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Abstract: We propose the creation of a Light Exotics Effective Field Theory (LEX-EFT)
catalog. LEX-EFT is a generic framework to capture all interactions between the Standard
Model (SM) and all (or at least a large class of) theoretically allowed exotic states beyond
the Standard Model (bSM), indexed by their SM and bSM charges. These states are light
enough to be on or nearly on shell in some collider processes. This framework, which
subsumes beyond the Standard Model paradigms as generally as possible, is meant to
extend recent successful implementations of bSM EFTs and complement e.g. the Standard
Model Effective Field Theory (SMEFT), which can capture the off-shell effects of exotic
fields. In this work, we review a general method for the construction of a complete list of
gauge-invariant operators involving SM interactions with light exotics via iterative tensor
product decomposition, up to the desired order in mass dimension. Each operator is
characterized by specific Clebsch-Gordan coefficients determined by the charge flow; we
show how this charge flow affects the range of EFT validity and cross sections associated
with an effective operator. We create an example catalog of exotic scalars coupling to SM
gauge boson pairs, and we highlight some operators with exotic weak SU(2)L charges that
can produce spectacular LHC phenomenology. We further demonstrate the utility of the
LEX-EFT approach with several examples of effects on kinematic distributions and cross
sections that would not be captured by EFTs agnostic to the exotic degrees of freedom
and may evade the main inclusive collider searches tailored to the existing preferred set of
standard bSM theories.
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1 Introduction

As the LHC era continues, it is important to leave no stone unturned in the search for
new phenomena beyond the Standard Model (bSM). The space of all possible phenomeno-
logical signatures is vast, and new methods are needed to ensure that a maximal region
of this space is being explored. In recent years, new ground has been opened up by the
introduction of general approaches. Computational techniques like anomaly detection, for
example, remain model agnostic [1]. Along different lines, the Standard Model Effective
Field Theory (SMEFT) attempts to capture new physics by enumerating a complete set
of general operators that govern Standard Model interactions, with all new states assumed
heavy (off shell) and integrated out of the theory [2].

The use of effective field theories (EFTs) has proven to be a phenomenological strategy
of great utility in the LHC era, as it promises to cast the widest possible net in the pursuit of
new physics. EFTs offer a simple formalism for cataloging the interactions of SM and bSM
states. Much work has been done within the SMEFT framework, mentioned just above,
which at the time of writing has a complete catalog of SM operators up to dimension eight
and includes Higgs interactions. This approach has led to a plethora of collider analyses
intended to measure and constrain the SMEFT Wilson coefficients in order to search for
new physics. Discoveries of or constraints on bSM states based on SMEFT analyses requires
matching between the effective theory and a full bSM model. Recent applications of EFTs
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beyond the Standard Model include a diverse and vibrant dark matter (DM) program [3–7]
and interactions of axion-like particles [8]. The DM EFT catalog, for example, has led to
the exploration of many new possible dark matter discovery channels at the LHC [9].

Motivated by these successes, we seek to expand the theoretical coverage of the phe-
nomenological landscape by introducing a Light Exotics Effective Field Theory (LEX-EFT),
a systematized general approach to interactions of exotic states with the SM. Light ex-
otic fields are those light enough not to be totally integrated out of the theory. Since
LEX particles can appear on shell in at least some considered phenomenological processes,
LEX-EFT is complementary to the consideration of the off-shell processes carried out in
e.g. the SMEFT.

In this work, to be precise, we propose the creation of a comprehensive effective op-
erator catalog of interactions between exotic states and the Standard Model, indexed by
the specific gauge representations of the exotic fields. Ideally, LEX-EFT keeps the con-
cision and generality that makes the EFT approach to phenomenology advantageous. In
particular, we view the advantages of LEX-EFT as follows:

• LEX-EFT offers a complete list of all possible interactions between light exotics and
the Standard Model up to the desired order in effective cut-off (mass dimension). It
is thus a guide for bSM precision and collider searches, it allows for the analysis of
new event topologies, and it offers a comprehensive map of event kinematics without
the burden of specifying UV-complete models.

• A complete LEX-EFT catalog would subsume other classes of exotic bSM mod-
els including supersymmetry, exotic Higgs models, and dark matter EFTs. Such a
complete catalog may illuminate new interactions in these theories and thus new
phenomenological channels for study.

• The LEX-EFT catalog would also bring to theoretical consideration bSM states that
have not received model-building attention. It would thus cast a wider net over all of
theory space in a systematic manner, accomplishing a goal that in the past few years
has crystallized and started to receive attention from the theory community [10–12].
As we imagine the LEX-EFT approach would be closely followed up by a simplified
model building approach, this would spark new theoretical innovation.

The LEX-EFT approach removes some of the model agnosticism of other general ap-
proaches to phenomenology, yet it allows the capture of many phenomenological features
of collider processes that would not be possible otherwise. We highlight the following
distinctive features in this work:

• Kinematics and collider cross sections: using unique LEX operators allows one to
keep track of process kinematics, which are vital in constructing collider searches for
new physics. It also allows for the accurate computation of collider production cross
sections, scaled by the relevant effective operator coefficients, up to the validity limits
of the EFT. This allows full consideration of all processes involving production and
decay of exotic states in collider searches.
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• Charge flow and validity of parameter space: constructing effective operators that are
singlets under all gauge groups requires specification of the Clebsch-Gordan coeffi-
cients in operators linking light exotic fields to the SM. For any given set of fields,
there may be multiple ways to perform charge contractions. Each of these contrac-
tions then corresponds to a unique operator, which gives a picture of the charge flow
of the process involved. There may be naturally large coefficients associated with
some operators, which drastically affects predictions of production cross sections in
the theory. Moreover, we find that the range of validity of an effective operator may
vary widely based on choice of charge contraction, even if the fields involved in the
operators are the same.

Even though the LEX-EFT approach focuses on the collider production of on-shell new
states, the proposed operator catalog does have implications for loop-level processes, which
should be explored in future work. In particular:

• Operator correlations: a theory containing a specific LEX state has operators that
may have correlations based on gauge invariance or other theoretical considerations.
This approach works even with LEX states that are totally off-shell. The operator
catalog for off-shell states leads to a specific list of correlated SMEFT operators that
could be measured once the bSM states are integrated out.

• Precision measurements at loop level : specifying the light exotic state appearing in
a theory facilitates the computation of precision quantities such electroweak oblique
parameters, lepton anomalous magnetic dipole moments, b → sγ, etc., which may
not be obvious from other operator catalogs.

This paper is organized as follows. In section 2 we review the iterative construction of
Lorentz- and gauge-invariant operators including light exotic fields. We moreover introduce
an example catalog of operators featuring scalars in higher-dimensional representations of
SU(2)L. In section 3 we explore the idea of exotic charge contraction and demonstrate
how the quantum numbers of light exotics can affect both LHC cross sections for (b)SM
processes and the valid experimentally accessible EFT parameter space. In section 4, we
provide two phenomenological examples of light-exotics models that produce identical final
states at the LHC but exhibit totally distinct kinematics that cannot be captured in any
EFT that excludes bSM degrees of freedom. Section 5 summarizes this work and suggests
avenues of future research within the LEX-EFT framework.

