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1 Introduction and summary

The AdS/CFT correspondence [1] relates a string theory on AdS background to a conformal
field theory (CFT). In particular, the energy spectrum of a string model coincides with the
spectrum of scaling dimensions of the dual CFT. There are several string sigma models
which are integrable on the classical and (conjecturally) quantum level, and one hopes to
be able to determine their exact energy spectra.

The Thermodynamic Bethe Ansatz (TBA) approach is a powerful method to find the
ground state energy (GSE) of integrable field theories [2]. It relates the GSE of a model on a
cylinder of circumference L to the free energy of a so-called mirror model with temperature
T = 1/L. The mirror model is obtained by a double Wick rotation, and for non-relativistic
models which appear in the AdS/CFT context it differs from the original one [3]. The
mirror TBA equations can then be used to find the spectrum of excited states via the
contour deformation trick [4–6].

The TBA approach has been successfully applied to the AdS5 × S5 [7–10] and
AdS4 × CP3 superstrings [11, 12], see [13, 14] for a review. The next interesting exam-
ple of an integrable string sigma model is provided by AdS3 × S3 × T 4 superstring [15].
The superstring background can be supported by both Ramond-Ramond (RR) and Neveu-
Schwarz-Neveu-Schwarz (NSNS) fluxes [16, 17]. The properties of the general model are
poorly understood, and its dual CFT is unknown. In the case of pure NSNS background
the superstring theory in the conformal gauge is a level-k supersymmetric Wess-Zumino-
Novikov-Witten (WZNW) model, and its spectrum can be found by using CFT meth-
ods [18]. The pure NSNS superstring is believed to be dual to symmetric product orbifold
CFTs [19–21].
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The pure RR AdS3 ×S3 × T 4 Green-Schwarz (GS) superstring can be analysed in the
uniform lightcone gauge by using the methods developed for the AdS5×S5 superstring [13].
Since in this gauge the density of the momentum p+ is set to 1, the total lightcone momen-
tum P + is equal to circumference L of the cylinder where the gauged-fixed model lives.
Taking the decompactification limit L → ∞, one gets a model on a plane. The symmetry
algebra psu(1, 1|2)L ⊕ psu(1, 1|2)R of the AdS3 × S3 × T 4 model is broken in the lightcone
gauge to

(psu(1|1)L ⊕ psu(1|1)R)c.e ⊕ (psu(1|1)L ⊕ psu(1|1)R)c.e , (1.1)

where “c.e.” indicates a central extension. Like in AdS5 × S5, two central charges vanish
for states satisfying the level-matching condition, see e.g. [22] for details. There are two
more symmetries that play a distinguished role in the integrability constructions, which we
denote as su(2)• ⊕ su(2)◦ ∼= so(4) and correspond to the local so(4) symmetry of T 4 under
which four bosons and all spinors of the Green-Schwarz string transform. Specifically,
su(2)• acts as an automorphism on (1.1) while su(2)◦ commutes with (1.1) (and indeed
with psu(1, 1|2)L ⊕ psu(1, 1|2)R).

Asymptotic particles transform in four-dimensional short representations of the light-
cone algebra which differ by the value M ∈ Z of an external U(1) automorphism [23]. In
the large string tension expansion the absolute value of M is identified with the mass of
a particle. Particles with M = 2, 3, . . . and M = −2,−3, . . . are bound states of particles
with M = +1 and M = −1, respectively [23], and the dispersion relation is

E(p) =
√

M2 + 4h2 sin2(p/2) , (1.2)

where the coupling h is related to the string tension. The worldsheet S-matrix of the
lightcone model is fixed by symmetries up to several “dressing” factors which obey crossing
equations [24]. A solution to the crossing equations was recently proposed in [25], and
used to analyse the properties of the mirror AdS3 × S3 × T 4 model, as well as to derive
the mirror TBA equations [26]. The Bethe-Yang equations of both models involve massive
momentum-carrying excitations corresponding to |M | ≥ 1, two types of gapless (M = 0)
momentum-carrying excitations, and two types of auxiliary excitations which account for
the (psu(1|1)L⊕psu(1|1)R)c.e⊕(psu(1|1)L⊕psu(1|1)R)c.e structure of the multiplets [27, 28].
More specifically auxiliary excitations are related to su(2)•, while the fact that we have
two multiplets with M = 0 is related to su(2)◦.

In the TBA approach it is necessary to introduce particle/hole distributions for all types
of excitations that appear in the thermodynamic limit; such distributions are encoded in
the so-called Y-functions. Moreover, we consider a mirror model with dispersion

Ẽ(p̃) = 2arcsinh
(√

M2 + p̃2

2h

)
. (1.3)

The mirror TBA equations are written as functions of the mirror momentum p̃ (or a suitable
rapidity) and feature the following Y -functions [26]:
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1. YQ of Q-particles with M = Q ≥ 1,

2. Y Q of Q-particles with M = −Q ≤ −1,

3. Y
(α̇)

0 , α̇ = 1, . . . , N0 where N0 = 2 is the number of Y -functions for gapless excita-
tions,

4. Y
(α)
± , α = 1, 2 of auxiliary excitations.

The AdS3 × S3 × T 4 ground state energy receives contributions from both massless and
massive excitations

E(h, L, µ) = −
N0∑

α̇=1

∞∫
−∞

dp̃

2π
log

(
1 + Y

(α̇)
0

)
−

+∞∑
Q=1

∞∫
−∞

dp̃

2π
log

[
(1 + YQ)

(
1 + Y Q

)]
(1.4)

where h, L, µ are the three parameters of the TBA equations: i) effective string tension
h, ii) light-cone momentum L, iii) twist µ. In the temporal gauge L is identified with
the charge J corresponding to a U(1) isometry of S3 and acquires only integer or half-
integer values. The twist µ allows one to consider the lightcone string sigma model with
twisted boundary conditions on the fields that are charged under su(2)• or su(2)◦. In
the untwisted string model, bosons and fermions have periodic boundary conditions (in
absence of winding) so that the GSE vanishes, as expected from supersymmetry. N0
in (1.4) denotes the number of Y

(α̇)
0 -functions for gapless momentum-carrying roots which,

as has been mentioned above, was chosen to be equal to 2 in [26]. This choice seems
reasonable because in the Bethe-Yang equations the massless Bethe roots are in a doublet
of su(2)◦, and therefore it is natural to assume that in the thermodynamic limit one gets
two different strings of massless roots, and two Y

(α̇)
0 -functions. However, the massless

Bethe roots are indistinguishable, and, as a result, the Y
(α̇)

0 -functions are the same for any
α̇. This leaves a possibility that in the thermodynamic limit the massless roots arrange
themselve into one string, and, therefore, only one Y0-function should appear in the TBA
equations. It is an important issue because the spectrum depends on the number of
Y0-functions. To address this question in this work we analyse the ground state energy of
the AdS3 × S3 × T 4 superstring in two different ways.

We begin with the lightcone sigma model with fermions and bosons subject to twisted
boundary conditions, and calculate the GSE in the semi-classical approximation where
effective string tension h and the light-cone momentum L are sent to infinity in such a
way that J ≡ L/h is kept fixed. The GSE is given by the sum of the contributions of the
massless and massive particles, E = E0 + Em.

