þ 8SP=3� þ 2π2J2Þ; ð4Þ

T ¼ 1

8πM
ð½1þ 8SP=3�ð1þ 8SPÞ − 4π2J2=S2Þ: ð5Þ

The internal energy U is obtained fromM via the Legendre
transformation, U ¼ M − PV, and it is given by

UðS; V; JÞ ¼
�
π

S

�
3

8
<

:

�
3V
4π

��
S2

2π2
þ J2

�

− J2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3V
4π

�
2

−
�
S
π

�
3

s 9
=

;
: ð6Þ

In this representation, the first law of black hole thermo-
dynamics is written as

dU ¼ TdSþΩdJ − PdV: ð7Þ

Note that the above first law is not valid for asymptotically
flat black holes, where there is no pressure term in the first
law of black hole thermodynamics.
Now, we study the critical behavior of the rotating

AdS black hole by investigating the specific heat at
constant pressure

CP ¼ T
∂S
∂T

�
�
�
�
P
; ð8Þ

where we have also fixed J. For constant J and P ¼ Pc,
the value of the critical point can be determined by an
inflection point

∂T
∂S

�
�
�
�
Pc

¼ 0;
∂2T
∂S2

�
�
�
�
Pc

¼ 0: ð9Þ

Using the temperature formula in Eq. (5), the critical
quantities are obtained analytically as
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Sc ¼
24πJ

ð73þ 6
ffiffiffiffiffi
87

p Þ1=3 þ ð73− 6
ffiffiffiffiffi
87

p Þ1=3 − 5
≈ 28.719J;

Pc ¼
½ð73þ 6

ffiffiffiffiffi
87

p Þ1=3 þ ð73− 6
ffiffiffiffiffi
87

p Þ1=3 − 5�2
768πJ

≈ 0.003=J;

T2
c ¼

ð6137þ 768
ffiffiffiffiffi
87

p Þ1=3 − 239

ð6137þ768
ffiffiffiffi
87

p Þ1=3 − 7

384π2J
≈ 0.002=J:

ð10Þ

These quantities are the same, numerically, as the ones
found in Ref. [45]. Here, we present their analytical
expressions for the first time in a compact form. For
P > Pc, the specific heat at constant pressure is positive;
i.e., the black hole is thermodynamically stable. However,
below Pc, there exists a certain range of quantities for
which the specific heat at constant pressure is negative
(CP < 0). This corresponds to a thermodynamic instability
of the black hole, which is remedied by the Maxwell equal
area construction,

H
VdP ¼ 0, indicating a first order phase

transition between small and large black holes. The region
of the first order phase transition, which is obtained from
the Maxwell construction, is identified in the P-S plane in
Fig. 1. The small and large black hole phases are located
at the left and right of the shaded region, respectively. In
Fig. 1, the extremal black hole curve (corresponding to zero
temperature) is denoted by the gray dashed line, and the
critical point is indicated by a black solid circle. The left
region of the gray dashed curve is physically excluded
because the temperature becomes negative.

For the supercritical region, which is at higher pressures
and entropies than the critical point, we illustrate the local
maximum of the specific heat at constant pressure (CP) in
Fig. 1 by the purple dotted line. The local maximum of CP

commences from ðP̃; S̃Þ ≈ ð1.69; 1.45Þ and terminates at
the critical point, where it goes to infinity, and P̃ ¼ P=Pc

and S̃ ¼ S=Sc are the reduced pressure and entropy,
respectively. This curve can be viewed as an extension
to the coexistence line, which divides the supercritical
region into two phases [46,47]. Here, the small-like and
large-like black holes are separated by the local maximum
of CP in the supercritical region beyond the critical point.