2 An iterative tensor product method to construct new singlet operators

The LEX-EFT framework is underpinned by a straightforward group-theoretic procedure
for obtaining a complete operator list of novel gauge-singlet operators up to a specified
dimension. We therefore begin this work by describing the procedure in general and pro-
viding some reasonably self-contained examples. We start with a new LEX state denoted
by Φi that lies in a specified representation of SM and bSM gauge/global groups. The goal
is to create a complete catalog of singlet operators that couple these LEX fields and SM
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fields ψi up to a given order in an EFT cutoff Λ. More precisely, each effective operator
has the form

1
Λd λ (Φ1Φ2 . . . )(ψ1ψ2 . . . ) (2.1)

plus first derivatives of such fields,1 and we must find a complete list of all charge singlets
composed of SM and LEX fields up to the desired mass dimension 4 + d. Further, the
coupling coefficients λ contain the group-theoretic information about how to complete the
charge contraction of the fields in the operator. As we discuss in section 3, there may be
more than one way to contract the charges, and in general there are many distinct charge
contractions of multi-field operators. Thus the operator coefficients are different, and we
must consider these separate operators.

In order to make sure our list of charge singlets is complete, we follow an iterative
procedure that exploits the known group theory tensor products of irreducible representa-
tions of semisimple Lie groups. We consider the fields Φi and ψj to be in some irreducible
representation(s) of these groups, with an r-dimensional representation denoted in general
by r.2 We can then consider the representation of the direct product of pairs of fields,

r1 ⊗ r2 = q1 ⊕ q2 ⊕ . . . . (2.2)

For any given group there exists a list of such tensor products. We now discuss the con-
struction of invariants from this list of bilinear tensor products.

Observation. If there exist invariant combinations of n+ 1 and m+ 1 fields transforming
in the direct product representations r1 ⊗ · · · ⊗ rn ⊗ p and q1 ⊗ · · · ⊗ qm ⊗ p of a group,
then there exists an invariant combination of n + m fields in the reducible representation
r1 ⊗ · · · ⊗ rn ⊗ q̄1 ⊗ · · · ⊗ q̄m [15].

Example. Suppose that two distinct tensor products contain the same irreducible
representation e; that is, that

a ⊗ b ⊃ e and c⊗ d ⊃ e. (2.3)

In this case we immediately infer the existence of the two trilinear invariants

a ⊗ b⊗ ē and c⊗ d⊗ ē, (2.4)

and we can also create a new iterated invariant by exploiting the fact that e⊗ ē contains
a singlet:

a ⊗ b⊗ c̄⊗ d̄ ⊃ 1. (2.5)

This singlet contains the direct product of four irreducible representations, which can
be mapped back to an operator containing SM and/or LEX fields. We note that the

1We forbid higher-derivative operators in order to avoid the unbounded Hamiltonians predicted by
Ostrogradsky’s theorem [13].

2This simple notation can cause trouble when there are multiple distinct irreducible representations with
equal dimension, as for the 15 and 15′ of SU(3). This specific problem does not impact any results in this
work, but there is standard notation to distinguish between such representations [14].
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“intermediate representation” e need not be in a representation corresponding to the fields
in the theory. It may, however, be useful in determining the flow of charge.

This process can be iterated with further nesting of bilinear tensor products in order
to create singlets containing five representations, then six, etc. By continuing in this
manner and mapping onto (b)SM fields, we can create gauge-invariant operators with more
states. The iterative insertion of tensor products may be systematized to create complete
lists of invariants which contain a specified number N of LEX/SM fields in irreducible
representations. We refer to such singlets as “N -field invariants”. The lists of N -field
invariants will be complete as long as all possible intermediate states (representations)
are accounted for. The complete list of invariants can then become a list of effective
operators with predetermined field content up to the desired order in an effective field
theory expansion (e.g. in the cutoff Λ−1).

For example, suppose we wanted to create a complete list of invariants containing four
fields. We would begin by noting the representations of the SM or LEX fields, thus mapping
{Φi, ψi} → ri. We would then determine all possible bilinear tensor products that involve
these representations. From here we can create a list of three-state invariants. We then
follow the iterative expansion process above, inserting all possible bilinears in intermediate
states, to create a complete list of singlet products containing four terms. These can
then be mapped back into the SM or LEX states to create a complete list of operators.
The operators obtained by mapping back onto the states {Φi, ψi} will be proportional to
the Clebsch-Gordan coefficients that contract the specific charge indices of the four-state
invariants.

Though the list of N -field invariants is complete, the resulting terms contain fields
of various mass dimension (gauge field-strength tensors, scalars, spin 1/2 fermions, etc.)
and therefore may map to operators of various effective dimension. Nevertheless, a similar
iterative process may be employed to create lists with five fields, six fields, etc. Eventually
all operators up to the desired dimension in EFT will be found. We give a brief argument
below concerning the completeness of this process.

Regarding completeness. There exist in the theory a finite number, M , of SM/LEX fields
transforming in irreducible representations ri with i ∈ {1, . . . ,M}. An invariant of interest
contains a specified number N of these fields. Since we are concerned with invariants
involving N fields, we must contract all indices. The intermediate sub-product of a LEX
state in representation rLEX with any other states of the theory will be in some intermediate
representation r′. The sub-product of the remaining states must contracted in the conjugate
representation r̄′, so that singlets take the form

[rLEX ⊗ ri ⊗ rj ⊗ · · · ⊗ rk]r′︸ ︷︷ ︸
N−n

⊗ [rl ⊗ · · · ⊗ rm]r̄′︸ ︷︷ ︸
n

with 1 ≤ i, j, . . . ,m ≤M − 1. (2.6)

There will be a maximal representation size to any sub-product of states within the N -field
invariant, hence a maximum representation size of any intermediate representation r′.

We now argue from induction. To build three-field invariants involving a LEX field,
we need only consider the m possible bilinear tensor products of the LEX state with other
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representations allowed in the theory, [rLEX ⊗ ri]r′j , to obtain the finite list of irreducible
representations r′ in the direct product. If any single field in the theory is in the conjugate
representation r̄′j , then we can directly contract indices to form an invariant:

[rLEX ⊗ ri]r′j ⊗ r̄′j (2.7)

With a list in hand of all m possible bilinear products rLEX ⊗ ri in representations r′j ,
we can proceed to construct the four-field invariants. We find the direct products of the
allowed representations rk⊗rl that are in a given conjugate representation r̄′j and contract
these fields according to

[rLEX ⊗ ri]r′j ⊗ [rk ⊗ rl]r̄′j (2.8)

to obtain singlets. To proceed to five fields, we now consider all possible trilinear products
of the form rLEX⊗ri⊗rj . We note we have already found by exhaustion the representations
of bilinear products of the first two fields in the previous step. In that step, the bilinears
were in representations r′j such that rLEX⊗ri ⊃ r′j . We can thus iterate the bilinear tensor
products r′j ⊗ rj ⊃ r′k to find the representations r′k of all trilinear products. We then
find the remaining bilinear representations rk ⊗ rl that are in the conjugate representation
r̄′k and contract these fields to form the five-field invariant. This process can be repeated
indefinitely and will ultimately produce all possible terms — we only need to know the
list of bilinear tensor products that involve relevant SM/LEX fields and the intermediate
representations r′j , r′k, and so on. We note that this method can be applied not only to
constructing gauge singlets but also straightforwardly to representations of the Lorentz
group, since fields (and their first derivatives) in irreducible representations of the Lorentz
group can be characterized by SU(2)× SU(2) quantum numbers.

We can choose different ways to build the effective operator catalog. One way is, given
a specific field content, to build all operators containing a certain number of fields. Another
is to build all operators up to a certain dimension in the EFT cutoff Λ. Yet another way is to
build all operators that interact through a certain portal. There are some good application
of this in studies of dark matter where a DM candidate may interact, for example, through
a quark portal, so that all possible gauge-singlet DM-quark operators should be specified.

