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Abstract Symmetric Teleparallel Gravity allows for the
reformulation of gravity in the form of nonmetricity by van-
ishing the contorsion term in the generic affine connection.
Our focus is on investigating a recently proposed extension of
this theory in which the Lagrangian has the form f (Q,C) by
incorporating the boundary termC . In this work, we first use a
reconstruction approach in f (Q,C) gravity that might admit
the �CDM expansion history. Furthermore, we perform a
novel approach for cosmological reconstruction of f (Q,C)

gravity in terms of e-folding, and it shows how any FLRW
cosmology can arise from a specific f (Q,C) gravity. A vari-
ety of instances are provided using this approach in which
f (Q,C) gravity is reconstructed to yield the well-known
cosmic evolution: �CDM era, acceleration/deceleration era
which is equivalent to the presence of phantom and non-
phantom matter, late-time acceleration with the crossing of
phantom-divide line and transient phantom era.

1 Introduction

Einstein’s curvature-based theory of general relativity (GR)
has undeniably been very successful, with its tremendous the-
oretical consistency and excellent agreements with observa-
tional experiments; so much so that, it has obscured the exis-
tence of two viable, although equivalent formulations of GR
in a curvature-less spacetimes, in which gravity can be com-
pletely attributed to either torsion or non-metricity property
of that spacetime. In the former case, a metric-compatible
affine connection on flat spacetime with torsion substitutes
the unique torsion-free and metric-compatible Levi-Civita
connection on which GR was originally built. This particular
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theory, initiated by Einstein himself [1], is called the met-
ric teleparallel theory. The latter case generates symmetric
teleparallel theory, formulated based on an affine connection
with vanishing curvature and torsion [2]. One can construct
the so-called torsion scalar T from the torsion tensor Tμ

νσ in
the metric teleparallel theory and the non-metricity scalar Q
from the non-metricity tensor Qμνσ in its symmetric counter-
part. Thereafter, by considering the Lagrangian L = √−gT
in the former and L = √−gQ in the latter, the respective
field equations can be obtained. However, it is observed that
the two theories are equivalent to GR up to a boundary term
since both the scalars T and Q equal to the Levi-Civita Ricci
scalar R̊ modulo a total divergence term, given respectively
by the notations

B = 2∇̊μT
σμ

σ , C = ∇̊μ

(
Q σμ

σ − Qμσ
σ

)
. (1)

Being equivalent to GR, naturally both the metric and sym-
metric teleparallel theories inherit the same ‘dark sector’
issues as in GR, that is, modifications of the standard model
of particle physics or the existence of yet undetected neg-
ative energy components to demonstrate the early and late-
time accelerating expansion of the universe are necessary. To
resolve this issue, modified f (T) [3] and f (Q) [4] theories
of gravity in the respective genres have been introduced in
the same way as f (R̊) theory was introduced in GR [5–10].

Most of the features of the f (T ) theories were extensively
studied, for a detailed review see [11] and the references
therein. In fact, the comparatively immature f (Q) theory
gained significant attention too in recent times and being
investigated rigorously [12–28]. For a detailed survey, one
can also look at [29] and the references therein.

Very recently, attempts were made to display the f (R̊)

theory as a particular limit in both metric and symmetric
teleparallel theory by incorporating the respective boundary
terms B and C in their Lagrangians. The f (T, B) [30] and
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f (Q,C) [31,32] theories thus produced, are of the latest
interest among the researchers.

Several approaches have been used in the literature to
recover the features of �CDM using modified theories of
gravity. However, the cosmological reconstruction schemes
have a unique position among them. For example, Nojiri et
al. [33] devised an intriguing strategy for the cosmological
reconstruction of f (R) gravity in terms of e-folding. The
matter components need an additional degree of freedom, as
found by Dunsby et al. [34], for an accurate reconstruction
of �CDM development under f (R) gravity.

In this work, we aim to study the cosmological recon-
struction scheme in the f (Q,C) gravity theory. Recently,
Gadbail et al. [35] investigated the reconstruction scheme
in f (Q) gravity, and they adopted two methods to find the
explicit Lagrangian form of f (Q), which led to several inter-
esting results. We extended this reconstruction strategy in
f (Q,C) gravity by assuming the additive form f (Q,C) =
g(Q) + h(C), which may demonstrate separately the influ-
ence of the boundary termC in f (Q) gravity. Classically, the
underlying concept of reconstruction involves a reversal of
the conventional process: some theoretically or observation-
ally established physical assumptions (e.g., an assumed form
for the spatial scale factor) are utilized, and subsequently,
by substituting it into the cosmological equations, additional
information is obtained regarding the other unknowns of the
theory, in the present case, the arbitrary function f in the
Lagrangian.