The massless particles contribution to the GSE is found to be given by

E0 = − µ2

πJ
+ |µ + µ′|+ |µ − µ′| − 2|µ′|

J
, (1.5)

where µ is the twist of massive fermions and massless bosons due to the su(2)• symmetry
of the model while µ′ is used to twist massless fermions and bosons thanks to the su(2)◦
symmetry. The twists take values between −π and π. If we set µ′ = 0 we get a term linear
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in |µ| in (1.5). It is unclear how such a term can be obtained from the TBA. On the other
hand if |µ| ≤ |µ′| then

E0 = − µ2

πJ
if |µ| ≤ |µ′| , (1.6)

and for small µ the µ2 dependence is the one that also agrees with the TBA analysis
performed for the AdS5 × S5 superstring in [29]. However for finite µ one finds from the
AdS3 × S3 × T 4 TBA that µ2 would be replaced by 4 sin2(µ

2 ).
The massive particles contribution to the GSE can be found in the large J limit where

we get

Em = −4 sin2
(

µ

2

)√ 2
π

e−J
√
J

+O
(
e−J/J 3/2

)
, (1.7)

and it is of the expected form.
We continue our analysis by solving the mirror TBA equations in three regimes where

Y -functions of massive and massless particles are small. First we consider the small-twist
regime (µ ≪ 1) around a BPS vacuum with L and h fixed. Then, we analyse the regime of
large L with µ and h fixed. Finally, the regime of small h with µ and L fixed is discussed.
The analysis follows closely the one performed for the AdS5×S5 superstring in [29]. There
are two main differences in comparison to the AdS5 × S5 case. First, the GSE is finite
for L > 1 for AdS3 × S3 × T 4 and for L > 2 for AdS5 × S5 . Second, in the AdS5 × S5

case there are no massless modes while in the AdS3 ×S3 ×T 4 case the massless worldsheet
modes come from the T 4 bosons and fermions, and their contribution in these limits can
be computed exactly. The massless mode contribution to the GSE (1.4) appears to be
equal to

ETBA
0 (h, L, µ) ≈ − 4

π
sin2

(
µ

2

)
N0hL

L2 − 1
4

, (1.8)

where for small µ one clearly replaces 4 sin2 µ
2 → µ2. The contribution appears at linear

order in h, and for large L it behaves as 1/L. This is in complete agreement with the
recent results obtained in [30] where the string spectrum was analysed in the tensionless
limit h → 0 of the AdS3 × S3 × T 4 TBA equations. For small µ the solution of the TBA
equations is also valid in the limit h → ∞, L → ∞ and J ≡ L/h fixed, where we find

ETBA
0 (J , µ) = −N0

µ2

πJ
. (1.9)

Comparing (1.9) with (1.6), we conclude that to have an agreement with the semiclassical
string model calculation one has to set N0 to 1. This is the main result of the paper.

The paper is structured as follows. In section 2 we calculate the GSE in the semi-
classical approximation, and derive (1.5) and (1.6). In section 3 we look into perturbative
Ansätze for Y -functions in the small twist µ regime around BPS vacuum, and obtain (1.8)
and show that the contribution of the massive modes is given by

ETBA
m (h, L, µ) ≈ −µ2

π
I(h, L) , (1.10)

– 4 –
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where I(h, L) is the following sum1

I(h, L) ≡
+∞∑
Q=1

∞∫
−∞

dp̃ e−LẼQ , ẼQ = 2 arcsinh
(√

p̃2 + Q2

2h

)
. (1.11)

The sum cannot be evaluated in a closed form but one can show that it is convergent for
L > 1, and it can be expanded in a power series in h with explicit expansion coefficients,
see (3.14). The series begins with a term of order h2L, and therefore for small h the main
contribution comes from massless modes and is given by (1.8).

The sum can also be computed for h ≫ L with L kept fixed where we get

I(h ≫ L, L) ≈ h2 π

L2 − 1 , IAdS5(h ≫ L, L) ≈ h4 3π

L4 − 5L2 + 4 , (1.12)

and in addition we have to assume that µ hL ≪ 1 otherwise Y -functions will be large.
In this case massive modes provide the leading contribution, and there is a substantial
difference between the AdS3 × S3 × T 4 and AdS5 × S5 superstrings.

Finally, for small µ we can consider the limit L → ∞, h → ∞ while J ≡ L/h is kept
fixed. Then we get

I(J ) =
∞∫

−∞

dp
1

4 sinh2
(

1
2J
√

p2 + 1
) ,

IAdS5(J ) =
+∞∫

−∞

dp
2 + cosh

(
J
√

p2 + 1
)

8 sinh4
(
J
2
√

p2 + 1
) .

(1.13)

For finite J the integral cannot be computed analytically but for large and small J one finds

I(J ≫ 1) ≈
√
2πe−J
√
J

, IAdS5(J ≫ 1) ≈
√
2πe−J
√
J

, (1.14)

I(J ≪ 1) ≈ π

J 2 , IAdS5(J ≪ 1) ≈ 3π

J 4 . (1.15)

As expected, the contribution of massive particles is exponentially suppressed for large J
while massless particles provide the leading contribution of order 1/J . On the other hand
for small J massive particles contribute more to the GSE.

In section 4 we find the leading order solution of the TBA system for large L with µ and
h fixed. The same solution also applies to the case of small h with µ and L fixed. We show
that the GSE is still given by the sum of (1.8) and (1.10) with µ2 replaced by 4 sin2 (µ

2
)
. We

also check that the same expression for the GSE is obtained from the generalised Lus̈cher
formula [31–36]. For large L with h fixed the main contribution of massive particles comes
from Q = 1, and we get

I(h, L ≫ h) ≈
√

π 4√4h2 + 1
(√

1
4h2 + 1 + 1

2h

)−2L

√
L

. (1.16)

1Note that in the AdS5 ×S5 case the GSE up to a numerical factor is given by (1.10) but the summand
contains an extra factor of Q2: IAdS5 (h, L) ≡

∑+∞
Q=1 Q2 ∫∞

−∞ dp̃ e−LẼQ .
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We see that for any h the massive contribution is exponentially suppressed while the
massless one is leading and proportional to h/L. For small and large h the formula simplifies

I(h ≪ 1, L ≫ h) ≈
√

π

L
h2L , I(h ≫ 1, L ≫ h) ≈

√
2π

h

L
e−

L
h . (1.17)

These formulae with µ = π provide us with the GSE of the odd-winding number sector
with anti-periodic fermions and nonsupersymmetric vacuum.

In section 5 we generalise the semiclassical consideration in section 2 to the twisted
lightcone string on one-parameter family of mixed-flux AdS3 × S3 × S3 × S1 backgrounds.
The corresponding lightcone string sigma model was considered in [37], and it contains the
mixed-flux AdS3 × S3 × T 4 superstring when one sphere blows up. We derive the general
formula (5.15) for the GSE, and specialise it to the AdS3 × S3 × T 4 case in (5.18). Then,
assuming that the TBA equations for the mixed-flux AdS3×S3×T 4 superstring are similar
to the pure RR ones, we reproduce the semiclassical result from YQ-functions.

We make concluding remarks in section 6. The full set of the AdS3 × S3 × T 4 TBA
equations is collected in appendix A, and necessary kernels are defined in appendix B.

2 Lightcone string GSE

The ground state energy of the twisted AdS3 × S3 × T 4 lightcone superstring can be
analysed by studying the perturbative expansion of the lightcone action in terms of inverse
tension

S =
∫

dτ

∫ J

0
dσ L , L = L2 +

1
h
L4 +

1
h2L6 + . . . , (2.1)

where J ≡ L
h , and the orders with odd field configuration are absent due to perturbative

properties of AdSn × Sn spaces [38]. The quadratic Lagrangian takes the form

L2 = L0 + Lm , (2.2)

with terms describing massless and massive sectors correspondingly see, e.g. [38]

L0 =
∣∣∣∂iu

α̇
∣∣∣2 + iχ̄α̇

L∂−χα̇
L + iχ̄α̇

R∂+χα̇
R ,

Lm = |∂ix
a|2 − |xa|2 + iχ̄α

L∂−χα
L + iχ̄α

R∂+χα
R − χ̄α

Lχα
R − χ̄α

Rχα
L ,

(2.3)

where u{1̇,2̇} and χ{1̇,2̇} are massless bosons and fermions, whereas x{1,2} and χ{1,2} are the
massive ones.

In terms of these fields the action (2.1) is invariant under the U(1) transformations
corresponding to SU(2)•

χα → eiµχα, χα̇ → χα̇, uα̇ → eiµuα̇, xa → xa , (2.4)

and, under the U(1) transformations corresponding to SU(2)◦,

χα → χα, χα̇ → e±iµ′
χα̇, uα̇ → e±iµ′

uα̇, xa → xa , (2.5)

where the sign of the twist is positive for α̇ = 1̇ and negative for α̇ = 2̇. The invariance
can be used to impose twisted boundary conditions on the fields. Note that α̇ is an index
of SU(2)◦, and the massless fermions are neutral under SU(2)•.