Note that in order for a model to be a true EFT, it must contain every possible operator
up to a specified mass dimension. Generating complete bases of independent operators
for EFTs has been the subject of much research [2, 16–18], involving both traditional
group theory constructions and the Hilbert series method, and there exist computational
tools [19–21] for listing invariant products of fields. There are some complications when
(covariant) derivatives are present; namely, some seemingly different operators may be
related via integration by parts, and some operators may vanish when equations of motion
for the fields are enforced. In the following sections, we consider extending the SM by
adding scalars in many different representations of the SM gauge group. A full list of
invariant operators for each model is beyond the scope of this work. Instead, we take a
signal-based approach, and we choose to outline only those operators that can result in
diboson resonances. Any of these models could be promoted to a complete EFT in order
to take full advantage of the formalism, and we leave such efforts to future work.

– 6 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
0

Mass dimension 5 [×1/Λ]
SU(3)c × SU(2)L ×U(1)Y Operators

(1,1, 0)

φBµνBµν

φWµν,aW a
µν

φGµνGµν

φ (DµH)†i(DµH)i

(8,1, 0)
dABC φAG

µν
B GµνC

φAG
µνABµν

(1,3, 0)
φaWµν,aBµν

φij (DµH)†i(DµH)j

(8,3, 0) φaWµν,aGµν

(1,5, 0) φijklW
ijµνW kl

µν

(10,1, 0) εKLMφIJK G
Iµν
L GJMµν

(27,1, 0) φKLIJ GIµνK GJLµν

Table 1. Dimension-five operators that couple boson pairs to bSM fields φ with specified SM
quantum numbers. Here SU(2)L indices (i, j, . . . fundamental and a, b, . . . adjoint) are lowercase
and SU(3)c indices are capital letters.

2.1 Example: a catalog of exotic scalars in the diboson portal

The rest of this section is devoted to providing an example LEX-EFT catalog of operators
that produce novel phenomenology. This operator list extends to mass dimension seven.
We begin with a simple phenomenological idea: we wish to catalog all couplings between
a CP-even spin-0 field and pairs of SM gauge bosons. These new LEX scalars φ can
carry various SM quantum numbers but are restricted to be singlets in any bSM gauge
groups. Our example catalog serves two demonstrative purposes. First, it gives further
practice in using the tensor product technique to produce novel singlet operators; second,
it demonstrates that a simple idea — the diboson portal coupling to a single scalar — can
give rise to disparate and novel event topologies.

The complete list of operators is found in tables 1–4, which are organized by the mass
dimension of the operators. Again, we list operators up to dimension seven, including
insertions of Higgs fields. For any operator that contains a Higgs insertion, the Higgs field
may be set to its vacuum expectation value, lowering the effective mass dimension of the
operator at a cost of a v/Λ suppression. We have written CP-preserving terms only. In
the left columns we list the LEX scalar field quantum numbers under the SM gauge group
SU(3)c × SU(2)L ×U(1)Y . The right columns contain the effective operators falling under
each previous category.
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Mass dimension 6 [×1/Λ2]
SU(3)c × SU(2)L ×U(1)Y Operators

(
1,2,−1

2

)
H i(σa) j

i φjW
µν,aBµν

[H iφi]BµνBµν

[H iφi]Wµν,aW a
µν

[H iφi]GµνGµν
[H iφi]DµHjDµH

†j

(
8,2,−1

2

) dABC [H iφAi]GµνB GCµν

[H iφAi]GµνA Bµν

H i(σa) j
i φjW

µν,aGµν

(
1,4,−1

2

) φijkH
kW ijµνBµν

φijkHlW
ijµνW kl

µν

[H iφijk] (DµH)j(DµH)†k(
8,4,−1

2

)
φijkH

kW ijµνGµν(
1,6,−1

2

)
φijklmH

mW ijµνW kl
µν

Table 2. Dimension-six exotic operators that couple boson pairs to BSM fields φ with specified
SM quantum numbers. Indices are as shown in table 1.

Let us first discuss LEX states with SU(3)c quantum numbers. In order to maintain
gauge invariance, operators that contain a single gluon field-strength tensor Gµν must nec-
essarily contain a LEX field φ that is in the adjoint representation (8) of SU(3)c. So-called
color octets appear in many bSM scenarios, such as SUSY and minimal flavor violation
(MFV), and exhibit interesting and varied phenomenology [22–25]. Diboson couplings
of color octets, in particular, do appear in the literature [26–28] but are underdiscussed,
mainly focusing on the digluon coupling and resultant dijet resonances. A color-octet LEX
state might be a singlet under SU(2)L or have nontrivial weak quantum numbers. Color
octets with SU(2)L quantum numbers are quite interesting but have received far less phe-
nomenological attention than weak-singlet color octets. For instance, a weak-doublet color
octet with SM quantum numbers

(
8,2, 1

2

)
was proposed in the Manohar-Wise model [22],

and produces some interesting collider signatures [28, 29]. Yet this model is still under-
studied, as the masses of these fields are still quite unconstrained by collider searches. LEX
fields with these quantum numbers may couple to WµνGµν with the addition of one Higgs
insertion to create a SU(2) singlet; namely,

L ⊃ 1
Λ2 H

†i(σa) j
i φ

A
j W

aµνGAµν , (2.9)
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Dimension 7 [×1/Λ3]
SU(3)c × SU(2)L ×U(1)Y Operators

(1,1, 0)

|H|2φBµνBµν

|H|2φWµν,aW a
µν

|H|2φGµνGµν

(H†σaH)φWµν,aBµν

DµφDνH†iHjW
ij
µν

DµφDνHiH
†iBµν

φ |H|2|DµH|2

φ |H†DµH|2

[H†Hφ] (DµH)(DµH
†)

(1,3, 0)

[H†iφa(σa) j
i Hj ]BµνBµν

[H†iφa(σa) j
i Hj ]GµνGµν

φa [H†i(σa) j
i Hj ]Wµν,bW b

µν

φa [H†i(σb) j
i Hj ]Wµν,aW b

µν

|H|2φaWµν,aBµν

εabc φa[H†i(σb) j
i Hj ]Wµν,cBµν

DµφijD
νH iH†j Bµν

Dµφij H
†kDνHkW

ij
µν

[H†iHjφij ] |DµH|2

φij |H|2DµH iDµH
†j

[H†iφijDµH
j ][H†kDµHk]

H†φaA(σa) j
i Hj(DµH)k(DµH

†)k

(1,5, 0)

φijklH
†iHjW klµνBµν

φijklH
†iHjW kmµνWml

µν

[H†iH†jφijkl]DµHkDµH
l

DµφijklD
νH†iHjW kl

µν

(1,7, 0) φijklmnH
†mHnW ijµνW kl

µν

Table 3. Dimension-seven exotic operators that couple boson pairs to color-singlet bSM fields φ
with specified SM quantum numbers. Indices are as shown in tables 1 and 2.
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Dimension 7 [×1/Λ3]
SU(3)c × SU(2)L ×U(1)Y Operators

(8,1, 0)

(H†σaH)φWµν,aGµν

(H†H)φABµνGAµν

DµφAD
νHiH

i†GAµν

(8,3, 0)

[H†φaA(σa) j
i Hj ]GµνA Bµν

dABC [H†iφaA(σa) j
i Hj ]GµνB GµνC

|H|2φaAWµν,aGµνA

εabc φaA[H†i(σb) j
i Hj ]Wµν,cGµνA

DµφijADνH
iHj†GAµν

(8,5, 0) φijklH
†iHjW klµνGµν

(10,3, 0) εKLM [H†iφIJKijHj ]GIµνL GJMµν

(27,3, 0) [H†iφKLIJijHj ]GIµνK GJLµν

Table 4. Dimension-seven exotic operators that couple boson pairs to color-charged bSM fields φ
with specified SM quantum numbers. Indices are as shown in tables 1–3.

with σa (at least proportional to) the generators of the fundamental representation of
SU(2)L such that a is a weak adjoint index and i, j are fundamental indices (see table 1 and
following for index conventions). Similarly, the biadjoint field with SM quantum numbers
(8,3, 0) has only been studied, to our knowledge, in the context of electroweak oblique
corrections [30]. Within the LEX-EFT framework, such a field may couple to WµνGµν
through the dimension-five operator

L ⊃ 1
Λ φAaW aµνGAµν . (2.10)

We do note that at dimension seven, even the standard weak-singlet color-octet (8,1, 0)
scalar may couple to WµνGµν through the operator

L ⊃ 1
Λ3 (H†σaH)φAW aµνGAµν . (2.11)

It is also possible for color octets in the quadruplet (4) and quintuplet (5) representations
of SU(2)L to couple to the diboson pairs W aµνGAµν through operators with additional
Higgs insertions. These operators are of particular interest because they contain multiply-
electrically-charged states.