The present article is organized as follows: in Sect. 2, we
present a brief review of the basic formulation of f (Q,C)

gravity theory. In Sect. 3, we present the FLRW cosmology
in f (Q,C) gravity theory. In Sect. 4, we perform a recon-
struction strategy in f (Q,C) gravity that admits the �CDM
universe. In Sect. 5, we perform the cosmological recon-
struction scheme for modified f (Q,C) gravity in terms of
e-folding by assuming various examples of FLRW solutions.
Finally, we discuss and summarize the results in Sect. 6.

Throughout the article we have used the notations fQ =
∂ f
∂Q , fC = ∂ f

∂C . All the expressions with a ˚( ) is calculated

with respect to the Levi-Civita connection �̊.

2 f (Q,C) gravity

As we know, the Levi-Civita connection �̊α
μν is the

unique affine connection which satisfies both the metric-
comptaibility and torsion-free conditions. We relax this
restriction and instead assume a torsion-free and curvature-
free affine connection�α

μν to develop the symmetric telepar-
allel geometry. The torsionless environment makes the affine
connection symmetric in its lower indices, hence the term
‘symmetric’. The incompatibility of this affine connec-

tion with the metric is characterised by the non-metricity
tensor

Qλμν := ∇λgμν = ∂λgμν − �
β
λμgβν − �

β
λνgβμ �= 0. (2)

We can always express

�λ
μν := �̊λ

μν + Lλ
μν. (3)

It follows that,

Lλ
μν = 1

2
(Qλ

μν − Qμ
λ
ν − Qν

λ
μ). (4)

We can construct two different types of non-metricity vec-
tors,

Qμ := gνλQμνλ = Qμ
ν
ν, Q̃μ := gνλQνμλ = Qνμ

ν.

Likewise, we write

Lμ := Lμ
ν
ν , L̃μ := Lνμ

ν . (5)

The superpotential (or the non-metricity conjugate) tensor
Pλ

μν is given by

Pλ
μν = 1

4

(
−2Lλ

μν + Qλgμν − Q̃λgμν − δλ
(μQν)

)
. (6)

Finally, the non-metricity scalar Q is defined as

Q = Qαβγ P
αβγ . (7)

From the torsion-free and curvature-free constraints one can
further easily obtain the following relations:

R̊μν + ∇̊αL
α

μν − ∇̊ν L̃μ + L̃αL
α

μν − LαβνL
βα

μ = 0 ,

(8)

R̊ + ∇̊α(Lα − L̃α) − Q = 0 .

(9)

As Qα − Q̃α = Lα − L̃α , from the preceding relation, one
also defines the boundary term as

C = R̊ − Q = −∇̊α(Qα − Q̃α) (10)

The action in the f (Q,C) theory is defined by

S =
∫ [

1

2κ
f (Q,C) + LM

] √−g d4x, (11)

where f is a function on both Q and C ; and Lm is a matter
Lagrangian.
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By varying the action term with respect to the metric we
derive the field equation

κTμν = − f

2
gμν + 2√−g

∂λ

(√−g fQ Pλ
μν

)

+(PμαβQν
αβ − 2PαβνQ

αβ
μ) fQ

+
(
C

2
gμν − ∇̊μ∇̊ν + gμν∇̊α∇̊α − 2Pλ

μν∂λ

)
fC ,

(12)

which covariantly can be expressed as

κTμν = − f

2
gμν + 2Pλ

μν∇λ( fQ − fC )

+
(
G̊μν + Q

2
gμν

)
fQ

+
(
C

2
gμν − ∇̊μ∇̊ν + gμν∇̊α∇̊α

)
fC . (13)

We define the effective stress energy tensor as

T eff
μν = Tμν + 1

κ

[
f

2
gμν −2Pλ

μν∇λ( fQ − fC )− Q fQ
2

gμν

−
(
C

2
gμν − ∇̊μ∇̊ν + gμν∇̊α∇̊α

)
fC

]
, (14)

to produce GR-like equation

G̊μν = κ

fQ
T eff

μν . (15)

One can visualise the additional part in (14), arising from the
geometric modification during the construction of f (Q,C)

theory to source a fictitious dark energy alike component

TDE
μν = 1

fQ

[
f

2
gμν − 2Pλ

μν∇λ( fQ − fC ) − Q fQ
2

gμν

−
(
C

2
gμν − ∇̊μ∇̊ν + gμν∇̊α∇̊α

)
fC

]
. (16)

As central to all the modified gravity theories, this addi-
tional TDE

μν component, basically generates negative pressure
to drive the late-time acceleration.