– 6 –
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Massless. We first analyse the massless part L0 (2.3). For generality we assume that
both the massless bosonic and fermionic fields satisfy twisted boundary conditions which
we choose to be

u1̇(σ + J , τ) = ei(µ+µ′)u1̇(σ, τ) , u2̇(σ + J , τ) = ei(µ−µ′)u2̇(σ, τ) ,

χ1̇(σ + J , τ) = e+iµ′
χ1̇(σ, τ) , χ2̇(σ + J , τ) = e−iµ′

χ2̇(σ, τ) ,
(2.6)

where µ and µ′ are the twists of SU(2)• and SU(2)◦, respectively and −π ≤ µ , µ′ ≤ π.
The twisted boundary conditions imply the following mode expansion of the bosonic

fields

u1̇(σ, τ) = 1√
J

∞∑
n=−∞

u1̇
n e2πi(n+µ̂+µ̂′) σ

J , u2̇(σ, τ) = 1√
J

∞∑
n=−∞

u2̇
n e2πi(n+µ̂−µ̂′) σ

J , (2.7)

where µ̂ = µ
2π , µ̂′ = µ′

2π .
For massless fermions we assume for definiteness that 0 ≤ µ′ ≤ π, and choose the

following mode expansion

χ1̇
L(σ, τ) = 1√

J

( ∞∑
n=0

c1̇†
nL e2πi(n+µ̂′) σ

J +
∞∑

n=1
d1̇

nL e−2πi(n−µ̂′) σ
J

)
,

χ2̇
L(σ, τ) = 1√

J

( ∞∑
n=1

c2̇†
nL e2πi(n−µ̂′) σ

J +
∞∑

n=0
d2̇

nL e−2πi(n+µ̂′) σ
J

)
,

χ2̇
R(σ, τ) = 1√

J

( ∞∑
n=0

c2̇†
nR e−2πi(n+µ̂′) σ

J +
∞∑

n=1
d2̇

nR e2πi(n−µ̂′) σ
J

)
,

χ1̇
R(σ, τ) = 1√

J

( ∞∑
n=1

c1̇†
nR e−2πi(n−µ̂′) σ

J +
∞∑

n=0
d1̇

nR e2πi(n+µ̂′) σ
J

)
,

(2.8)

Substituting the mode expansions of the bosons and fermions into the Lagrangian, we get

L0 =
∞∑

n=−∞

(
˙̄uα̇
n u̇α̇

n −
(2π(n + µ̂ + µ̂′)

J

)2
ū1̇

nu1̇
n −

(2π(n + µ̂ − µ̂′)
J

)2
ū2̇

nu2̇
n

)

+
∞∑

n=0

(
i cα̇†

nLċα̇
nL + i cα̇†

nRċα̇
nR + 2π(n + µ̂′)

J
(c1̇

nLc1̇†
nL + c2̇

nRc2̇†
nR)

+ 2π(n + 1− µ̂′)
J

(c2̇
nLc2̇†

nL + c1̇
nRc1̇†

nR)
)

+
∞∑

n=1

(
i dα̇†

nLḋα̇
nL + i dα̇†

nRḋα̇
nR − 2π(n − µ̂′)

J
(d1̇†

nLd1̇
nL + d2̇†

nRd2̇
nR)

− 2π(n − 1 + µ̂′)
J

(d2̇†
nLd2̇

nL + d1̇†
nRd1̇

nR)
)

.

(2.9)

Choosing c, d and c†, d† as annihilation and creation operators, respectively, we find the
frequencies which contribute to the GSE

ω1̇b
n = 2π

J
|n + µ̂ + µ̂′| , ω2̇b

n = 2π

J
|n + µ̂ − µ̂′| , n ∈ Z ,

ω1̇f
n = 2π

J
(n + µ̂′) , ω2̇f

n = 2π

J
(n + 1− µ̂′) , n = 0, 1, . . . ,∞ .

(2.10)
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Thus, the GSE is given by

E0 =
∞∑

n=−∞

(
ω1̇b

n + ω2̇b
n

)
− 2

∞∑
n=0

(
ω1̇f

n + ω2̇f
n

)

= 2π

J

(
|µ̂ + µ̂′|+

∞∑
n=0

(n + 1 + µ̂ + µ̂′)
)
+ 2π

J

∞∑
n=0

(n + 1− µ̂ − µ̂′)

+ 2π

J

(
|µ̂ − µ̂′|+

∞∑
n=0

(n + 1 + µ̂ − µ̂′)
)
+ 2π

J

∞∑
n=0

(n + 1− µ̂ + µ̂′)

− 4π

J

∞∑
n=0

(n + µ̂′)− 4π

J

∞∑
n=0

(n + 1− µ̂′) .

(2.11)

To compute the divergent series we can use the Hurwitz zeta-function

ζ(s, a) =
∞∑

n=0

1
(n + a)s

, (2.12)

and get2

E0 = 2π

J

[
|µ̂ + µ̂′|+ |µ̂ − µ̂′|

+ ζ(−1, 1 + µ̂ + µ̂′) + ζ(−1, 1− µ̂ − µ̂′)
+ ζ(−1, 1 + µ̂ − µ̂′) + ζ(−1, 1− µ̂ + µ̂′)

− 2ζ(−1, µ̂′)− 2ζ(−1, 1− µ̂′)
]

= 2π

J
(|µ̂ + µ̂′|+ |µ̂ − µ̂′| − 2µ̂2 − 2µ̂′) .

(2.13)

Since the GSE has to be symmetric under µ′ → −µ′, we finally find

E0 = − µ2

πJ
+ |µ + µ′|+ |µ − µ′| − 2|µ′|

J
. (2.14)

We see that for |µ| ≥ |µ′| we get a term linear in |µ|−|µ′| while for |µ| ≤ |µ′| the dependence
on µ′ and the linear term in |µ| disappears, and we obtain

E0 = − µ2

πJ
if |µ| ≤ |µ′| . (2.15)

We expect that when all fields are periodic µ = 0 and E0 = 0. This suggests that we should
identify the twist in the TBA equations with µ′ = µ.

2The same answer is obtained by using a more straightforward regularisation

E0 =
∞∑

n=−∞

(
ω1̇b

n e−ϵ ω1̇b
n + ω2̇b

n e−ϵ ω2̇b
n

)
− 2

∞∑
n=0

(
ω1̇f

n e−ϵ ω
1̇f
n + ω2̇f

n e−ϵ ω
2̇f
n

)
.
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Massive. The massive bosonic fields are periodic while the fermionic fields satisfy the
twisted boundary conditions

xa(σ + J , τ) = xa(σ, τ) , χα(σ + J , τ) = e±iµχα(σ, τ) , −π ≤ µ ≤ π , (2.16)

where the sign in the exponent depends on the type of a fermion.
The twisted boundary conditions imply the following mode expansion of the fields

xa(σ, τ) = 1√
J
∑

k

xa
k e2πik σ

J , χα(σ, τ) = 1√
J
∑

n

χα
n e2πi(n+µ̂) σ

J . (2.17)

The calculation of the contribution to the GSE from the massive bosons and fermions
follows the standard lines, and is given by

Em = 2
∞∑

k=−∞
ωb

k − 2
∞∑

k=−∞
ωf

k , (2.18)

where

ωb
k =

√(2πk

J

)2
+ 1 , ωf

k =

√(2π(k + µ̂)
J

)2
+ 1 . (2.19)

We want to evaluate (2.18) for J ≫ 1.3 We use the following regularisation

Em = 2
∞∑

k=−∞
ωb

ke−ϵ ωb
k − 2

∞∑
k=−∞

ωf
k e−ϵ ωf

k = 2
∞∑

k=−∞

(
ωb

ke−ϵ ωb
k − ωf

k e−ϵ ωf
k

)
. (2.20)

By applying the Poisson summation formula, we obtain

Em = 2
∞∑

w=−∞

(
F b

w − F f
w

)
= 2F b

0 − 2F f
0 + 2

∑
w ̸=0

(
F b

w − F f
w

)
, (2.21)

where

F b
w =

∫ ∞

−∞
dk ωb

ke−ϵ ωb
ke−i2πwk = J

2π

∫ ∞

−∞
dx
√

x2 + 1e−ϵ
√

x2+1e−iJwx , (2.22)

and
F f

w =
∫ ∞

−∞
dk ωf

k e−ϵ ωf
k e−i2πwk

= eiwµ J
2π

∫ ∞

−∞
dx
√

x2 + 1e−ϵ
√

x2+1e−iJwx = eiwµ F b
w .