LEX fields that couple to a pair of gluon field strengths GµνGµν may be in various
representations. With the decomposition

8⊗ 8 = 1s ⊕ 8s ⊕ 8a ⊕ 10a ⊕10a ⊕ 27s, (2.12)

– 10 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
0

we see the LEX state may be in a singlet, adjoint, decuplet (10), or 27 of SU(3)c. The
LEX states in these operators may appear at dimension five with SU(2)L×U(1)Y quantum
numbers (1, 1); they may appear at dimension six with SU(2)L×U(1)Y quantum numbers
(2, 1

2) via the insertion of one Higgs state, and they may appear at dimension seven with two
Higgs insertions in the weak triplet (1, 1) or singlet (1, 1) representations. We note that a
field in the 10 representation can be written as a symmetric tensor with three fundamental
indices, and one in the 27 can be written as a symmetric tensor with two fundamental and
two anti-fundamental indices. We make use of this notation in tables 1 and 4.

2.2 Higher-dimensional representations of SU(2)L

To elaborate upon this example, we now discuss the construction of operators involving
various representations of the weak SU(2)L gauge group. It is well known that the rep-
resentations of SU(2) may be mapped onto simple spin algebra from quantum mechanics,
where the n-dimensional representation maps onto objects of spin J with n = 2J+1. Thus,
for example, a field in the five-dimensional representation maps to a spin-2 object with five
possible spins: J ∈ {−2,−1, 0, 1, 2}. We may then infer the tensor product relations among
operators containing fields charged under SU(2). Recall that the tensor products of objects
with spins J and L with J ≥ L follow

J ⊗ L = J + L⊕ J + L− 1⊕ · · · ⊕ J − L. (2.13)

As an example, consider the tensor product of two three-dimensional representations of
SU(2), 3⊗ 3. The triplets of SU(2) map to J = L = 1, so the possible spin-product states
are J ∈ {0, 1, 2}, corresponding to the one-, three-, and five-dimensional representations of
SU(2). We therefore arrive at the tensor product relation

3⊗ 3 = 1⊕ 3⊕ 5 (2.14)

in SU(2). From here, we can use the iterative tensor product method to construct the
singlet operators that couple LEX states in higher-dimensional representations of SU(2) to
pairs of gauge bosons.

All possible representations can be constructed by taking successive products of the
fundamental. These higher-dimensional representations may be denoted as symmetric
tensors. Totally symmetric tensors of dimension d and rank r have

n = (d+ r − 1)!
r! (d− 1)! (2.15)

independent components. For SU(2), d = 2, so n = r + 1. Thus the n-dimensional
representation is a rank-(n − 1) symmetric tensor. As example, the 6 of SU(2) may be
represented as a rank-five tensor φijklm. We can write the covariant derivative acting on a
general SU(2)L n-multiplet Φ as

[DµΦ]α = [∂µδ β
α − igW a

µ (τan) β
α ]Φβ , (2.16)

where τan are the generators of the n-dimensional SU(2)L representation. As is typical,
the third generator of the group is diagonalized, and the eigenstates are those states with
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definite electric charge after electroweak symmetry breaking. Thus, it may be worth explic-
itly stating the relation between these states and the symmetric (n− 1)-tensors described
above. If we label the isospin values as {−J, . . . , J − 1, J}, then we define

ΦJ−k =

√√√√(n− 1
k

)
φ1 . . . 1︸ ︷︷ ︸
n−1−k

2 . . . 2︸ ︷︷ ︸
k

for 0 ≤ k ≤ 2J, (2.17)

where the φi1...in−1 are totally symmetric. This ensures that e.g. φ†ijklφijkl is a canonically
normalized mass term. Writing all higher representations in terms of symmetric tensors
makes the construction of invariant operators much simpler, as it only requires all indices
to be contracted. We define the higher representations as having all lower indices, and
when required we raise indices with the invariant Levi-Civita symbol. Once the operators
are written, the charged-state interaction terms may be extracted via the above relation.

While models with additional weak doublets or triplets have been studied extensively,
fields in higher dimensional representations of SU(2)L have received less attention. Of
particular interest is the five-dimensional representation. Explicitly, a scalar quintuplet
of SU(2)L has isospin components Φ = (Φ++,Φ+,Φ0,Φ−,Φ−−). Here we consider the
quintuplet to have zero hypercharge, so the electric charges of the states are integral and
range from −2 to +2. The 5 of SU(2)L is a real representation, so we may enforce Φ−− =
(Φ++)† and Φ− = (Φ+)†. We express the quintuplet as a rank-four symmetric tensor φijkl,
and we use group theory to outline the possible singlet operators.

2.3 Filling out the catalog; phenomenological observations

With some formalism in hand for higher-dimensional representations of SU(2)L, we now
describe some illustrative examples of operators which will also help demonstrate the use
of tensor products to find all singlets. As we wrote above, we have the SU(2) the tensor
product decomposition 3⊗3 = 1⊕3⊕5. We may identify the fields in the three-dimensional
representation of SU(2)L with the gauge bosons, so that the product 3⊗ 3 corresponds to
the bilinear WµνW

µν . We can now find a singlet product of LEX states that can marry
this bilinear to make a weak singlet.

The 5 may correspond to a single LEX state in the five-dimensional representation of
SU(2), denoted as above by φijkl. Thus the quintuplet may couple to two W field-strength
tensors. For illustration, we expand this operator in terms of the charged components of
the exotic scalar:

1
Λ φijklW

ijµνW kl
µν = 1

Λ

[
Φ++W−µνW−µν + Φ−−W+µνW+

µν −
√

2Φ+W−µνW 3
µν

−
√

2Φ−W+µνW 3
µν −

√
2
3 Φ0W−µνW+

µν +
√

2
3 Φ0W 3µνW 3

µν

]
. (2.18)

This allows the scalar to decay into boson pairs. Also of interest are the four- and six-
dimensional representations, which must be complex in order for the states to have integral
electric charges. Their weak hypercharges must be equal or opposite to that of the SM
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Higgs, and they may couple to boson pairs via dimension-six invariant operators. Explicitly,
the quadruplet has states Φ = (Φ+,Φ0,Φ−,Φ−−) in the

(
1,4,−1

2

)
representation of the

SM gauge group, and the sextet has states Φ = (Φ++,Φ+,Φ0,Φ−,Φ−−,Φ−−−) in the(
1,6,−1

2

)
representation.