III. THERMODYNAMIC CURVATURE

To set up a thermodynamic Riemannian geometry,
we consider the rotating AdS black hole in the canonical
(fixed J) ensemble of extended phase space so that its
thermodynamic state is specified by the internal energy U
and volume V. The line element of the geometry, which
characterizes the distance between thermodynamic states,
is given by [1]

dl2 ¼ −
∂2S

∂xμ∂xν dx
μdxν; ð11Þ

where S is entropy and xμ ¼ ðU;VÞ. Using the first law
for a rotating AdS black hole, Eq. (7), and the Maxwell
relation, one can express the line element, Eq. (11), as
follows1:

dl2 ¼ 1

T

�∂T
∂S

�

P
dS2 −

1

T

�∂V
∂P

�

S
dP2: ð12Þ

By computing the Riemannian curvature scalar R (thermo-
dynamic curvature) from the metric, one can get some
information about the interparticle interaction in the
thermodynamic system. In particular, the positive (nega-
tive) sign of the thermodynamic curvature specifies that the
dominant interaction is repulsive (attractive) [2–4]. On the
other hand, R ¼ 0 shows that there is no interaction in
the system [49]. In what follows, we examine the behavior
of the thermodynamic curvature for the rotating AdS black
hole and the Van der Waals fluid.
For the four-dimensional rotating AdS black hole, the

thermodynamic curvature is readily calculated as

R ¼ BðS̃; P̃Þ
JT̃½ð∂T̃=∂S̃ÞP̃�2

; ð13Þ

where BðS̃; P̃Þ is a complicated function of the reduced
pressure (P̃) and entropy (S̃) and T̃ ¼ T=Tc is the reduced

CP max
T 0
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0.0

0.5

1.0

1.5

S Sc

Small
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P
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FIG. 1. Phase structure of the rotating AdS black hole in the
P-S plane. The coexistence region of the first order phase
transition between the large and small black holes is identified.
The gray dashed and purple dotted curves correspond to the
extremal black hole (T ¼ 0) and the local maximum of CP,
respectively; a black spot represents the critical point. Several
isothermal lines are denoted by the thin curves where, from
top to bottom, the temperature is decreased. The region on the left
of the gray dashed curve is excluded since it leads to negative
temperature.

1Although this line element is derived for a rotating AdS black
hole, it remains valid for an ordinary thermodynamic system [48].
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temperature. Note that R is proportional to the inverse of
angular momentum in the reduced parameter space. The
behavior of R is depicted in Fig. 2 as a function of P=Pc
and S=Sc. One can see from Fig. 2 that R is positive in some
region of the parameter space. From Eq. (13), R diverges on
T̃ ¼ 0 and ð∂T̃=∂S̃ÞP̃ ¼ 0, corresponding to the extremal
black holes and diverging specific heat at constant pressure,
respectively.
In order to examine the thermodynamic curvature more

closely, we plot in Fig. 3 the vanishing (brown dotted line)
and diverging (gray dashed line) curves of R as well as the

transition curve (light-blue solid line) of small and large
black holes and local maximum of CP (purple dotted line),
which were already shown in Fig. 1. In Fig. 3, the shaded
regions represent positive values of R, where the dominant
interaction is repulsive. In contrast, R is negative every-
where outside the shaded regions, indicating the dominant
attractive interaction. Remarkably, the transition and
diverging curves coincide at the critical point, which is
highlighted by a black spot. This situation also occurs for
ordinary thermodynamic systems [30]. The white area to
the left of the gray dashed line on the left side of the figure
is excluded because of a negative temperature. One can see
from Fig. 3 that the associated R for the large black hole
phase is negative. However, for the small black hole phase,
there exists a certain region with positive R, which is also
present in the higher pressure regime. In this region, when
approaching the gray dashed curve from above, R diverges
to þ∞, and the dominant interaction becomes strongly
repulsive. The inset in Fig. 3 reveals the existence of a
region with negative R in the shaded region when P̃ is
greater than ≈242.78. Moreover, in Fig. 3, we also display
the local minimum of R in the supercritical region by the
thin green line, which begins at ðP̃; S̃Þ ≈ ð1.41; 1.38Þ and
ends at the critical point where R goes to negative infinity.
In Fig. 4, we depict the coexistence curve (light-blue

solid line) of the Van der Waals vapor-liquid phase
transition and maximum of CP (purple dotted line), as
well as the diverging (gray dashed line) and minimum (thin
green line) of R, where the expression of R is given in the
Appendix. According to Eq. (A4) and Fig. 4, R has
negative values everywhere, indicating the dominant attrac-
tive interaction among the molecules. The coexistence and
diverging curves coincide at the critical point, which is
marked by a black dot. Furthermore, as also seen in Fig. 4,
the maximum of CP and minimum of R curves match each