(2.23)

Thus, F b
0 = F f

0 and we only need to calculate F b
w for w ̸= 0. Integrating by parts twice,

we find

F b
w = − 1

2πJw2

∫ ∞

−∞
dx

e−iJwx

(x2 + 1)3/2 + terms vanishing in the limit ϵ → 0 , (2.24)

3Note that for finite J one also has to take into account the contribution of bound states to the GSE.
It is unclear to us how to do it in practice.
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Computing the integral, we get

F b
w = −|w|K1(J |w|)

πw2 . (2.25)

Thus, the massive contribution is given by

Em = 2
∑
w ̸=0

(
F b

w − F f
w

)
= −2

∑
w ̸=0

(
1− eiwµ

) |w|K1(J |w|)
πw2

= −8
∞∑

w=1
sin2

(
wµ

2

)
K1(Jw)

πw
,

(2.26)

In the large J limit the main contribution comes from the w = 1 term, and we get

Em = −4 sin2
(

µ

2

)√ 2
π

e−J
√
J

+O
(
e−J/J 3/2

)
, (2.27)

which is of the expected form.
Combining the massless and massive contributions, we obtain the GSE for the large J

E ≈ − µ2

πJ
+ |µ + µ′|+ |µ − µ′| − 2|µ′|

J
− 4 sin2

(
µ

2

)√ 2
π

e−J
√
J

. (2.28)

3 TBA GSE: small twist

In this section we use the AdS3 ×S3 ×T 4 TBA equations, see appendix A, to calculate the
GSE for small twist µ with the light-cone momentum L and effective string tension h kept
fixed. The result obtained is also valid in the double-scaling limit h → ∞, L → ∞ with
J ≡ L/h kept fixed where we can compare it with the semi-classical string computation in
the previous section. Note that the TBA equations depend only on one twist µ. Whether
and how to introduce a twist µ′ depends on the number of massless modes N0. For N0 = 2
we could twist

log(1 + Y
(α̇)

0 ) →

log(1 + e+iµ′
Y

(1̇)
0 ) ,

log(1 + e−iµ′
Y

(2̇)
0 ) .

(3.1)

We will see however that the comparison of the GSE suggests N0 = 1, which makes it hard
to introduce µ′ in the TBA equations.

In order to be able to solve the AdS3 TBA system in the vicinity of small chemical
potential µ, we need to identify the correct perturbative behaviour for the corresponding
Y -functions. For this purpose we recall that a neighbourhood of BPS vacuum must be
considered. At the same time vanishing twist parameter implies that ground state energy

E BPS ≡ E(µ = 0, L) = 0 , (3.2)

and, therefore, from (1.4) and the TBA equations (A.4) and (A.5) for Y±-functions the
BPS vacuum Y -functions follow

µ = 0 : YQ = Y Q = Y
(α̇)

0 = 0 , Y
(α)
± = 1 . (3.3)

However, as could be noticed, in the case of BPS vacuum the TBA equations become
divergent for YQ/Y Q/Y

(α̇)
0 functions. Hence one consistent way to regulate this, is to

consider expansion around the BPS vacuum and take µ → 0 limit afterwards.
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Y -ansatz and TBA solution. In this regard, it is necessary to construct some Y -
ansätze that would be consistent with (3.3) and lead to a closure of the resulting system.
Hence we begin by analysing the behaviour of the massive/massless modes described by
YQ/Q/0-functions. From the equation for left particles, we can evaluate the structure of
leading contributing terms

− log YQ = LẼQ − log
(
1 + YQ′

)
⋆ KQ′Q

sl(2)

− log
(
1 + Y Q′

)
⋆ K̃Q′Q

su(2) −
N0∑

α̇=1
log

(
1 + Y

(α̇)
0

)
⋆̌K0Q

−
∑

α=1,2
log

1− eiµα

Y
(α)

+

 ⋆̂KyQ
+ −

∑
α=1,2

log

1− eiµα

Y
(α)
−

 ⋆̂KyQ
− ,

(3.4)

where µα = (−1)αµ , α = {1, 2} and Kab are kernels in the appropriate mirror particle
sector. The mirror energy ẼQ for massive particles is given by

ẼQ = log
x
(
u − iQ

h

)
x
(
u + iQ

h

) = 2 arcsinh
(√

p̃2 + Q2

2h

)
, (3.5)

where one can either use the u-plane rapidity or mirror momentum p̃ of a Q-particle as
an independent variable. More on mirror sectors, analytic structure and relations can be
found in appendices A and B.

Since for µ = 0 the auxiliary Y -functions are equal to 1, it is natural to assume that
they admit a power series expansion in µ

Y
(α)
± = 1 + B

(α)
± µ + C

(α)
± µ2 +O[µ3] . (3.6)

Then, taking into account that YQ/Q/0-functions vanish for µ = 0, it follows immediately
from (3.4) that for small µ

− log YQ = −2 logµ ⋆̂ KyQ
− − 2 logµ ⋆̂ KyQ

+ + LẼQ +R , (3.7)

where R denotes a finite remainder given by

R = −
∑

α=1,2
log

(
B

(α)
+ + (−1)αi

)
⋆̂KyQ

+ −
∑

α=1,2
log

(
B

(α)
− + (−1)αi

)
⋆̂KyQ

− ,

which depends on B
(α)
± but is independent of C

(α)
± . We see that the linear coefficients B±

in (3.6) do not affect the leading logµ dependence of log YQ. Taking into account that
1 ⋆̂ (KyQ

− + KyQ
+ ) = 1, one finds that the left YQ-function must scale quadratically in µ

YQ ≃ CQ e−LẼQ µ2 +O[µ3] , (3.8)

where CQ may be a function of p̃ (or u) depending on B
(α)
± .

– 11 –



J
H
E
P
0
9
(
2
0
2
3
)
0
2
7

It is then straightforward to proceed with the right Y Q sector reaching the same
conclusion. The massless equation develops analogous structure, although in this case,
attention is needed for the auxiliary-massless scattering

− log Y
(α̇)

0 ≈ LẼ0 −
∑

α

log

1− eiµα

Y
(α)
−

 ⋆̂Ky0 −
∑

α

log

1− eiµα

Y
(α)

+

 ⋆̂Ky0 . (3.9)

One can easily check that the kernels Ky0 satisfy the relation 1 ⋆̂ Ky0 = 1
2 , and therefore

the small µ behaviour of Y
(α̇)

0 is given again by (3.8) with Q = 0.
Having determined the small µ behaviour of YQ, Y Q and Y

(α̇)
0 functions, we can use

the TBA equations for Y
(α)
± functions to find the linear coefficients B

(α)
± . We have for Y

(α)
+

log Y
(α)

+ = log
(
1 + Y Q

)
⋆ KQy

− − log (1 + YQ) ⋆ KQy
+

−
N0∑

α̇=1
log

(
1 + Y

(α̇)
0

)
⋆̌K0y ,

(3.10)

and a similar equation for Y
(α)
− . Taking into account the leading order behaviour of the

massive/massless Y -functions, we see immediately that B
(α)
± = 0, and therefore the finite

remainder R is equal to 0 for all YQ, Y Q, Y
(α̇)

0 functions.
Thus, the leading order solution of the TBA equations for small µ is given by

YQ = Y Q ≈ µ2e−LẼQ , Y
(α̇)

0 ≈ µ2e−LẼ0 , Y
(α)
± ≈ 1 . (3.11)

The solution is reminiscent of the one arising for the AdS5 case [29] where one finds YQ ≈
µ24Q2e−LẼQ , Y

(α)
± ≈ 1. The extra Q2 dependence of YQ appears because the dimension of

a bound state representation is 16Q2.