Moving on, we note that we can compose more singlets by inserting Higgs fields to
absorb SU(2) tensor indices. For example, we have the tensor product

2⊗ 6 ⊃ 5 as with spins 1
2 ⊗

5
2 = 1⊕ 2⊕ 3. (2.19)

Identifying the SU(2) doublet with the Higgs and the sextet with the LEX field φijklm,
we can construct the singlet φijklmH iW jk

µνW
lmµν . This corresponds to the iterated tensor

product invariant 2 ⊗ 6 ⊗ 3 ⊗ 3. The tensor product of a quadruplet with a single Higgs
doublet, meanwhile, contains a triplet and quintuplet; that is,

2⊗ 4 = 3⊕ 5, (2.20)

where in the latter, the exotic state is “promoted” to a 5, and in the former the state is
“demoted” to a 3. Thus, we consider two operators:

L ⊃ 1
Λ2 φijkHlW

ijµνW kl
µν and L ⊃ 1

Λ2 φijkH
kW ijµνBµν , (2.21)

which allow the quadruplet to couple to two SU(2)L gauge bosons or to one SU(2)L and
one weak-hypercharge U(1)Y gauge boson, respectively. Similarly, we may use alternate
tensor products such as

2⊗ 2⊗ 3 ⊃ 5 and 2⊗ 2⊗ 7 ⊃ 5 (2.22)

to form singlets that coupleW pairs to the triplet or septet fields at dimensions six or seven.
We note that in addition to coupling directly to pairs of gauge field-strength tensors,

LEX states may couple to pairs of weak gauge bosons by coupling to the Higgs kinetic
term DµHDµH

† [31]. For example, the LEX SU(2)L triplet appears in the dimension-five
operator

L ⊃ 1
Λ φij D

µH iDµH
†j . (2.23)

Once Higgs VEVs are inserted, this becomes an operator of effective dimension three:

L → v2

Λ φAµAµ. (2.24)

With additional Higgs insertions, LEX states in four- and five-dimensional representation
of SU(2)L may also appear in this manner for operators up to mass dimension seven.

Finally, operators may have a combination of gauge field-strength tensors and covari-
ant derivatives acting upon Higgs doublets that precipitate the diboson couplings. An
interesting example is the dimension-six operator

L ⊃ 1
Λ2 D

µφiAD
νH iGAµν . (2.25)
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This operator involves the color-octet weak-doublet scalar. If the Higgs VEV is inserted
into this operator, it couples the octet to a gluon and weak gauge boson. However, if
the Higgs VEV is not inserted, it has the interesting property of coupling the octet to a
gluon-Higgs pair.

The phenomenology of the diboson portal operators is very interesting and complex.
One production process common to all diboson operators is associated production, pp →
φV , where a LEX field is produced along with one SM gauge boson. Additionally, any
non-singlet LEX field may be pair produced via gluon fusion or vector boson fusion. What
happens after production of these LEX states can be spectacular. As mentioned above, the
LEX multiplets in larger representations of SU(2) contain multiply charged states. In order
to ensure that all operators preserve electromagnetism, the weak hypercharge assignments
of LEX states always guarantee integer electric charges of these states. We then find a
characteristic multi-gauge boson topology for the collider production of these states. We
have previously studied some models with gauge boson final states [27, 32], but there is
a lot of ground left to cover. One interesting example is the associated production of a
multiply charged SU(2)L quintet state via the effective operator

L ⊃ 1
Λ φijklW

µνijW kl
µν . (2.26)

Here the doubly charged state is produced in association with a W ; namely, pp→ Φ++W−,
where the charged state decays to same-sign W s via Φ++ → W+W+. Thus the entire
process contains three W s, two of which produce a mass resonance, and the other of which
may be significantly boosted. The full process can be written as

pp→ φ++W− → (W+W+)W−, (2.27)

where the brackets indicate the mass resonance. An even more complex example of this
might be the production and decay of a weak-sextet scalar through e.g. the dimension-six
operator

L ⊃ 1
Λ2 φijklmH

mWµν ijW kl
µν . (2.28)

This state contains the fields Φ = (Φ+++,Φ++,Φ+,Φ0,Φ−,Φ−−). We may then have a
simple electroweak quark-fusion process like qq → Φ+++Φ−−. Provided that there is a
mass-splitting term for the multiplet, the multiply charged states will cascade decay via
the electroweak interaction; for example, Φ+++ → Φ++W+ → Φ+W+W+. The Φ− Φ+

might decay to WZ through the effective operator. Thus the entire process contains seven
gauge bosons:

qq → Φ+++Φ−− → (W+(W+(W+Z))) (W−(W−Z)), (2.29)

where brackets once more indicate the mass resonances in the decay chains. It happens [33]
that such a mass splitting can be introduced via the interaction

L ⊃ λ(Φ†τa6 Φ)(H†τa2H). (2.30)
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After electroweak symmetry breaking, the Higgs VEV results in differing mass contribu-
tions to the different isospin states of the bSM multiplet. The triply charged state would
be the heaviest, and this would allow for the above decay chain.

3 Charge flow and cross sections

In this section, we examine the utility of specifying the light-exotic content of a theory
through the lens of some simple examples. In particular, we introduce two families of toy
models with various bSM color-charged fields and demonstrate how the SU(3)c represen-
tation alone, with all else being equal, can dramatically affect LHC cross sections. These
examples are part of a class totally separate from the LEX scalars communicating with
the Standard Model through the diboson portal; we hope that the change of tack serves to
demonstrate the breadth of the theory space that can be explored with LEX-EFT.

3.1 Completing an exotic operator with more exotics

Consider first an operator governing an SU(3)c color-sextet scalar ϕ and quarks and gluons
but no leptons:

LΦqqg ⊃
1

Λ2 λ
IJ
qq Π a ij

s ϕ†s (qc
RIi σ

µνqRJj)Gµν a + H.c.. (3.1)

The electric charge of ϕ is Q = 1/3 if the two quarks are of unequal type (i.e., one up and
one down). The coefficients Π a ij

s are Clebsch-Gordan coefficients that project out a color
singlet from the direct-product representation 3⊗ 3⊗ 6̄⊗ 8. The operator (3.1) produces
multijet events at LHC through single sextet production, and a cursory investigation of a
similar operator is carried out in section 4. Here, we simply wish to observe that the group-
theoretic coefficients Π a ij

s — and the size of resulting cross sections — are not unique.
In particular, there is an operator of the form (3.1) for each independent color singlet
that can be formed from the given direct-product color representation. How to proceed
depends on one’s point of view. On one hand, the number of such independent singlets
is finite, and it is possible to construct a single operator whose color factor is expressed
as a linear combination of (all of the) independent Clebsch-Gordan coefficients. On the
other hand, operators with linearly independent Clebsch-Gordan coefficients are certainly
distinct operators, and it may be reasonable — and phenomenologically interesting —
to investigate an individual infrared operator while assuming that its particular Clebsch-
Gordan coefficients depend on the representation of the ultraviolet degree(s) of freedom
that have been integrated out. To demonstrate this portal-based approach, which extends
the line of thinking begun in section 2, we provide three toy UV completions of this operator
in figure 1.

The top diagram in figure 1 shows an s-channel completion by way of a color-triplet
fermion Ψ3. This completion produces the desired color structure by contracting a 3̄ with
a 3 in

3⊗ 3̄⊗ 8 and 3⊗ 3⊗ 6̄. (3.2)
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Figure 1. Diagrams representing toy UV completions of the operator (3.1) by way of (top) a heavy
quark Ψ3, (middle) a heavy sextet scalar Φ6, and (bottom, at loop level) a heavy sextet scalar Φ6
and octet scalar Φ8.