JR 104

3

2

1

0

FIG. 2. Behavior of the thermodynamic curvature R for the
rotating AdS black hole.
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FIG. 3. Coexistence curve (light-blue solid line), diverging
curve (gray dashed line), and vanishing curve (brown dotted line)
of R for the rotating AdS black hole. The region on the left of the
gray dashed curve is excluded since it leads to negative temper-
ature. The thin green and purple dotted curves correspond to the
local minimum of R and local maximum of CP, respectively; a
black spot represents the critical point. In the shaded region, R is
positive; otherwise R < 0. The inset shows a negative R in the
shaded region for P̃ ≳ 242.78.
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FIG. 4. Coexistence curve (light-blue solid line) and diverging
curve (gray dashed line) of R for the Van der Waals fluid. The thin
green and purple dotted curves correspond to the minimum of R
and maximum of CP, respectively; a black spot represents the
critical point. The thin green and purple dotted curves match with
each other. Note that R is negative everywhere in this plane.
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other in the supercritical region. For the region below the
coexistence curve, the Van der Waals model is inapplicable,
so it is not considered here.

IV. CRITICAL PROPERTIES

To further clarify the critical behavior of thermodynamic
curvature for the rotating AdS black hole and the associated
critical exponent, we investigate the thermodynamic cur-
vature of characteristic curves around the critical point. To
do so, in Fig. 5, we illustrate R along its minimum and
maximum ofCP curves as well as along the transition curve
for small and large black holes in the neighborhood of the
critical temperature. As is evident from the figure, the large
black hole is at higher jRj than the small black hole, and
upon approaching the critical point, R in both phases
diverges as

R ≈ −
41.2
J

jtj−2; ð14Þ

with a universal critical exponent of 2, where t ¼ T=Tc − 1
is the deviation from the critical temperature. In the
supercritical regime, the local minimum of R and maximum
of CP curves are close together in thermodynamic curva-
ture, and they diverge from above Tc as

R ≈ −
165.3
J

t−2; ð15Þ

implying a critical exponent of 2.
For the Van der Waals fluid, the thermodynamic curva-

ture of the vapor and liquid along the coexistence curve
near the critical temperature has the following form:

R ¼ −
1

12
jtj−2: ð16Þ

Moreover, upon approaching the critical point from above
along the minimum of R and maximum of CP curves, R
diverges with the exponent 2 as

R ¼ −
1

3
t−2: ð17Þ

V. SUMMARY AND DISCUSSION

Thermodynamic geometry of black holes provides a
powerful tool to explore the microscopic structure of these
systems and disclose the nature of the interaction between
their ingredient particles. In this paper, we have presented
simple exact analytical expressions for the critical quan-
tities of the Kerr-AdS black holes and constructed the phase
diagram in the pressure-entropy parameter space, where the
small black hole and large black hole phases are separated
by a first order phase transition region below the critical
point. Based on the locus of the maxima of the specific heat
at constant pressure, we divided the supercritical region
into small-like and large-like black hole regions. Indeed,
the line of maxima is used as the Widom line, which is
characterized by the maximum of the correlation length. In
addition, starting from the Ruppeiner geometry in an
entropy representation, we have derived the thermody-
namic metric for the Kerr-AdS black holes in the pressure-
entropy coordinates, which is also valid for any ordinary
thermodynamic system. We have explicitly shown that,
contrary to the charged AdS black hole [48], the thermo-
dynamic curvature of the Kerr-AdS black hole diverges
at the critical point, without needing normalization.
Compared to the simple Van der Waals fluid, which has
negative thermodynamic curvature everywhere, we have
found that there is a certain region for the spinning AdS
black holes with small entropy in the space of parameters
for which the thermodynamic curvature is positive and the
repulsive interaction dominates. Such behavior exists even
when the pressure is extremely large. Another distinction
is that the dominant interactions in the microstructure of
extremal Kerr-AdS black holes are strongly repulsive,
which is similar to an ideal gas of fermions at zero
temperature [2].
Taking into account the fact that the magnitude of the