Ground state energy. We can now obtain the ground state energy by expanding (1.4)
to the first order in Y -functions and using the solution (3.11)

E(h, L, µ) ≈ −µ2

 1
2π

+∞∫
−∞

dp̃ N0 e−LẼ0 +
+∞∑
Q=1

1
2π

+∞∫
−∞

dp̃ 2e−LẼQ


= −N0

µ2

π

4hL

4L2 − 1 − µ2

π
I(h, L) .

(3.12)

Here the first term on the second line is the contribution of massless particles and the
massless integral in (3.12) can be computed analytically for L >

1
2 . The second term

denotes the contribution of massive particles with the function I given by

I(h, L) =
+∞∑
Q=1

Q

∞∫
−∞

dp e
−2L arcsinh

(
Q

2h

√
p2+1

)

=
+∞∑
Q=1

Q

∞∫
−∞

dp

√(p2 + 1)Q2

4h2 + 1 +

√
(p2 + 1)Q2

4h2

−2L

,

(3.13)

where in the original integral we rescaled the mirror momentum p̃ as p̃ = Q p.
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By analysing the massive part, one can note that it can be transformed into a double
sum and further resummation over Q can be performed leading to the following power
series in h for I(h, L)

I(h, L) = L
∞∑

k=0
(−1)k

Γ
(
k + L − 1

2

)
Γ
(
k + L + 1

2

)
Γ(k + 1)Γ(k + 2L + 1) ζ(2k + 2L − 1)(2h)2k+2L , (3.14)

where the convergence of the sum over Q, and the sum over h requires

Iconv : L > 1 , |h| <
1
2 . (3.15)

Let us also mention that in the AdS5 × S5 case the function IAdS5 is defined similarly
to (3.13) but the summand contains an extra factor of Q2:

IAdS5(h, L) ≡
+∞∑
Q=1

Q2
∫ ∞

−∞
dp̃ e−LẼQ . (3.16)

Its expansion in powers of h is given by (3.14) with one replacement: ζ(2k + 2L − 1) →
ζ(2k+2L−3). As a result, it is convergent for L > 2. Note also that the GSE in the AdS5
case is given by EAdS5(h, L) = −2µ2

π IAdS5(h, L).

Limit h → ∞, L → ∞ with L/h fixed, and small µ. The GSE (3.12) has been
derived under an assumption µ ≪ 1 with h, L fixed. The solution (3.11), however, is also
valid in the scaling limit h → ∞, L → ∞ with J ≡ L/h kept fixed where (3.11) simplifies to

YQ = Y Q ≈ µ2e−
√

p̃2+Q2J , Y
(α̇)

0 ≈ µ2e−|p̃|J , Y
(α)
± ≈ 1 . (3.17)

Then we get

I(J ) =
+∞∑
Q=1

Q

∞∫
−∞

dp e−J Q
√

p2+1 =
∞∫

−∞

dp
1

4 sinh2
(

1
2J
√

p2 + 1
) . (3.18)

For finite J the integral cannot be computed analytically but for large J one gets

I(J ≫ 1) ≈

√
π
2

(coshJ − 1)
√
J coth J

2

→
√
2πe−J
√
J

. (3.19)

Thus, the GSE becomes

E(J ≫ 1) ≈ −µ2

π

(
N0
J

+
√
2πe−J
√
J

)
. (3.20)

Obviously, massless particles provide the leading contribution of order 1/J while, as ex-
pected, the contribution of massive particles is exponentially suppressed for large J . Com-
paring (3.20) with (2.28), we see that to get an agreement one has to set N0 to 1 and
choose µ′ = µ.
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Massive particles however contribute more to the GSE for small J where one finds

I(J ≪ 1) ≈ π

J 2 − 1
J

, (3.21)

and
E(J ≪ 1) ≈ −µ2

π

(
N0 − 1

J
+ π

J 2

)
. (3.22)

One see that for small J massive particles contribute to order 1/J , and for N0 = 1
completely compensate the massless contribution.

It is interesting to compare these formulae with the ones for the AdS5 superstring
where the J -dependent integral arises in the form

IAdS5(J ) =
+∞∫

−∞

dp
2 sinh2

(
J
2
√

p2 + 1
)
+ 3

8 sinh4
(
J
2
√

p2 + 1
)

= I(J ) +
+∞∫

−∞

dp
3

8 sinh4
(
J
2
√

p2 + 1
) .

(3.23)

The second term is clearly subleading for J ≫ 1, and one finds

EAdS5(J ≫ 1) = −2µ2

π

√
2πe−J
√
J

. (3.24)

On the other hand for small J the second term in (3.23) scales as J −4 and provides the
main contribution

IAdS5(J ≪ 1) = 3π

J 4 , EAdS5(J ≪ 1) = −6µ2

J 4 . (3.25)

It is unclear to us what is a reason for such a different behaviour of the GSE in the AdS3
and AdS5 cases.

Regime µ ≪ 1, µ hL ≪ 1, h ≫ L with L fixed. Finally, we can consider the
regime where h is much larger than L which is kept fixed. Then, we have to assume that
µ hL ≪ 1 otherwise Y -functions would be large.4 In this case the sum over Q in (3.13) can
be replaced with an integral, and we get

I(h ≫ L, L) =
+∞∑
Q=1

Q

∞∫
−∞

dp

√(p2 + 1)Q2

4h2 + 1 +

√
(p2 + 1)Q2

4h2

−2L

≈ h2
∫ ∞

0
dq q

∞∫
−∞

dp

√(p2 + 1) q2

4 + 1 +

√
(p2 + 1) q2

4

−2L

.

(3.26)

The integrals can be easily taken by making the substitution

q = 2 sinh x√
p2 + 1

, (3.27)

4For finite µ and L we expect the ground state to become unstable, and tachyonic modes to appear,
see [39] for a related discussion.
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and we obtain
I(h ≫ L, L) ≈ h2 π

L2 − 1 , (3.28)

and

E(h ≫ L, L) ≈ −µ2

π

(
N0

4hL

4L2 − 1 + h2π

L2 − 1

)
. (3.29)

In this case massless modes provide a subleading contribution.
Computing a similar integral for the AdS5 × S5 case, one gets

IAdS5(h ≫ L, L) ≈ h4 3π

L4 − 5L2 + 4 ,

EAdS5(h ≫ L, L) ≈ −µ2

π

6h4π

L4 − 5L2 + 4 .

(3.30)

We see again that there is a substantial difference between the AdS3×S3×T 4 and AdS5×S5

superstrings.

4 TBA GSE: finite twist

Large LẼQ. One can easily see from the form of the TBA equations, see appendix A,
that YQ, Y Q, Y

(α̇)
0 functions are small if LẼQ are large. This clearly happens either if L is

large with h fixed or h is small with L fixed while the value of the twist µ is irrelevant.
Small parameters then become e−LẼQ , and repeating the analysis in the previous section,
one gets the leading order solution

YQ = Y Q ≈ 4 sin2
(

µ

2

)
e−LẼQ , Y

(α̇)
0 ≈ 4 sin2

(
µ

2

)
e−LẼ0 , Y

(α)
± ≈ 1 , (4.1)

which differs from (3.11) just by the replacement µ2 → 4 sin2 µ
2 , and therefore the GSE is

given by

E(h, L, µ) ≈ − 4
π
sin2

(
µ

2

)(
N0

4hL

4L2 − 1 + I(h, L)
)

. (4.2)

For small h with L fixed we can use (3.14), and get

E(h ≪ 1, L, µ) ≈ − 4
π
sin2

(
µ

2

)N0
4hL

4L2 − 1 +
√

πΓ
(
L − 1

2

)
Γ(L) ζ(2L − 1)h2L

 . (4.3)

The contribution of massive particles appears only at order h2L while massless particles
begin to contribute already at the linear order. It is interesting to note that due to massless
particles contributions the expansion is in powers of h while in the AdS5 × S5 case it is in
powers of h2.

For large L with h fixed the main contribution of massive particles comes from Q = 1,
and the constant and quadratic in p̃ terms in the small p̃ expansion of Ẽ1. Performing the
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expansion and computing the integral, we get

I(h, L ≫ h) ≈
√

π 4√4h2 + 1
(√

1
4h2 + 1 + 1

2h

)−2L

√
L

, (4.4)

E(h, L ≫ h, µ) ≈ − 4
π
sin2

(
µ

2

)N0
h

L
+

√
π 4√4h2 + 1 (2h)2L

√
L
(√

4h2 + 1 + 1
)2L

 . (4.5)

Just as for the case of small h with L fixed the leading contribution comes from the massless
particles and is proportional to h/L. It is also clear that for any h the massive contribution
is exponentially suppressed.

