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We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with
complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is
flat, while due to the presence of the dilaton field the asymptotic behavior of them is neither flat nor (anti-)de Sitter [(A)dS]. We
investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the
countertermmethod inspired by AdS/CFT correspondence. We derive temperature, electric potential, and entropy associated with
the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of
the solutions in both canonical and grand-canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of
electrodynamics, and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for 𝛼 < 1, while
for 𝛼 > 1 the solutions may encounter an unstable phase, where 𝛼 is dilaton-electromagnetic coupling constant.

1. Introduction

Thermodynamics of black holes plays a central role in the
attractive modern method relating classical gravity and high
energy physics, namely, gauge/gravity duality. The issue was
first taken into consideration by Bekenstein [1] and Hawking
[2] and encountered increasing interests rapidly. Among
different frameworks, the thermodynamics of black solutions
has been studied; dilaton gravity possesses a significant
predominancy.This preference has at least two reasons. From
one side, the dilaton gravity which is one of the modified
gravities is able to justify the accelerating expansion of the
universe confirmed from observations [3–9] while Einstein
gravity (General Relativity) requires exotic matter violating
energy conditions to justify this phase of universe. From
another side, the dilaton gravity appears in the low energy
limit of string theory [10] and therefore can provide a good
laboratory for testing this theory in the low energy limit

through gauge/gravity duality. Since string theory proposes
higher than four dimensions [10], it is natural to consider
higher dimensional solutions within the gravity theories
come from string theory.

Exact asymptotically flat solutions of Einstein-Maxwell-
dilaton gravity have been constructed in the absence of
dilaton potential in [11–20]. However, breaking of spacetime
supersymmetry in ten dimensions may cause one or more
Liouville-type potentials in the action of dilaton gravity. This
type of dilaton potential changes the asymptotic behavior
of solutions [17–19, 21–26]. In general, these solutions are
neither asymptotically flat nor (anti-)de Sitter [(A)dS]. Ther-
modynamics of topological dilaton black holes in Einstein-
Maxwell gravity has been explored in [27]. Asymptotically
nonflat and non-(A)dS linearly charged rotating black branes
were under investigation in [28, 29]. Slowly rotating charged
black holes have been studied from thermodynamics point of
view as well [30].
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A natural interesting extension of such solutions is to
change the electrodynamics Lagrangian from linear Maxwell
to nonlinear ones. Some efforts have been done to construct
exact solution in dilaton gravity with nonlinear electrody-
namics. For example, thermodynamics of static black hole
solutions in the presence of nonlinear power-law Maxwell
(PLM) [31], Born-Infeld (BI) [32], and exponential [33, 34]
electrodynamics has been investigated. As well, thermody-
namic properties of rotating black brane solutions have been
studied in the presence of PLM [35], BI [36], and exponential
[37] nonlinear electrodynamics. Any one of the abovemen-
tioned nonlinear electrodynamics has its own importance
and motivations. For instance, the PLM electrodynamics
extends the conformal invariance property of LinearMaxwell
Lagrangian in four dimensions to higher dimensional space-
times, while BI [38] electrodynamics, which comes from
open string theory [39–43], solves the problem of infinite
self-energy of charged point-particle that appears in linear
Maxwell case. The latter problem is also overcome by loga-
rithmic nonlinear electrodynamics proposed for the first time
in [44]. Although this type of nonlinear electrodynamics has
no direct relation with superstring theory, it can bemotivated
from different sides. First, it can be regarded as a toy model
showing that certain nonlinear field theories can produce
particle-like solutions that can realize the limiting curvature
hypothesis in cosmological theories [44]. Second, the behav-
ior of logarithmic electrodynamics and BI electrodynamics
Lagrangians are the same for large values of nonlinear
parameter 𝛽. Third, from gauge/gravity duality point of view,
the ratio of holographic viscosity to entropy density is not
affected by nonlinear terms rising from nonlinear electro-
dynamics in contrast with gravitational corrections [45].
Fourth, the values of important parameters of a holographic
superconductor system such as critical temperature and order
parameter are firmly sensitive to choice of electrodynamics
[46, 47].Other studies on the nonlinear electrodynamics have
been carried out in [36, 39–41, 48–59].

The above pointed out motivations are convincingly
enough to satisfy one to seek for the effects of logarithmic
electrodynamics on the solutions. Till now, exact rotating
solutions of logarithmic electrodynamics in the context of
dilaton gravity have not been constructed. In this paper, we
would like to construct the rotating dilaton black branes in
the presence of logarithmic nonlinear electrodynamics and
investigate their thermodynamics as well as their thermal
stability.