The vertex corresponding to the first color invariant, which couples a gluon to two different
quarks, arises at loop level in minimal extensions of the Standard Model with compactified
extra spatial dimensions, which preserve Kaluza-Klein (KK) parity [34, 35], and at tree
level in KK parity-violating models [36] (in either case, the role of the color-triplet fermion
Ψ3 is played by e.g. a level-one KK quark). Explicitly, the coefficients in (3.1) in this
scenario take the form

[Π3] a ijs = K ik
s [ta3] j

k , (3.3)

where ta3 are the generators of the fundamental representation of SU(3) and the Clebsch-
Gordan coefficients K ij

s , which are symmetric in SU(3) fundamental indices, uniquely
project the color singlet out of the direct product 3 ⊗ 3 ⊗ 6̄ [37]. It happens that the
squared norm of the array (3.3), which would for instance be computed as part of the cross
section σ(qg → ϕqc), is given by

K ik
s [ta3] j

k [ta3] k′
j K̄s

ik′ = 8. (3.4)

The operator (3.1) could instead be completed by yet another sextet scalar Φ6, as shown
by the middle diagram in figure 1, in which case a 6̄ is contracted with a 6 in

6⊗ 6̄⊗ 8 and 3⊗ 3⊗ 6̄. (3.5)

While exotic, this model can be envisioned as a color-sextet analog of the extra-dimensional
model with SU(3)c KK excitations considered above. In this case, the group-theoretic
factors are

[Π6] a ijs = K ij
r [ta6] r

s , (3.6)
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where in this simple example the only difference is in the generators ta6 of the six-dimensional
representation of SU(3) [15]. The factor that arises in the computation of cross sections in
this case is given by

K ij
r [ta6] r

s [ta6] s
r′ K̄r′

ij = 20. (3.7)

Finally, the operator (3.1) can be completed yet again at loop level (and without non-
diagonal gauge interactions) by introducing two color-charged degrees of freedom in the
sextet and adjoint representations of SU(3)c, as shown in the bottom diagram in figure 1.
This case is interesting because it does not correspond to a single heavy color-charged
degree of freedom, and so the color flow must be tracked more carefully. In particular, the
loop is built of the color invariants

3⊗ 3̄⊗ 8 (twice), 6⊗ 6̄⊗ 8, and 3⊗ 3⊗ 6̄, (3.8)

and the group-theoretic factors in (3.1) take the form

[Πloop] a ijs = K jl
r [ta3] k

l [tb3] i
k [tb6] r

s (3.9)

with square

[Πloop] a ijs [Π̄loop]sa ij = 20
9 . (3.10)

The square of (3.9) is therefore smaller than both (3.4) and (3.7). We therefore find that
cross sections computed within the framework of the effective operator (3.1) differ by a
factor of up to 9, ignoring all other differences including loop factors, depending on the
color representation of the UV degree of freedom.

3.2 A family of toy models for hh production

For some variety, consider next a toy model in which some color-charged scalar φ enjoys a
renormalizable coupling to the SM Higgs doublet H, so that its dynamics are captured by

Lφ ⊃ (Dµφ)†Dµφ+ λφH φ
†φH†H. (3.11)

This model generates loops of the form displayed in figure 2 that could enhance the cross
section of Higgs pair production at the LHC, which is encoded in the Wilson coefficient of
the dimension-six operator

Lhh ⊃
1

Λ2 κHGH
†H trGµν Gµν . (3.12)

Here the trace is over SU(3)c adjoint indices. The effect of the exotic scalar φ on σ(gg → hh)
can be significant and depends strongly on the scalar’s charge(s). To demonstrate this, we
show in figure 3 the leading-order (one-loop) LHC dihiggs production cross section as a
function of the exotic scalar mass mφ in two well motivated scenarios: one with a color-
triplet scalar, à la squarks, and another with a color-octet scalar. In both scenarios, the
scalar-Higgs coupling λφH in (3.11) is set to 0.1.
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Figure 2. Representative diagrams containing some color-charged scalar φ resulting in enhanced
rates of dihiggs (hh) production at the LHC.

200 400 600 800

0.01

0.02

0.05

0.10

0.20

Figure 3. Leading-order LHC dihiggs (hh) production cross sections at
√
s = 13TeV. Leading

loops consist of third-generation SM quarks and additional (red) color-triplet or (blue) color-octet
scalars φ. Scalar-Higgs coupling λφH is set to 0.1. Only the solid curves correspond to observable
cross sections; new-physics contributions are displayed to compare group-theory factors.

The enhancement becomes negligible before either scalar reaches 1TeV in mass, but
in the light-scalar regime where the bSM contribution dominates the SM loops, we find a
factor-of-O(10) difference between the two scenarios. While the interference between SM (t,
b) loops and φ loops is intricate, we show using the dashed curves in figure 3 that the φ loops
by themselves are responsible for most of this discrepancy.3 The responsible group-theoretic
term is simply tr tartbr, with r the SU(3)c representation of φ. It is well known that for the Lie
groups SU(N) this trace is proportional to δab, with the factor of proportionality defining
the Dynkin index Tr of the representation; we provide in table 5 the Dynkin indices of a
handful of representations of SU(3). We use these results to extend the φ-only (interference-
free) dihiggs enhancements beyond the color-flow limitations of MG5_aMC to toy models
with φ in higher representations of SU(3)c. These rescaled results are displayed in figure 4
in close analogy with the dashed curves in figure 3. In order to demonstrate the growth
of the new-physics enhancements with the scalar-Higgs coupling λφH , we adopt a different

3For the dashed curves, for visual clarity, we compute σ(gg → hh) in toy models consisting only of φ
loops and add the results to the leading-order SM cross section. This is clearly unphysical, but it gives a
qualitative picture of the importance of the group-theoretic factors in the φ loops.
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Figure 4. Enhancements to leading-order LHC dihiggs (hh) production cross sections at
√
s =

13TeV, ignoring interference between SM and scalar loops. These new-physics contributions are
displayed to compare group-theory factors for increasingly exotic color representations. Scalar-
Higgs coupling λφH is set to 1.5 to demonstrate scaling (viz. figure 3). Also displayed are robust
lower limits on mφ for selected representations.

SU(3)c representation r Dynkin index

3 1
2

6 5
2

8 3
10 15

2

15 10
24 24
27 27

Table 5. Factors of proportionality (Dynkin indices) in the generator trace tr tartbr = Tr δ
ab for

physically interesting irreducible representations of SU(3).

value of 1.5 in this latest figure. In this benchmark, φ contributions remain significant into
the TeV scale for some color representations: see the inset of figure 4 for a detailed view of
the contributions from low-dimensional representations.

Also visible in figure 4 are some suggestive, but by no means comprehensive, lower
bounds on the mass of φ in the color representations that have been probed by experiment.
This condition applies certainly to the 3 and 8 and to lesser extent to the 6 and 10 (and
higher). We take care to note the intrinsic limitation on these bounds that is imposed by
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model dependence: it is well known that experimental bounds can shift by O(100)GeV
upon consideration of a new production/decay channel. We therefore highlight in figure 4
a set of conservative limits that apply to the preponderance of well motivated channels. In
particular, we take

• mφ > 500GeV for a color-triplet scalar, still allowed by Run 2 searches for pair-
produced squarks q̃ decaying to qχ̃0 with relatively heavy χ̃0 [38];

• mφ > 600GeV for a color-sextet scalar, allowed for scalars coupling to same-sign
quark pairs with reasonable O(0.1) coupling strengths [39];

• mφ > 800GeV for a color-octet scalar, the most conservative bound derived fairly
recently [40] for CP-even color octet in the Manohar-Wise model [22];

• mφ&1900GeV for color-decuplet/quindecuplet scalars that may appear as R hadrons
at the LHC in the absence of an efficient decay channel [41].

Figure 4 shows that these limits — which we reiterate can be strengthened at the expense
of model independence — can be used to probe large scalar-Higgs couplings λφH of O(1).
By the same token, we conclude that light — even sub-TeV — color-charged scalars are
still viable in this λφH regime.