For small and large h the formula (4.4) simplifies

I(h ≪ 1, L ≫ h) ≈
√

π

L
h2L ,

I(h ≫ 1, L ≫ h) ≈

√
2π

h

L
e−

L
h =

√
2π

J
e−J ,

E(h ≫ 1, L ≫ h, µ) ≈ − 4
π
sin2

(
µ

2

)(
N0

1
J

+
√

2π

J
e−J

)
,

(4.6)

and the energy agrees with (4.3) and (3.19).
Let us stress that for µ = π formulae (4.3) and (4.5) should provide us with the GSE

of the RR AdS3 ×S3 × T 4 light-cone string theory in the odd-winding number sector with
anti-periodic fermions and nonsupersymmetric vacuum.

Twisted generalised Lüscher formula. We have found that both small µ and asymp-
totically large LẼQ regimes share extra contribution that comes from the massless sector
and takes a very simple and compact form. The massless contribution does not vanish
exponentially for large L, and it is interesting to check whether it is consistent with gener-
alised Lüscher formula [31–36] which in the presence of the twist takes the form

E(h, L) ≈ −
N0∑

α̇=1

∞∫
−∞

dp̃

2π
e−LẼ0F

(α̇)
0 −

+∞∑
Q=1

∞∫
−∞

dp̃

2π
e−LẼQ(FQ + F̄Q) , (4.7)

where
FX = TrXei(π+µ)F , (4.8)

and TrX is over appropriate representations X = {Q/Q/0}. For the AdS3 × S3 × T 4

superstring all the representations are four-dimensional, and moreover each of them is
the tensor product of two two-dimensional representations: X = X ′ ⊗ X ′′. Each two-
dimensional representation has one boson and one fermion, and F = F ′−F ′′ plays the role
of a fermion number operator of the corresponding four-dimensional representation where
F ′, F ′′ are fermion number operators of the left/right two-dimensional representations.
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Calculating the trace, one gets for all the representations

TrXei(π+µ)F =
(
TrX′ei(π+µ)F ′) (TrX′′e−i(π+µ)F ′′)

=
(
1− eiµ

) (
1− e−iµ

)
= 4 sin2

(
µ

2

)
.

(4.9)

Clearly, the twisted generalised Lüscher expression (4.7) is in full agreement with the TBA
formula (4.2).

5 Twisted mixed-flux AdS3 × S3 × T 4 superstring

In this section we first generalise the semiclassical consideration in section 2 to the twisted
lightcone string on the mixed-flux AdS3 × S3 × T 4 background. Then, we conjecture that
up to unknown dressing factors the TBA equations for the mixed-flux AdS3 × S3 × T 4

superstring are similar to the pure RR ones, and therefore in the situation where the YQ-
functions are small a solution takes the same form. The only difference is that one uses
the mirror dispersion relation of the mixed-flux theory. In fact, as far as the semiclassical
computation is concerned, we can consider the even more general one-parameter family
of AdS3 × S3 × S3 × S1 backgrounds (where the parameter is the relative radius of the
two spheres). It reduces to the mixed-flux AdS3 × S3 × T 4 superstring when one sphere
blows up, and the corresponding untwisted lightcone string sigma model was considered
in [37]. For this one-parameter family of backgrounds, however, the mirror TBA is not
known (and very little is known aside from the matrix structure of the S-matrix [40] and
BPS spectrum [41]).

Lightcone AdS3 × S3 × S3 × S1 string GSE. The quadratic action of the lightcone
AdS3 × S3 × S3 × S1 string derived in [37] takes the form

S =
∫

dτ

∫ J

0
dσ L , L = Lb + Lf , (5.1)

where Lb and Lf are the bosonic and fermionic quadratic Lagrangians, respectively

Lb =
4∑

j=1

1
2
[
|∂kzj |2 − m2

b,j |zj |2 + iqmb,j(z̄jz′j − z̄′jzj)
]

,

Lf =
4∑

j=1

[
iθ̄1j

(
θ̇1j − iq̂θ′2j + qθ′1j

)
+ iθ̄2j

(
θ̇2j + iq̂θ′1j − qθ′2j

)
− mf,j(θ̄1jθ1j − θ̄2jθ2j)

]
.

(5.2)

Here q̂ =
√
1− q2 where q is a parameter which measures the strength of R-R and NS-NS

flux, with q = 0 corresponding to pure R-R and q = 1 to pure NS-NS flux, respectively,
and the masses are given by

mb,1 = 1 , mb,2 = cosφ cosω , mb,3 = sinφ sinω , mb,4 = 0 , (5.3)
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for the bosons, while for the fermions

mf,1 = 1 + cos(φ − ω)
2 , mf,2 = 1 + cos(φ + ω)

2 ,

mf,3 = 1− cos(φ + ω)
2 , mf,4 = 1− cos(φ − ω)

2 ,

(5.4)

where φ parametrises the AdS3 ×S3 ×S3 ×S1 background and is related to the commonly
used parameter α as α = cos2 φ, and ω parametrises the one-parameter family of choice
of gauge-fixing that determines the lightcone string sigma models. The models are super-
symmetric only for ω = ±φ. Then, the AdS3 × S3 × T 4 model is recovered at ω = φ = 0.
For any values of φ, ω the masses satisfy the following important relation

4∑
j=1

m2
b,j =

4∑
j=1

m2
f,j , (5.5)

which as we will see in a moment allows one to introduce a regularisation leading to a finite
ground state energy of the lightcone model.

We impose the most general twisted boundary conditions

zj(σ + J , τ) = eiµb
j zj(σ, τ) , θa,j(σ + J , τ) = eiµf

j θa,j(σ, τ) , a = 1, 2 , (5.6)

and find the bosonic and fermionic frequencies

ωb
n,j =

√(2π

J
(n + µ̂b

j) + qmb,j

)2
+ q̂2m2

b,j ,

ωf
n,j =

√(2π

J
(n + µ̂f

j ) + qmf,j

)2
+ q̂2m2

f,j .

(5.7)

Then, the GSE is given by

E =
4∑

j=1

∞∑
n=−∞

ωb
n,j −

4∑
j=1

∞∑
n=−∞

ωf
n,j . (5.8)

We use the following regularisation

E =
4∑

j=1

∞∑
n=−∞

ωb
n,j exp

(
− ϵ

q̂mb,j
ωb

n,j

)
−

4∑
j=1

∞∑
n=−∞

ωf
n,j exp

(
− ϵ

q̂mf,j
ωf

n,j

)
. (5.9)

which is a generalisation of (2.20). We also assume that all the masses are nonzero.
By using again the Poisson summation formula, we get

E =
4∑

j=1

∞∑
w=−∞

(
F b

w,j − F f
w,j

)
=

4∑
j=1

(
F b

0,j − F f
0,j

)
+

4∑
j=1

∑
w ̸=0

(
F b

w,j − F f
w,j

)
. (5.10)

Here

F ⋆
w,j =

∫ ∞

−∞
dn ω⋆

n,j exp
(
− ϵ

q̂m⋆,j
ω⋆

n,j

)
e−i2πwn

= eiw(µ⋆
j +qm⋆,jJ )J q̂2m2

⋆,j

2π

∫ ∞

−∞
dx
√

x2 + 1e−ϵ
√

x2+1e−iq̂m⋆,jJwx ,

(5.11)

where ⋆ = b, f .
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Taking into account the relation (5.5), we see that
∑4

j=1

(
F b

0,j − F f
0,j

)
= 0, and there-

fore we only need to calculate F ⋆
w for w ̸= 0. This has been done in section 2, and by using

the results we find the GSE

E =− 2q̂
4∑

j=1

∞∑
w=1

(
mb,j cos

(
w(µb

j + qmb,jJ )
) K1(q̂mb,jJw)

πw

−mf,j cos
(
w(µf

j + qmf,jJ )
) K1(q̂mf,jJw)

πw

)
.