The outline of this paper is as follows. In Section 2, we
present the basic field equations. In Section 3, we construct
the rotating dilaton black branes with a complete set of
rotation parameters in all higher dimensions and investigate
their properties. In Section 4, we study thermodynamics
of the spacetime, by calculating the conserved and ther-
modynamic quantities. In Section 5, we perform a stability
analysis and show that the dilaton creates an unstable phase
for the solutions. Section 6 is devoted to conclusions and
discussions.

2. Basic Field Equations

We consider an 𝑛-dimensional action in which gravity is
coupled to a dilaton and a nonlinear electrodynamic field

𝐼 = −

1

16𝜋

∫

M

𝑑
𝑛

𝑥√−𝑔(R −

4

𝑛 − 2

(∇Φ)
2

− 𝑉 (Φ)

+ 𝐿 (𝐹,Φ)) −

1
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𝑑
𝑛−1

𝑥√−ℎΘ (ℎ) ,

(1)

where the Lagrangian of the logarithmic nonlinear electro-
dynamics coupled to the dilaton field (LNd) is chosen in the
following form:

𝐿 (𝐹,Φ) = −8𝛽
2

𝑒
4𝛼Φ/(𝑛−2) ln(1 +

𝑒
−8𝛼Φ/(𝑛−2)

𝐹
2
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) . (2)

In action (1),R is the Ricci scalar curvature, Φ is the dilaton
field, and 𝑉(Φ) is a potential for Φ. The dilaton parameter
𝛼 determines the strength of coupling of the scalar and LNd
fields, 𝐹

2

= 𝐹
𝜇]

𝐹
𝜇], where 𝐹

𝜇] = 𝜕
𝜇
𝐴] − 𝜕]𝐴𝜇 is the

electromagnetic tensor field,𝐴
𝜇
is the vector potential, and 𝛽

is the nonlinear parameter with dimension of mass. The last
term in (1) is the Gibbons-Hawking boundary term which is
chosen such that the variational principle is well-defined.The
manifoldM has metric 𝑔

𝜇] and covariant derivative ∇
𝜇
. Θ is

the trace of the extrinsic curvature Θ
𝑎𝑏 of any boundary(ies)

𝜕M of the manifold M, with induced metric(s) ℎ
𝑎𝑏
. In this

paper, we consider action (1) with a Liouville-type potential,

𝑉 (Φ) = 2Λ𝑒
4𝛼Φ/(𝑛−2)

, (3)

where Λ is a constant which may be referred to as the
cosmological constant, since in the absence of the dilaton
field (Φ = 0) action (1) reduces to the action of Einstein
gravity in the presence of nonlinear electrodynamics with
cosmological constant. For later convenience, we redefine it
asΛ = −(𝑛−1)(𝑛−2)/2𝑙

2, where 𝑙 is a constantwith dimension
of length. The series expansion of (2) for large 𝛽 leads to
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For later convenience we rewrite

𝐿LNd (𝐹, Φ) = −8𝛽
2

𝑒
4𝛼Φ/(𝑛−2)

L (𝑌) , (5)

where we have defined

L (𝑌) = ln (1 + 𝑌) ,
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By varying action (1) with respect to the gravitational field
𝑔
𝜇], the dilaton field Φ, and the gauge field 𝐴

𝜇
, we find
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=
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∇
𝜇
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L (𝑌) 𝐹

𝜇]
) = 0. (9)

In the limiting case where 𝛽 → ∞, we have L(𝑌) = 𝑌. In
this case the system of field equations (7)–(9) restore the well-
known equations of EMd gravity [21–27], as expected.