In the present paper, we consider a perfect fluid type stress
energy tensor given by

Tμν = pgμν + (p + ρ)uμuν (17)

where ρ, p and uμ denote the energy density, pressure and
four velocity of the fluid respectively.

Since the affine connection in this theory is a completely
independent entity, by taking variation of the action with
respect to the affine connection, we obtain the connection
field equation

(∇μ − L̃μ)(∇ν − L̃ν)
[
4( fQ − fC )Pμν

λ + �λ
μν

] = 0 ,

(18)

where

�λ
μν = − 2√−g

δ(
√−gLM )

δ�λ
μν

,

is the hypermomentum tensor.

3 FLRW cosmology in f (Q,C) gravity

The “cosmological principle” states that on a large enough
scale our Universe is homogenous and isotropic, that is, it
is the same at every point and in every direction. Based
on this, the most reasonable and theoretically as well as
observationally supported model of the present Universe is
the spatially flat Friedmann–Lemaitree–Robertson–Walker
(FLRW) spacetime given by the line element in Cartesian
coordinates

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], (19)

where a(t) is said to be the scale factor of the Universe, and its
first time derivative is given by the Hubble parameter H(t) =
ȧ

a(t) . Here (̇) indicates a derivative with respect to cosmic time
t . We proceed with the vanishing affine connection �α

μν = 0
and compute the followings as required

R̊ =6(2H2 + Ḣ), Q = −6H2, C = 6(3H2 + Ḣ).

(20)

With these data, we derive the Friedmann-like equations as

κρ = f

2
+ 6H2 fQ − (9H2 + 3Ḣ) fC + 3H ḟC (21)

κp = − f

2
− (6H2 + 2Ḣ) fQ − 2H ḟQ

+ (9H2 + 3Ḣ) fC − f̈C . (22)

4 �CDM Universe in f (Q,C) gravity

We reconstruct the f (Q,C) gravity model in this section to
closely resemble the �CDM model for various epochs. We
may create a real-valued function that gives the specific cos-
mic development of the �CDM model for the non-metricity
scalar and boundary term. According to observational cos-
mology, the �CDM model’s description of the Hubble rate
in terms of redshift is provided by

H(z) =
√

ρ0

3
(1 + z)3 + �

3
, (23)

where ρ0 ≥ 0 is the matter density and � is a cosmological
constant. Here, we attempt to develop the f (Q,C) gravity
theories that most closely resemble the �CDM expansion.
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Using the relation of scale factor a and redshift z as 1
a = 1+z,

the above equation can be demonstrated as

ȧ

a
=

√
ρ0

3a3 + �

3
. (24)

From the above equation, we may get the derivative of the
scale factor a(t) with respect to time (t) as

ȧ =
√

ρ0

3a
+ �

3
a2. (25)

From the above equation, we can immediately calculate the
second derivative of the scale-factor, which is given by

ä = 1

2

d

da
(ȧ2) = 2�a3 − ρ0

6a2 . (26)

We know that for a flat FLRW universe, the boundary term
C is defined by

C = 6

(
2
ȧ2

a2 + ä

a

)
. (27)

Now, we can rewrite the boundary term C in terms of the
scale factor by plugging Eqs. (24) and (26),

C(a) = (3ρ0 + 6� a3)

a3 . (28)

With the help of above equation, we write the scale factor in
terms of the boundary term C as

a(C) =
(

3ρ0

C − 6 �

) 1
3

. (29)

Now, the Hubble parameter and Its derivative in terms of
boundary term C can be written as

H(C) =
√

ρ0

3a(C)3 + �

3
, (30)

and

Ḣ(C) = 6� − C

6
. (31)