(5.12)

If some of the masses are equal to 0 then we can either use the zeta-function regularisation,
or take the limit m → 0 in the formula. Assuming that −π < µ < π, we get for the
massless contribution

E0 = −2q̂ lim
m→0

∞∑
w=1

(m cos (w(µ + qmJ )) K1(q̂mJw)
πw

= −
∞∑

w=1

2 cos(µw)
πJw2 = − π

3J + |µ|
J

− µ2

2πJ
,

(5.13)

which agrees with the result obtained by using the zeta-function regularisation.
Thus, assuming that we have N b

0 and N f
0 complex massless bosons and fermions, and

N b
m and N f

m complex massive bosons and fermions, we can write (5.12) in the form

E = −π(N b
0 −N f

0 )
3J +

N b
0∑

j=1

(
|µb

0j |
J

−
(µb

0j)2

2πJ

)
−

N f
0∑

j=1

 |µf
0j |
J

−
(µf

0j)2

2πJ


− 2q̂

N b
m∑

j=1

∞∑
w=1

mb,j cos
(
w(µb

j + qmb,jJ )
) K1(q̂mb,jJw)

πw

+ 2q̂
N f

m∑
j=1

∞∑
w=1

mf,j cos
(
w(µf

j + qmf,jJ )
) K1(q̂mf,jJw)

πw
) .

(5.14)

In the supersymmetric case N b
0 = N f

0 = N0, N b
m = N f

m = Nm, mb,j = mf,j = mj ,
and (5.14) takes a simpler form

E =
N0∑
j=1

 |µb
0j | − |µf

0j |
J

−
(µb

0j)2 − (µf
0j)2

2πJ


− 4q̂

Nm∑
j=1

∞∑
w=1

mj sin

w
µb

j + µf
j + 2qmjJ
2

 sin

w
µf

j − µb
j

2

 K1(q̂mjJw)
πw

.

(5.15)

In the large J limit the main contribution comes from w = 1, and one gets

E(J ≫ 1) =
N0∑
j=1

 |µb
0j | − |µf

0j |
J

−
(µb

0j)2 − (µf
0j)2

2πJ


− 4q̂

Nm∑
j=1

mj sin

µb
j + µf

j + 2qmjJ
2

 sin

µf
j − µb

j

2

 e−q̂mjJ
√
2π
√

q̂mjJ
.

(5.16)
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We can now apply (5.16) to the mixed-flux AdS3 × S3 × T 4 string where N0 = 2, Nm = 2,
and the twists are given by

µb
01 = µ + µ′ , µb

02 = µ − µ′ , µf
01 = µ′ , µf

02 = −µ′ ,

µb
1 = 0 , µb

2 = 0 , µf
1 = µ , µf

2 = −µ , m1 = m2 = 1 ,
(5.17)

and therefore
ET4(J ≫ 1) =− µ2

πJ
+ |µ + µ′|+ |µ − µ′| − 2µ′

J

− 4 sin2
(

µ

2

)
q̂ cos (qJ )

√
2
π

e−q̂J
√

q̂J

(5.18)

Thus, the massless contribution is independent of q, while the massive contribution contains
a highly oscillating factor. It is interesting that if qJ = π

2 + πℓ, ℓ ∈ Z then the terms with
w = 2 would provide the leading contribution at large J .

In the next subsection we will reproduce (5.18) from TBA equations for the mixed-flux
AdS3 × S3 × T 4 string.

GSE from TBA. The mirror theory of the mixed-flux AdS3 ×S3 ×T 4 string is nonuni-
tary, and it is unclear whether one can justify using it to derive the mixed-flux TBA
equations.5 Still, one can try to engineer a set of integral equations which would deter-
mine the ground state energy of the string theory. Since the Bethe equations and the
bound states of the mixed-flux AdS3 × S3 × T 4 string is similar to the ones of the RR
AdS3 × S3 × T 4 string, it is natural to assume that the TBA equations in the mixed-flux
case take the same form as in the RR TBA system, see appendix A. Clearly, the dressing
kernels and the energy dispersion relations would have to be replaced with the ones for
the mixed-flux string, and since the dressing phases are unknown writing down mixed-flux
TBA equations remains a challenging problem. Nevertheless, if YQ-functions are small then
one can expect that they are given by

YQ ≈ µ2e−LẼQ , Y Q ≈ µ2e−LẼ∗
Q , (5.19)

where Ẽ∗
Q should be complex conjugate to ẼQ to ensure the reality of the GSE.

For finite h the mixed-flux mirror dispersion relations cannot be found in an explicit
analytic form. However, in the semi-classical limit h → ∞, L → ∞, J = L/h fixed they
take the following simple form

ẼQ = 1
h

(√
p̃2 + q̂2Q2 + iqQ

)
. (5.20)

Then, the GSE is given by

E(J , µ, q) ≈ − 1
2π

+∞∫
−∞

dp̃ N0 Y0 −
+∞∑
Q=1

1
2π

+∞∫
−∞

dp̃ (YQ + Y Q)

= −N0
µ2

πJ
− µ2Iq(J ) ,

(5.21)

5The derivation of the TBA for such non-unitary mirror models was considered, at least formally,
in [42, 43] for the q = 1 case, and successfully matched with the WZNW model results.
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where

Iq(J ) =
+∞∑
Q=1

1
π

+∞∫
−∞

dp̃ cos(qJQ) e−J
√

p̃2+q̂2Q2

= 1
π

+∞∑
Q=1

q̂Q

+∞∫
−∞

dp cos(qJQ) e−q̂QJ
√

p2+1 ,

(5.22)

At large J the main contribution comes from the Q = 1 term, and is given by

Iq(J ≫ 1) = q̂ cos (qJ )
√

2
π

e−q̂J
√

q̂J
. (5.23)

This agrees with the semi-classical calculation in the previous section.

6 Conclusion and remarks

In the present work we have calculated the leading wrapping contribution of massless and
massive particles to the ground state energy of the lightcone pure RR AdS3 × S3 × T 4

superstring with fields subject to twisted boundary conditions by using first the semi-
classical string consideration and then the AdS3×S3×T 4 TBA equations with any number
N0 of massless Y

(α̇)
0 functions. The comparison of the two calculations has shown that the

agreement requires N0 = 1 contrary to the conjecture made in [26] where N0 was chosen
to be equal to 2.

The µ dependence of the massless contribution in (4.6), however, disagrees with the
semi-classical string result (2.28) even if µ′ = µ. A reason for the disagreement might be
in the order-of-limits problem. In the semi-classical calculation we first take h, L → ∞
with L/h fixed, while in the TBA consideration we take L → ∞ keeping h fixed. It would
be important to analyse the TBA equations in the limit h, L → ∞ with L/h fixed. If the
disagreement would be resolved then it would strongly support the TBA equations with
N0 = 1. It would also mean that the su(2)• ⊕ su(2)◦ symmetry of the classical model is
broken in quantum theory to a diagonal su(2) subalgebra. If the disagreement persists it
would be an indication that the su(2)◦ invariant S-matrix for massless particles introduced
in [24], and assumed to be trivial in [38] on the basis of perturbative calculations, is in
fact nontrivial nonperturbatively. This might be also necessary in order to introduce the
second twist µ′ in the TBA equations.

The massless contribution has been shown to be proportional to hL/(4L2−1), and the
contribution of massive particles appears to be subleading in all cases where h ≪ L. We
have also checked that the generalised Lüscher formula [31–34] leads to the same leading
order results as the TBA.

It would be interesting to analyse the TBA equations at the next-to-leading order
where additional nontrivial contributions start to arise due to dressing phase dependent
kernels. The GSE at this order can be also found by means of the next-to-leading order
Lüscher formula [35, 36]. Comparison of the results obtained by using the TBA and the
Lüscher formula may clarify a reason for the mismatch between semiclassical calculations
and the Lüscher formula found in [44].
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It would also be important to generalise the recent proposal for the Quantum Spectral
Curve (QSC) of pure RR AdS3 × S3 × T 4 superstring [45, 46] to the twisted superstring,
and to use the QSC to calculate the GSE. This would be a definite test on whether the
QSC describes massless modes and how many of them. The results of [47] do not answer
these questions.