thermodynamic curvature is related to the correlation
length, we have used the locus of the maximum of jRj
to characterize the Widom line. We have found that the
maximum of jRj is equal to CP maximum values for the
Van der Waals fluid in the supercritical region, while for
the black hole, they are close to each other near the critical
point. Finally, we have determined the critical behavior of
thermodynamic curvature of spinning AdS black holes and
found out that it is governed by a universal critical exponent
of 2, which is the same as the Van der Waals fluid.
In the context of AdS/CFT correspondence, the study of

Van der Waals-like phase transitions in AdS black holes

CP max
R  min
Large BH
Small BH

0.9 1.0 1.1 1.2

1000

105

107

T Tc

JR

FIG. 5. Thermodynamic curvature R of characteristic curves for
the rotating AdS black hole. The purple dotted and thin green
curves are close together.
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with a spherical horizon allowed us to investigate the specific
aspect on the dual field theories at finite temperature [50,51].
For instance, the hysteretic behavior of the shear viscosity to
entropy density of the quantum field theory can be explained
by the thermodynamic phase transition of the spherical black
holes, where the spherical geometry of the horizon breaks
the translational symmetry in the dual quantum field theory.
In this paper, the focus was on the phase transition and
critical behavior of spinning AdS black holes. The study of
hydrodynamic properties of the dual field theory is left for
future investigations.
It would be interesting to study reentrant phase tran-

sitions and universal properties of higher-dimensional
rotating AdS black holes by employing the thermodynamic
Riemannian geometry based on the fluctuations of the
entropy and pressure.

Note added.—Recently, we learned that another article [52]
had addressed the same issue, where it was shown that the
thermodynamic curvature has different behavior at small
entropy. However, our results differ from [52] in that we
find a region within the repulsive interaction area in which
the thermodynamic curvature has negative values.

APPENDIX: VAN DER WAALS MODEL

In this appendix, we calculate the thermodynamic
curvature for the Van der Waals fluid in the P-S plane.
The specific Helmholtz free energy of the Van der Waals
fluid, which contains two parameters (a,b) reflecting the
intermolecular interaction and molecular size effects, is
given by [53]

F ¼ −
a
v
− T

�
ln½v − b� þ 3

2
ln½T� þ ln½ζ� þ 1

�
; ðA1Þ

where ζ ¼ ðm=2πÞ3=2 and m is the mass of an atom. Here,
T and v are the temperature and specific volume, respec-
tively. It is important to note that v > b. Using Eq. (A1), the
pressure and entropy are obtained as

P̃ ¼ 8T̃
3ṽ − 1

−
3

ṽ2
; s̃ ¼ T̃ð3ṽ − 1Þ2=3

22=3
; ðA2Þ

expressed in terms of the reduced thermodynamic variables

T̃ ¼ T
Tc

; P̃ ¼ P
Pc

; ṽ ¼ v
vc

; s̃ ¼ s
sc
;

where s≡ eð2S−5Þ=3=ζ2=3 and S is the entropy. The critical
quantities are

Pc¼
a

27b2
; vc¼3b; sc¼

211=3a

27b1=3
; Tc¼

8a
27b

: ðA3Þ

Using the line element in (P-S) coordinates, Eq. (12), the
thermodynamic curvature is obtained as

R ¼ ð3ṽ − 1Þ8=3½ð3ṽ − 1Þ8=3 − 211=3s̃ṽ3�
3½ð3ṽ − 1Þ8=3 − 28=3s̃ṽ3�2 ; ðA4Þ

which is independent of a and b.
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