3.3 Group theory impacts on EFT validity and collider reach

Before we move on, we make some observations about the impacts of charge flow on the
range of validity of an effective field theory and, on a related note, the self-consistent
experimentally accessible parameter space of such theories. Just above (viz. figure 3), we
offered a simple example of two models identical in all aspects except for the color charge of
the light exotic field φ. The dihiggs production cross sections in these models suggest that
the characteristic scale of the EFT obtained by integrating out φ may vary by O(100)GeV.
This line of thinking can be extended to the EFT cutoff Λ, even though one might suppose
that the range of validity of an effective field theory should be unaffected by non-kinematic
factors.

We make this notion more concrete by computing the perturbative unitarity bound [42,
43] on the cutoff Λ of the operator (3.1), which permits processes of the form qg → ϕqc.
This particular process has angular momentum J = 1/2. In the massless-quark limit, the
perturbative unitarity bound on Λ derived by computing the definite-helicity transition
amplitudeM(qg → ϕqc) is [44]

Λ ≥ (Π a ij
s Π̄s

a ij)1/4
(
λIJqq
2π

)1/2

(ŝ−m2
ϕ)1/2 (3.13)

with mϕ the mass of the light sextet ϕ and the group-theoretic factor Π a ij
s Π̄s

a ij given
by (3.4), (3.7), and (3.10) in the three cases studied in section 3.1. Since we found there
that the numerical factor could differ by a factor of up to 9, we see from (3.13) that the
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perturbative unitarity bound on the operator (3.1) can vary by a factor as large as [Π6] a ijs [Π̄6]sa ij
[Πloop] a ijs [Π̄loop]sa ij

1/4

= 91/4 ≈ 1.73 (3.14)

based purely on the SU(3)c representation of the intermediate exotic field (viz. figure 1).
This significant effect, which we reemphasize is completely independent of the kinematics
of the physical process generated by the operator, has been observed in only a few disparate
contexts [45, 46] — as far as we are aware — and deserves greater appreciation, since it
can void potentially wide swaths of EFT parameter space on self-consistency grounds.

By the same token, though, it may be that higher minimum EFT cutoffs due to
the above mechanism are neutralized by larger cross sections, resulting in net gains in
(potentially) accessible parameter space, provided that the effective operator is of high
enough mass dimension. The previous example is illustrative: if the cross section σ(qg →
ϕqc) rises by a factor of 9, but the unitarity-bounded cutoff rises by a factor of

√
3, then

in principle the experimental reach along the Λ axis of EFT parameter space is greater for
any given mϕ despite the higher minimum cutoff. Altogether, therefore, we conclude that
even O(1) numerical factors affect both cross sections and unitarity bounds in effective field
theories, ultimately determining how much parameter space should be considered valid and
accessible. This observation adds yet another motivation for theorists to comprehensively
explore the space of light-exotics models.

4 Unique kinematics of light-exotics processes

We now provide some examples of unique kinematic features that may appear in processes
at the LHC and that can only be captured theoretically by specifying the intermediate
states that may be (nearly) on shell in such processes. We first consider a pair of models
that both produce final states with two hard jets and a pair of charged leptons (jj `+`−).
We then highlight two models that produce the (related) final states with hard jets and
missing transverse energy (jj + Emiss

T ).

4.1 jj `+`−: sextet vs. leptoquark

Scalar leptoquarks (LQs) [47], novel spin-zero SU(3)c triplets carrying both baryon and
lepton number, have a long history both in unified theories [48–50] and in phenomenological
models that accommodate lepton flavor universality violation [51–53]. A so-called first-
generation scalar leptoquark ΦLQ with electric charge Q = −1/3 minimally couples at
mass dimension four to electrons and up quarks according to

LLQ ⊃ Φ†iLQ

[
yLU c

iaPL ε
abEb + yRuc

iPRe
]

+ H.c., (4.1)

where {U,E} are the first-generation quark and lepton SU(2)L doublets with indices a, b ∈
{1, 2}, and {u, e} are the corresponding weak singlets. The Yukawa-type couplings yL, yR
are considered independent in this analysis. The quantum numbers of this leptoquark are
specified in table 6. In this model, the relevant LHC production process for the jj `+`−
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Φ
(
6,1, 1

3

)
0 −1

ΦLQ
(
3,1,−1

3

)
1
3 1

Table 6. Quantum numbers of new scalars in color-sextet scalar (Φ) and first-generation scalar
leptoquark (ΦLQ) models, both of which produce jj `+`− final states.
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Figure 5. Diagrams for (top) Φ† production with charged leptons, with blobs denoting dimension-
six effective vertices, and (bottom) first-generation leptoquark pair production at LHC.

channel is QCD pair production, gg → Φ†LQΦLQ, followed by the decay ΦLQ → ue− and its
conjugate. A representative diagram for this process is shown in the lower panel of figure 5.
The CMS collaboration conducted a search [54] for this specific process using L = 35.9 fb−1

of Run 2 data and, in the absence of a signal, excluded first-generation leptoquarks with
masses mLQ < 1435GeV at 95% confidence level (CL) [55].

The same final state can be produced at the LHC in a cousin of the operator (3.1)
containing the following dimension-six interaction(s) between SM fermions and a Q = 1/3
color-sextet scalar Φ [37, 39, 44, 56–59]:

LΦ`− ⊃
1

Λ2 λ
IX
u` J s ia Φs (uc

RIi σ
µν`RX)Gµν a + H.c.. (4.2)

The couplings λu` are elements of a matrix in quark and lepton generation space, with I

or X = 3 labeling the heavy generation(s). The coefficients J are the generalized Clebsch-
Gordan coefficients [37] required to construct gauge-invariant contractions of the direct-
product representation 3⊗6⊗8 in SU(3) [15]. Here and below, the 6 is indexed by s, r, . . .
and the 3 by i, j, . . . . The quantum numbers of this color-sextet scalar are specified in
table 6. Here the relevant LHC process is single sextet production with an associated
lepton (for first-generation SM fermions, ug → Φ†e+) and subsequent decay through the
same operator, Φ† → uge−.4 The sole diagram for this process is displayed in the upper
panel of figure 5.

4We highlight antisextet production because the conjugate process has lower initial parton luminosity
at LHC, but both processes take place.
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In simple scenarios where both exotic scalars couple only to first-generation SM
fermions, the final states of these two processes are indistinguishable at the LHC. But
the kinematics of these processes are quite different. Some illustrative distributions are
compared in figure 6 for exotic scalars set to a common mass of 1.5TeV, this mass having
been chosen in view of the 1.44TeV limit on mLQ mentioned above. The simulated event
samples were produced in MadGraph5_aMC@NLO (MG5_aMC) version 3.3.1 [60, 61],
showered and hadronized using Pythia 8 version 8.244 [62], and analyzed with Mad-
Analysis 5 version 1.9.20 [63–65] after performing object reconstruction using its inbuilt
simplified fast detector simulator (SFS) [66] and an interface to FastJet version 3.3.3 [67].
Jets were reconstructed according to the anti-kt algorithm [68] with radius parameter set
to R = 0.4.

In the top panel of figure 6, we show that the transverse momentum (pT) of the leading
lepton is expected to be significantly higher in the sextet model than for LQ pair production.
This is because in the former model, the leading lepton is the one that recoils off of the
sextet when it is produced, whereas in the latter model it is a product of one of the decaying
leptoquarks. The middle panel shows the leading jet pT, which is likewise expected to be
higher in the sextet model but more sharply peaked for LQ pairs. The bottom panel shows
the invariant mass m`2j1j2 of the two hardest jets and the second lepton. In the sextet
model, the system `2j1j2 corresponds to the decay products of the exotic scalar, and so
the invariant mass can be used to reconstruct the sextet [44]. No such identification can
be made within the leptoquark model, and indeed the distribution is much broader and
certainly not peaked at the LQ mass.