A very important if not ultimate test of the TBA system is to use the contour defor-
mation trick to derive the excited states equations and to solve them numerically for large
h keeping L fixed. One should get an expected

√
h behaviour for the excited states energy.
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A AdS3 × S3 × T 4 TBA system

In this appendix we list the AdS3 × S3 × T 4 TBA equations proposed in [26] but for
generality and to simplify the comparison with the semi-classical string results we consider
N0 massless Y α̇

0 -functions. The AdS3 × S3 × T 4 TBA system [26] contains YX -functions
and convolution kernels Kpq, and is given as follows.

The left, right and massless Y -functions for momentum-carrying Bethe roots satisfy
the following equations

− log YQ = LẼQ − log
(
1 + YQ′

)
⋆ KQ′Q

sl(2)

− log
(
1 + Y Q′

)
⋆ K̃Q′Q

su(2) −
N0∑

α̇=1
log

(
1 + Y

(α̇)
0

)
⋆̌K0Q

−
∑

α=1,2
log

1− eiµα

Y
(α)

+

 ⋆̂KyQ
+ −

∑
α=1,2

log

1− eiµα

Y
(α)
−

 ⋆̂KyQ
− ,

(A.1)

− log Y Q = LẼQ − log
(
1 + Y Q′

)
⋆ KQ′Q

su(2)

− log
(
1 + YQ′

)
⋆ K̃Q′Q

sl(2) −
N0∑

α̇=1
log

(
1 + Y

(α̇)
0

)
⋆̌K̃0Q

−
∑

α=1,2
log

1− eiµα

Y
(α)

+

 ⋆̂KyQ
− −

∑
α=1,2

log

1− eiµα

Y
(α)
−

 ⋆̂KyQ
+ ,

(A.2)
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− log Y
(α̇)

0 = LẼ0 −
N0∑

β̇=1

log
(
1 + Y

(β̇)
0

)
⋆̌K00

− log (1 + YQ) ⋆ KQ0 − log
(
1 + Y Q

)
⋆ K̃Q0

−
∑

α=1,2
log

1− eiµα

Y
(α)

+

 ⋆̂Ky0 −
∑

α=1,2
log

1− eiµα

Y
(α)
−

 ⋆̂Ky0 ,

(A.3)

and for auxiliary particles y− and y+ the following coupled pair appears

log Y
(α)
− =− log (1 + YQ) ⋆ KQy

− + log
(
1 + Y Q

)
⋆ KQy

+

+
N0∑

α̇=1
log

(
1 + Y

(α̇)
0

)
⋆̌K0y ,

(A.4)

log Y
(α)

+ =− log (1 + YQ) ⋆ KQy
+ + log

(
1 + Y Q

)
⋆ KQy

−

−
N0∑

α̇=1
log

(
1 + Y

(α̇)
0

)
⋆̌K0y .

(A.5)

The mirror energy ẼQ that depends on the corresponding mirror momentum or u-rapidity
is given by

ẼQ = log
x
(
u − iQ

h

)
x
(
u + iQ

h

) = 2 arcsinh
(√

p̃2 + Q2

2h

)
, (A.6)

p̃(u, Q) = h

[
x

(
u − i

Q

h

)
− x

(
u + i

Q

h

)]
+ iQ (A.7)

whereas the massless counterpart can be obtained in the Q → 0 limit

Ẽ0 = log x (u − i0)
x (u + i0) = 2 arcsinh

( |p̃|
2h

)
. (A.8)

B S-matrix Spq and kernel Kpq

On AdS3 × S3 × T 4 background different mirror sectors constitute distinct analytic prop-
erties [25, 48] involved in description of scattering. This is directly reflected in the cor-
responding kernels Kab of the TBA system A. By definition the kernels depend on the
associated S-matrix

Kij(u, v) = 1
2πi

d
du

logSij(u, v) (B.1)

hence identified by the scattering data. Here we consider the u-parametrisation of an
S-matrix and kernel K, which in the present framework is given by the Zhukovsky relation

x(u) = 1
2
(
u − i

√
4− u2

)
(B.2)
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where x is Zhukovsky variable and the relation exhibits long cuts −2 > u > 2 for u ∈ R.
Depending on the scattered sectors, the corresponding cut structure is also reflected in an
appropriate convolution bounds, i.e.

⋆ ↔
∫ +∞

−∞
du ⋆̂ ↔

∫ +2

−2
du ⋆̌ ↔

(∫ −2

−∞
+
∫ +∞

+2

)
du (B.3)

The ⋆-left action that is involved in A defines for any domain

ρi ⋆ Kij(v) ≡
∑

i

∫
du ρi(u)Kij(u, v) (B.4)

The S-matrices that are involved in the TBA and the fused Bethe-Yang system can be
grouped into scattering sectors by

Massive chiral sector. Since at the TBA level convolutions that contribute arise anal-
ogously for the left and right sectors, we can define them on equal grounds as

SQy
− (u, v) =

x(v)− x
(
u − iQ

h

)
x(v)− x

(
u + iQ

h

)
√√√√√x

(
u + iQ

h

)
x
(
u − iQ

h

)

SQy
+ (u, v) =

x
(
u − iQ

h

)
− 1

x(v)

x
(
u + iQ

h

)
− 1

x(v)

√√√√√x
(
u + iQ

h

)
x
(
u − iQ

h

)
(B.5)

which leads to the KQy
∓ kernels that arise in the analytically splitted form from the universal

kernels K and KQ. More specifically the unified relation can be compactly given (rapidity
dependent)

KQy
∓ (u, v) = 1

2 (KQ(u − v)± KQy(u, v)) (B.6)

KQy(u, v) = K

(
u − i

h
Q, v

)
− K

(
u + i

h
Q, v

)
(B.7)

KQ(u) =
1
π

hQ

Q2 + h2u2 , K(u, v) = 1
2πi

√
4− v2

√
4− u2

1
u − v

(B.8)

Important that for massive kernels above, we have already implemented the map that is
given by (in comparison to [26])

x±
i = x

(
ui ±

i

h

)
ui = u + (Q + 1− 2i)i

h
, i = 1, . . . Q (B.9)

where all real particles possess u ∈ R and analogous for the right sector Q. On the
other hand, for the bound states {Ẽ , p̃k, u} ∈ C. As it was shown by means of fusion
operation [26], the bound states can be treated as particles of mass gap Q ∈ N.
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Massless sector. The massless-auxiliary matrices are defined as

S0y (xk, yj) = e+ i
2 pk

1
xk

− yj

xk − yj
= 1

S0y
(
xk, 1

yj

) (B.10)

xk = x (uk + iϵ) = x (uk − iϵ)−1 ϵ → 0 (B.11)

where the last identity conventionally based on

eipk = x+

x− (B.12)

and the massless-auxiliary sector interchange can occur through braiding-unitarity relation

Sy0(yj , xk) =
1

S0y(xk, yj)
(B.13)

All particles in the physical region are real and there is no formation of the bound states in
the massless sector. For unified argument, the massless sector can be considered as formal
Q → 0 limit.

Auxiliary sector. For the reverted sector, i.e. the auxiliary y-particles appear first, we
obtain

SyQ
− (u, v) =

x(u)− x
(
v + iQ

h

)
x(u)− x

(
v − iQ

h

)
√√√√√x

(
v − iQ

h

)
x
(
v + iQ

h

)

SyQ
+ (u, v) =

1
x(u) − x

(
v − iQ

h

)
1

x(u) − x
(
v + iQ

h

)
√√√√√x

(
v + iQ

h

)
x
(
v − iQ

h

)
(B.14)

Similarly the corresponding kernels follow from universal ones above as

KyQ
± (u, v) = 1

2 (KyQ(u, v)∓ KQ(u − v)) (B.15)

KyQ(u, v) = K

(
u, v + i

h
Q

)
− K

(
u, v − i

h
Q

)
(B.16)

All auxiliary particles that appear in string hypothesis have |y| = 1. In this regard, maps
differ for negative/positive imaginary partsy = x(u) , ℑ[y] < 0 ,

y = 1
x(u) , ℑ[y] > 0 .

(B.17)
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