For simplicity, here we assume the class of f (Q,C) func-
tions as f (Q,C) = g(Q)+h(C) (additive separable model).
The additive separable model contains extensively differ-
ent cosmological limitations, such as STEGR (g = Q and
h = 0), �CDM (g + h = 2�), f (Q) gravity (h = 0),
STEGR with a modification allowing the g(Q) and h(C)

functions to fully capture the behavior of the boundary term.
This type of model has the advantage of producing a decou-
pled system of ordinary differential equations for the g(Q)

and h(C) functions, which are easier to solve. Now, in order
to find a class of f (Q,C) functions, which mimic the �CDM
expansion, we separate the differential equation by using
variable separation approach for Q-space and C-space. In

Q-space, we yielding the first-order inhomogeneous differ-
ential equation for the function g(Q) as,

Q
dg(Q)

dQ
− g(Q)

2
+ κρ = K . (32)

Also, we plug all of the above quantities represented as func-
tions of the boundary term into the Friedmann equation, and
in C-space, we yielding another second-order homogeneous
differential equation for the function h(C) as

− (C − 3�)(C − 6�)
d2h(C)

dC2 −C

2

dh(C)

dC
+ h(C)

2
=K ,

(33)

where K is a separable constant. For differential equation
(32), Gadbail et al. [35] found the more general functions
of non-metricity scalar Q that admit exact �CDM expan-
sion history by presumed different fluid components such as
dust-like matter, perfect fluid, multifluid, and nonisentropic
perfect fluids. So, in this section, our task is to find the general
functions of boundary termC admit exact �CDM expansion
history.

In Eq. (33), we yield the homogeneous second-order dif-
ferential equation and its solution is

h(C) = 2K + c1 C + c2

[√
C − 3�

6�

− C

6
√

3�3/2
Tanh−1

(√
C − 3�

3�

)]

, (34)

where c1 and c2 are integration constant.
The fluid components have no effect on the differential

equation (33). As a result, the following solution for the
boundary term C can be valid for all fluid components in the
general solution of f (Q,C). The solution of g(Q) is affected
by fluid components (see in Eq. (32)). As a result, Gadbail et
al. [35] got several solutions for g(Q) corresponding to dif-
ferent fluid components. Furthermore, if we set � = 0, the
solution of f (Q,C) is real-valued for nonmetricity Q and
boundary term C , and therefore there exist classes of a real-
valued function f (Q,C) other than GR that may represent
the expansion history of the universe without the cosmolog-
ical constant. But even a minimal value of the cosmological
constant would break this degeneracy, and in that case, the
theory would have to reveal a �CDM universe.

5 Cosmological reconstruction of modified f (Q,C)

gravity

In this section, we also used the model f (Q,C) = g(Q) +
h(C) and separate the first Friedmann equation for two dif-
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ferent variable Q and C as

g(Q)

2
− Q

dg(Q)

dQ
+ κρ(Q) = 0, (35)

and

h(C)

2
− (9H2 + 3Ḣ)

dh(C)

dC
+ 3HĊ

d2h(C)

dC2 = 0, (36)

The foregoing equations are represented as functions of
the e-foldings number rather than the time t , N = log a

a0
.

The variable N is associated with the redshift z by e−N =
a0
a = (1 + z). Since d

dt = H d
dN and consequently d2

dt2
=

H2 d2

dN2 + H dH
dN

d
dN , one can rewrite Eq. (36) as

0 = −h(C)

2
+ 3(3H2 + H H ′)dh(C)

dC

−18(6H3H ′ + H2(H ′)2 + H3H ′′)d
2h(C)

dC2 . (37)

Here H ′ = dH
dN and H ′′ = d2H

dN2 .
The matter energy density, denoted by the symbol ρ, may

obtained by summing the fluid densities with a constant EoS
parameter wi

ρ =
∑

i

ρi0 a
−3(1+wi ) =

∑

i

ρi0 a
−3(1+wi )
0 e−3(1+wi )N .

(38)

Let us express the Hubble parameter in terms of N using the
function J (N ) as follows:

H = J (N ) = J (−ln(1 + z)). (39)

Then the boundary term C written as C = 18 J (N )2 +
6 J ′(N ) J (N ), where N = N (C). By using Eq. (39), Eq.
(37) can be written as,

0 = −h(C)

2
+ 3

(
3 J (N )2 + J ′(N ) J (N )

) dh(C)

dC

−18
(

6 J (N )3 J ′(N ) + J (N )2(J ′(N ))2

+J (N )3 J ′′(N )
) d2h(C)

dC2 , (40)

which constitutes a differential equation for h(C), where the
variable is the boundary term C . Instead of J , if we use
G(N ) = J (N )2 = H2, the expression might be simplified
slightly:

0 = −h(C)

2
+ 3

(
3G(N ) + 1

2
G ′(N )

)
dh(C)

dC

−9G(N )
(
6G ′(N ) + G ′′(N )

) d2h(C)

dC2 . (41)

Note that the boundary term is given by C = 18G(N ) +
3G ′(N ).