4.2 jj + Emiss
T : sextet vs. squark

Final states with jets and missing transverse energy have long provided the quintessential
search channel for supersymmetry at the LHC since squarks are copiously pair produced
in many models (for example, qq̄ → q̃†q̃) and usually decay to quarks and neutralinos
(q̃ → q ¯̃χ0 and the conjugate). This is certainly the case in the Minimal Supersymmetric
Standard Model (MSSM), which we focus on for simplicity in this work. A representative
diagram for this process is displayed in figure 7. Meanwhile, an extension of the sextet
scalar model (4.2) can produce similar final states at the LHC. Suppose, in particular, that
the quarks and leptons are left handed and interact with Φ according to

LΦν ⊃
1

Λ2 λ
IX
dν J s ia Φs (Qc

LIi ·σ
µνLLX)Gµν a + H.c. (4.3)

with notation similar to (4.2). Then, instead of single sextet production in association
with a charged lepton, we have an associated neutrino (dg → Φ†ν̄) and the decay(s)
Φ† → dgν. These processes notably involve down-type quarks, but aside from the differing
SM fermions, the relevant diagram — displayed in figure 7 — is identical to the one
in figure 5.

As for the previous pair of models, we explore the kinematics of these jj + Emiss
T

processes in figure 8. We again only consider couplings between exotic scalars and first-
generation SM fermions, so that for instance the MSSM process is left-handed up squark
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Figure 6. Distributions of (top) hardest lepton pT, (center) hardest jet pT, and (bottom) invariant
mass of hardest jets and second-hardest lepton for (red) dimension-six sextet scalar production and
(green) scalar leptoquark pair production at LHC.
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Figure 7. Diagrams for (top) Φ† production with neutrinos, with blobs denoting dimension-six
effective vertices, and (bottom) MSSM up squark pair production at LHC. Neutralinos χ̃0 appear
as missing transverse energy.

production, pp → ũ†LũL. As mentioned in section 3.2, ATLAS and CMS have released
comparable limits on light-flavor squarks q̃ based on the full Run 2 dataset, L ≈ 139 fb−1:
ATLAS excludes mq̃ < 1210GeV assuming one non-degenerate light-flavor squark and a
light neutralino (mq̃ < 1850GeV for eight degenerate squarks) [38], and CMS excludes
mq̃ < 1250GeV (1710GeV) in the same scenarios [69]. For the purposes of this discussion,
we do not take a firm position on the MSSM squark spectrum and suggest as a starting
point some mq̃ lying between the aforementioned limits. mũ = 1500GeV happens to reside
in this neighborhood, so we use the same scalar masses as in the leptoquark comparison.5
The samples were produced and analyzed using the same toolchain as before; the squark
sample relied on the MSSM implementation shipped with MG5_aMC [70].

The top panel of figure 8 shows the Emiss
T distributions in both models. We see a

characteristic peak around mũ/2 in the MSSM and a broader distribution for the sextet,
both because the electron neutrino is lighter than the neutralino in our MSSM benchmark
and because one of the neutrinos recoils off of the color-sextet scalar. The middle panel
plots the transverse momentum of the leading jet; these distributions are quite similar to the
leading-jet pT distributions in figure 6 since the neutralino is still fairly light. Finally, the
bottom panel shows the invariant mass mj1j2 of the two leading jets, which — in contrast
to the missing energy — is sharply peaked at mΦ/2 in the sextet model but much broader
in the MSSM. Altogether, we again have a pair of scenarios with light exotic particles
that must be specified in a renormalizable or effective theory in order to capture the LHC
kinematics.

5 Conclusions

We have introduced the Light Exotics Effective field Theory (LEX-EFT) to study the
phenomenology of on-shell or nearly on-shell exotic particles. We presented a general
method for constructing a complete catalog of operators coupling these new states to the

5The mass of the neutralino to which ũL decays is set to mχ̃0 = 10GeV.
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generation squark pair production at LHC.
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Standard Model. The LEX states are categorized by their SM quantum numbers, and
we outlined a general iterative tensor product method to create a complete list of gauge
singlets up to the desired mass dimension of effective operator. We described the effect
of charge flow on the operator coefficients, which are comprised of distinct products of
Clebsch-Gordan coefficients. We demonstrated through some simple examples that these
are important to determining the range of validity of the effective operator, even as they
strongly affect production cross sections within the EFT framework.

We also discussed the distinct kinematics of LEX-EFT operators via an example model
of SU(3)c color sextets coupling to the Standard Model through dimension-six operators.
We showed how several kinematic observables within this model are strongly dependent on
the specific LEX state by way of comparison with another model producing in-principle
identical final states at LHC. Such distinctive kinematics allow for tailored collider searches
more powerful than inclusive searches tuned to models of supersymmetry or leptoquarks.
We think this highlights the need for a wider array of collider searches driven by more
general models. Finally, we created an example LEX-EFT operator catalog detailing the
couplings of a CP-even scalar to pairs of SM gauge bosons up to mass dimension seven.
This demonstrated the use of the iterative tensor product method and hinted at the wide
array of nonstandard particles that may be accessed through this portal, some of which
depart greatly from well trodden bSM paths. We note that in previous work, we presented
a catalog of SU(2)L singlet color-sextet spin-0 and spin- 1

2 fields up to mass dimension
six [15]. It is remarkable that though both of these endeavors represent only a tiny fraction
of the full possible operator catalog, they still yield interesting and surprising interactions
between SM and bSM states and spectacular collider phenomenology.

Opportunities for further work in the LEX-EFT framework are manifold, and we take
this opportunity to lay out a long-term plan for the in-depth study of this paradigm. The
first and most obvious step is to build out the operator catalog with new LEX states.
Approaches to building the operator catalog may follow several systematic paths. One
of these, as suggested in this work, is to index this catalog by the SM quantum numbers
of the exotic state(s); that is, to specify the representations of the exotic state and use
the iterative tensor product procedure to obtain all singlet operators up to the desired
mass dimension. Another possible way to aggregate LEX-EFT operators is a portal-based
approach. For example, in this work, we specified SM gauge boson pairs as the portal
to new physics, and we built a catalog of all possible CP-even scalar LEX fields that
can be accessed through this portal through mass dimension seven. These approaches
are complimentary: the portal-based exercise gives an idea of which exotic states can be
produced through certain processes, and the full study of such states then requires the
construction of a complete EFT.

More immediate work might follow directly from topics brought up in this paper. For
example, it might be interesting to follow up with collider studies on any of the effective
operators in our example catalog in higher-dimensional representations of SU(2)L, since
that promises to yield complex collider signatures. Another route might be to construct
the complete operator list up to dimension seven for any of these states, considering all
couplings to the SM beyond the diboson portal.
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More generally, the kinematic landscape of possible collider final state is vast. We
have demonstrated the unique kinematic features that appear in particular models even
when final state particles are the same or at least indistinguishable in a detector. In the
continuing absence of definitive collider evidence for physics beyond the Standard Model,
a systematic search through possible event topologies is needed. Once complete, the LEX-
EFT operator catalog can be mined for new collider phenomenology. As demonstrated by
the diboson portal presented here and previous work on color sextets, collider final states
for the LEX-EFT catalog can have nonstandard collider signatures and striking event
topologies that would not be predicted without the catalog. Working through the LEX-
EFT catalog scans the landscape of possible collider signatures for new physics, taking a
“leave no stone unturned” approach.

Finally, we reiterate that it will eventually be incumbent upon theorists to complete
the EFTs for classes of model with particularly compelling phenomenology. This will likely
follow the path of recent developments in dark matter studies with simplified models and
then next-generation models [71]. This will no doubt offer the benefit of expanding the
theoretical landscape of bSM paradigms beyond the standard fare, and may lead to the
discovery of new theoretical mechanisms or paradigms.
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