For example, we reconstruct the f (Q,C) model, repro-
ducing the �CDM-era without real matter. The FLRW equa-
tion for �CDM cosmology in Einstein’s gravity is presented
by

3

κ2 H
2 = 3

κ2 H
2
0 + ρ0

a3 = 3

κ2 H
2
0 + ρ0 a

−3
0 e−3N . (42)

In this scenario, H0 and ρ0 are constants. The first component
in the RHS represents the cosmological constant, whereas
the second term represents cold dark matter (CDM). The
(effective) cosmological constant � in the current universe
is given by � = 12H2

0 . Then follows

G(N ) = H2
0 + κ2

3
ρ0 a

−3
0 e−3N , (43)

and C = 18H2
0 + 3κ2ρ0 a

−3
0 e−3N , which can be solved for

N as follows:

N = −1

3
ln

(
C − 18H2

0

3κ2ρ0 a
−3
0

)

. (44)

Using Eq. (43), Eq.(41) can be written in the following form:

0 = −h

2
+ C

2

dh

dC
+

(
C − 9H2

0

) (
C − 18H2

0

) d2h

dC2 . (45)

The solution of differential equation (45) is

h(C) = c1 C + c2

⎡

⎣

√
C − 9H2

0

18H2
0

− C

54H3
0

tanh−1

⎛

⎝

√
C − 9H2

0

3H0

⎞

⎠

⎤

⎦ , (46)

where c1,2 is an arbitrary constant of integration.
For this example, Gadbail et al. [35] have previously

reconstructed a f (Q) model that can describe the �CDM
period without including the effective cosmological constant.
As a consequence, we demonstrated that modified f (Q,C)

gravity with boundary condition may describe the �CDM
era without adding the effective cosmological constant.

Another example is the reconstruction of f (Q,C) gravity
using the FLRW equation for the Einstein gravity system with
phantom and non-phantom matter. Whose FLRW equation
is

3

κ2 H
2 = ρq a

−m + ρp a
m, (47)

where ρp, ρq and m are positive constants. We can demon-
strate that the first component of the R.H.S. in this solution
corresponds to a fluid that is non-phantom and has an equa-
tion of state (EoS) of w = −1+m

3 > −1, whereas the second
term has an EoS of w = −1 − m

3 < −1 which relates to a
phantom fluid.
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Then since G(N ) = J (N )2 = H2, we find

G(N ) = Gq e
−mN + Gp e

mN , (48)

where Gq = κ2ρq a
−m
0

3 and Gp = κ2ρq am0
3 are constants. Then

since C = 18G(N ) + 3G ′(N ),

emN =
C ±

√
C2 − 4(324 − 9m2)GpGq

2(18 + 3m)Gp
, m �= −6, (49)

when m �= 6 and

e6N = C

36Gp
, (50)

when m = 6. We consider m = 6 case. In this case, the non-
phantom matter corresponding to the first term in the RHS of
Eq. (47) could be show stiff fluid withw = 1. Shortly after the
beginning, the universe moved through a stage of exponential
expansion known as inflation, and it went through the stiff
fluid epoch throughout evolution, when pressure balanced
the energy density (p = ρ). The concept of a primordial stiff
matter era initially arose in Zel’dovich’s [36] cosmological
model, which assumes the very early cosmos to be formed
of a cold gas of baryons with an equation of state p = ρ.
Zel’dovich’s goal was to look into the cosmological conse-
quences of an equation of state in which the speed of sound
equals the speed of light [37]. In that case, the energy density
decreases as ρ ∝ 1/a6. In this case, Eq. (41) is given by

0 = −h

2
+ C

2

dh

dC
− 18C

(
36

C
GpGq + C

36

)
d2h

dC2 . (51)

The solution of differential equation (51) is

h(C) = c1 C + c2

⎡

⎣ −
√
C2 + 1296Gp Gq

+C tanh−1

⎛

⎝ C
√
C2 + 1296Gp Gq

⎞

⎠

⎤

⎦ . (52)

For this example, the g(Q) is reconstructed in the refer-
ence [35]. They used the case m = 4 (radiation case with
w = 1

3 ) to reconstruct the model. Similarly, for the stiff fluid
scenario (m = 6), we may reconstruct the g(Q) model and
obtain the same sort of result. In this scheme, the recon-
structed f (Q,C) model that can useful to study the inflation
era (early universe before radiation-dominated phase) of the
universe.

Let us now examine a model in which a phantom-like
component is prominent. When a phantom fluid is included,
such a system may be simply described in standard Gen-
eral Relativity, where the FLRW equation reads H(t)2 =
κ2

3 ρph . The phantom character of the fluid is indicated by
the subscript ph. As the EoS for the fluid is provided by

pph = ωphρph with ωph < −1, by utilizing the conser-
vation equation ρ̇ph + 3 H(1 + ωph)ρph = 0, the solution

for the FLRW equation H(t)2 = κ2

3 ρph is well known, and
it produces a(t) = a0(ts − t)−H0 , where a0 is a constant,
H0 = − 1

3(1+ωph)
and ts is the so-called Rip time. The solution

then depicts the universe that collapses at the Big Rip singu-
larity in the future (ts). In f (Q,C) theory, the same behavior
may be obtained without the need of a phantom fluid. It is
possible to solve Eqs. (35) and (41), and rebuild the expres-
sion for the equation f (Q,C) that reproduces the solution.
The expression for the Hubble parameter as a function of the
number of e-folds is given by H(N )2 = H2

0 e2N/H0 . Then,
Eq. (41), with no matter contribution, takes the form:

0 = −h

2
+ C

2

dh

dC
− C2

A

d2h

dC2 , (53)

where A = 1 + 3H0. This equation is the well-known Euler
equation whose solution yields

h(C) = c1 C
A/2 + c2 C. (54)

Since Q = 6H2 = 6G(N ) = 6H2
0 e2N/H0 , which can be

solved for N as follows:

N = H0

2
ln

(
Q

Q0

)
. (55)

Using Eqs. (38) and (55) in Eq. (35), we obtained non-
homogeneous differential equation for Q-space, and its solu-
tion is

g(Q) = c
√
Q + μ

√
Q

Q0
ln(Q), (56)

where μ = ρ0 a
−3(1+wph)

0 and c is an integrating constant.
Therefore, the obtained f (Q,C) model is

f (Q,C) = c
√
Q + μ

√
Q

Q0
ln(Q) + c1 C

A/2 + c2 C.

(57)

In this scheme, the reconstructed f (Q,C) model describes
the universe that ends at the Big Rip singularity in the time
ts (Rip time) without introducing a phantom fluid.

We may now think about the model in which the transition
to the phantom epoch takes place. It has been suggested that
f (Q,C) might act as an effective cosmological constant,
allowing for a good replication of its present measured value.
One can reconstruct the model in which the phantom barrier
is passed once late-time acceleration has been reproduced by
an effective cosmological constant (for such reconstruction
in the presence of an auxiliary scalar, see Ref. [38]). Such a
transition, which may take place at the current time, could
be achieved in f (Q,C) gravity. The solution considered can
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be expressed as:

H2 = H1

(
a

a0

)m

+ H0 = H1 e
m N + H0, (58)

where m, H0, and H1 are all positive constants. When a
cosmological constant and a phantom fluid are taken into
account, this solution can be produced in GR. In this instance,
the f (Q,C) function alone may construct the solution (58)
and reproduce the change from the non-phantom to the phan-
tom epoch. Again, the boundary term can be expressed in
terms of the e-folds. Then, Eq. (41) takes the form:

0 = −h

2
+ C

2

dh

dC

−m(C − 18H0)

(
C − 18H0

m + 6
+ 3H0

)
d2h

dC2 . (59)

The solution of above differential equation is

h(C) = c1 C − c2
2m

m − 6
Cα+β

×F1

(
α−β;−β,−α; 3α − β; 18H0

C
,−3m H0

C

)
,

(60)

where α = 1/2 and β = 3/m. F1 is an Appell hypergeomet-
ric function.

Since Q = 6H2 = 6G(N ) = 6H1 emN + 6H0, which
can be solved for N as follows:

N = 1

m
ln

(
Q − 6H0

6H1

)
. (61)

Using Eqs. (38) and (61) in Eq. (35), we obtained non-
homogeneous differential equation for Q-space, and its solu-
tion is

g(Q) = c
√
Q + μ

(
6H0 − Q

Q − 6H0

) 3(1+w)
m

×2F1

(
−1

2
,

3(1 + w)

m
,

1

2
; Q

6H0

)
, (62)

where μ = −2ρ0 a
−3(1+w)
0

(
H1
H0

) 3(1+w)
m

and c is an integrat-

ing constant.
Following the same reconstruction given above, another

example with transitory phantom behavior in f (Q,C) grav-
ity may be obtained. In this scenario, we take into account
the Hubble parameter:

H2 = H0 ln

(
a

a0

)
+ H1 = H0 N + H1, (63)

where H0 and H1 are positive constants. This model includes
an effective cosmological constant and a term that will induce
a super accelerating phase even if no future singularity
occurs. The solution to the model (63) may be represented as
a function of time: H(t) = a0 H0

2(t−t0)
. The universe then super

accelerates, but as H(t) shows, despite its phantom nature,
no future singularity occurs. The differential reconstruction
equation is given as

0 = −h

2
+ C

2

dh

dC

−9H0

(
C − 18H0

3
− H0 + 6H1

)
d2h

dC2 . (64)

By changing the variable from C to x = C
6H0

− 1
2 , we

can rewrite the above differential equation in the form of
Laguerre’s differential equation:

x
d2h(x)

dx2 −
(
x + 1

2

)
dh(x)

dx
+ h(x) = 0, (65)

and its solution is

h(x) = c1 (x + 1/2) + c2 x
3/2 L

3
2

− 1
2
(x)′ (66)

where L
3
2

− 1
2
(x) is a Laguerre function, and c1,2 is an arbitrary

constant of integration.
Since Q = 6H2 = 6G(N ) = 6H0 N + 6H1, which can

be solved for N as follows:

N =
(
Q − 6H1

6H0

)
. (67)

Using Eq. (38) and (67) in Eq. (35), we obtained non-
homogeneous differential equation for Q-space, and its solu-
tion is

g(Q) = c
√
Q + μ

(

−2 e
− (1+w)Q

2H0 +
√

2(1 + w)Q

H0

× �

[
1

2
,
(1 + w)Q

2H0

] )

, (68)

where μ = ρ0 a
−3(1+w)
0 e

(1+w)H1
2H0 and c is an integrating con-

stant. Therefore, in this example, the f (Q,C) model has a
cosmological solution with phantom behavior that is transi-
tory and does not develop into a future singularity.

6 Conclusion

Symmetric teleparallel equivalent of general relativity and its
modification f (Q) theory have been performing pretty well
in explaining the cosmological mysteries. In this work we
have paid all our attention to reconstructing the Lagrangian
of an extension of this theory while taking into account the
boundary term C , namely, the f (Q,C) theory. In the pres-
ence of this boundary term, the f (Q) theory in the field
equations is possible to be raised from second-order to fourth-
order. Here, we adopt f (Q,C) = g(Q) + h(C) as the arbi-
trary additive separable form of the nonmetricity scalar and
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boundary term. Further, in the limit of h(C) → 0, the theory
is consistent with f (Q) gravity.

In this work, our approach has been to reconstruct the
Lagrangian for two different approaches. The first approach
yields certain real-valued f (Q,C) functions capable of
retrieving the �CDM expansion history of the universe pop-
ulated with various matter components, respectively. In sec-
ond approach, we employ e-folding to do cosmic reconstruc-
tion of f (Q,C) gravity, eliminating the need for more com-
plicated formulations with auxiliary scalars [38–41], and it
demonstrates how any FLRW cosmology may originate from
a specific f (Q,C) gravity. A variety of instances are pro-
vided using this approach in which f (Q,C) gravity is recon-
structed to yield the well-known cosmic evolution: �CDM
era, deceleration with successive transition to effective phan-
tom superacceleration which ended to Big Rip singularity,
deceleration without future singularity and transition to tran-
sient phantom phase. The fact that all of these cosmologies
may be realized solely through modified gravity without the
aid of any dark energy components (cosmological constant,
quintessence, phantom, etc.) is crucial. In general, such mod-
els only succeed in some local gravitational tests.
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