2.1. Finite Action in Canonical and Grand-Canonical Ensem-
bles. In general, the total action 𝐼 given in (1) is divergent
when evaluated on a solution. One way of dealing with the
divergences of the action is adding some counterterms to
action (1). The counterterms should contain a part which
removes the divergence of the gravity part of the action and
a part for dealing with the divergence of the matter action.
Since the horizon of our solution is flat, the counterterm
which removes the divergence of the gravity part should be
proportional to √−ℎ. The counterterm for the matter part of
the action in the presence of the dilaton is given by

𝐼ct = −

1

8𝜋

∫
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𝑑
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𝑥√−ℎ(

𝑛 − 2

𝑙eff
) + 𝐼deriv, (10)

where 𝑙eff is given by (16) and 𝐼deriv is a collection of terms
involving derivatives of the boundary fields that could involve
the curvature tensor constructed from the boundary metric.
Since in our case the boundary is flat so 𝐼deriv is zero on the
boundary.The variation of the total action (𝐼tot = 𝐼+𝐼ct) about
the solutions of the equations of motion is
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(11)

where

𝑆
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=
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} . (12)

Equation (11) shows that the variation of the total action
with respect to 𝐴

𝑎 will only give the equation of motion of

the nonlinear massless field 𝐴
𝑎 provided the variation is at

fixed nonlinear massless gauge potential on the boundary.
Thus, the total action, 𝐼tot = 𝐼+𝐼ct, given in (11) is appropriate
for the grand-canonical ensemble, where 𝛿𝐴

𝑎

= 0 on the
boundary. But in the canonical ensemble, where the electric
charge [−𝑒

−4𝛼Φ/(𝑛−2)

𝜕
𝑌
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𝑎

𝐹
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] is fixed on the boundary,
the appropriate action is
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1
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The last term in (13) is the generalization of the boundary
term introduced by Hawking and Ross for linear electromag-
netic field [60] and the results of [61, 62] for the nonlinear
Lifshitz black holes to the exponential nonlinear gauge field
coupled to the dilaton field. Thus, both in canonical and
grand-canonical ensemble, the variation of total action about
the solutions of the field equations is

𝛿𝐼tot = ∫𝑑
𝑛−1

𝑥𝑆
𝑎𝑏

𝛿ℎ
𝑎𝑏

. (14)

That is, the nonlinear gauge field is absent in the variation
of the total action both in canonical and grand-canonical
ensembles.

In order to obtain the conserved charges of the space-
time, we use the counterterm method [63–67] inspired by
(A)dS/CFT correspondence. For asymptotically AdS solu-
tions this method works very well [64–67]. However, in
our paper we have the scalar dilaton field with a Liouville
potential. It was argued that the presence of Liouville-type
dilaton potential, which is regarded as the generalization of
the cosmological constant, changes the asymptotic behavior
of the solutions to be neither asymptotically flat nor (A)dS. It
has been shown that no dilaton dS or AdS black hole solution
exists with the presence of only one Liouville-type dilaton
potential [17–19]. But, as in the case of asymptotically AdS
spacetimes, according to the domain-wall/QFT (quantum
field theory) correspondence [68–70], theremay be a suitable
counterterm for the stress-energy tensor which removes the
divergences. In this paper, we deal with the spacetimes with
zero curvature boundary [𝑅

𝑎𝑏𝑐𝑑
(ℎ) = 0], and therefore the

counterterm for the stress-energy tensor should be propor-
tional to ℎ

𝑎𝑏. We find the finite stress-energy tensor in 𝑛-
dimensional Einstein-dilaton gravity with Liouville-type in
the form [36, 59]

𝑇
𝑎𝑏

=

1

8𝜋

[Θ
𝑎𝑏

− Θℎ
𝑎𝑏

+

𝑛 − 2

𝑙eff
ℎ
𝑎𝑏

] , (15)

where 𝑙eff is given by

𝑙
2

eff =

(𝑛 − 2) (𝛼
2

− 𝑛 + 1)

2Λ

𝑒
−4𝛼Φ/(𝑛−2)

.
(16)

In the particular case 𝛼 = 0, the effective 𝑙
2

eff of (16)
reduces to 𝑙

2

= −(𝑛 − 1)(𝑛 − 2)/2Λ of the AdS spacetimes.
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The first two terms in (15) are the variation of action (1) with
respect to ℎ

𝑎𝑏
, and the last term is the counterterm which

removes the divergences. One may note that the counterterm
has the same form as in the case of asymptotically AdS
solutionswith zero curvature boundary, where 𝑙 is replaced by
𝑙eff . If we choose the Killing vector field 𝜉 on spacelike surface
B in 𝜕M with metric 𝜎

𝑖𝑗
, then the quasilocal conserved

quantities may be obtained from the following relation
[36, 59]:

𝑄 (𝜉) = ∫

B

𝑑
𝑛−2

𝑥√𝜎𝑇
𝑎𝑏

𝑛
𝑎

𝜉
𝑏

, (17)

where 𝜎 is the determinant of the boundary metric 𝜎
𝑖𝑗
and 𝑛
𝑎

is the unit normal vector on the boundaryB. In our case, the
boundaryB has two Killing vector fields timelike (𝜕/𝜕𝑡) and
rotational (𝜕/𝜕𝜑). The corresponding conserved charges are
the quasilocal mass and angularmomentummay be obtained
as

𝑀 = ∫

B

𝑑
𝑛−2

𝑥√𝜎𝑇
𝑎𝑏

𝑛
𝑎

𝜉
𝑏

,

𝐽 = ∫

B

𝑑
𝑛−2

𝑥√𝜎𝑇
𝑎𝑏

𝑛
𝑎

𝜍
𝑏

.

(18)

3. Rotating Dilaton Black Branes in
Higher Dimensions

In this section, we would like to construct the rotating black
brane solutions of the field equations (7)–(9) with 𝑘 rotation
parameters.The number of independent rotation parameters
for an 𝑛-dimensional localized object is equal to the number
of Casimir operators, which is [(𝑛−1)/2] ≡ 𝑘, where [𝑥] is the
integer part of 𝑥 [71]. The metric of 𝑛-dimensional rotating
solution with cylindrical or toroidal horizons and 𝑘 rotation
parameters can be written as [72, 73]

𝑑𝑠
2

= −𝑓 (𝑟)(Ξ𝑑𝑡 −

𝑘

∑

𝑖=1

𝑎
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𝑖
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+

𝑟
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𝑙
4
𝑅
2

(𝑟)

𝑘

∑

𝑖=1

(𝑎
𝑖
𝑑𝑡 − Ξ𝑙
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𝑖
)
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−

𝑟
2

𝑙
2
𝑅
2

(𝑟)

𝑘

∑

𝑖<𝑗

(𝑎
𝑖
𝑑𝜙
𝑗
− 𝑎
𝑗
𝑑𝜙
𝑖
)

2

+

𝑑𝑟
2

𝑓 (𝑟)

+

𝑟
2

𝑙
2
𝑅
2

(𝑟) 𝑑𝑋
2

,

(19)

Ξ
2

= 1 +

𝑘

∑

𝑖=1

𝑎
2

𝑖

𝑙
2
, (20)

where 𝑎
𝑖
’s are 𝑘 rotation parameters. There are two unknown

functions 𝑓(𝑟) and 𝑅(𝑟) in the above metric which should
be determined by solving the field equations. The range of
the angular coordinates is 0 ≤ 𝜙

𝑖
≤ 2𝜋 and 𝑑𝑋

2 is the
Euclidean metric on the (𝑛−𝑘−2)-dimensional submanifold
with volume Σ

𝑛−𝑘−2
.

First of all, we integrate the electromagnetic field equation
(9). The result is

𝐹
𝑡𝑟

=

2𝑞Ξ𝑒
4𝛼Φ/(𝑛−2)

(𝑟𝑅 (𝑟))
𝑛−2

(1 + √1 +

𝑞
2

𝛽
2
(𝑟𝑅 (𝑟))

2𝑛−4
)

−1

,

𝐹
𝜙𝑖𝑟

= −

𝑎
𝑖

Ξ

𝐹
𝑡𝑟
,

(21)

where 𝑞 is an integration constant related to the electric
charge of the brane.When 𝛽 → ∞, 𝐹

𝑡𝑟
reduces to the electric

field of 𝑛-dimensional black brane of Einstein-Maxwell-
dilaton gravity [71]

𝐹
𝑡𝑟

=

𝑞Ξ𝑒
4𝛼Φ/(𝑛−2)

(𝑟𝑅 (𝑟))
𝑛−2

+ 𝑂(

1

𝛽
2
) . (22)

In order to solve the system of (7) and (8) for three unknown
functions 𝑓(𝑟), 𝑅(𝑟), and Φ(𝑟), we make the ansatz [71]

𝑅 (𝑟) = 𝑒
2𝛼Φ/(𝑛−2)

. (23)

In order to justify this choice for the metric function 𝑅(𝑟), let
us note that𝑅(𝑟) is indeed added to themetric (20) in order to
increase the degrees of freedom for obtaining solutions in the
presence of the dilaton field. Choosing𝑅(𝑟) in the formof (23)
is an ansatz. However, it is chosen such that, in the absence of
the dilaton field Φ = 0, we have 𝑅(𝑟) = 1, as expected. With
this ansatz, we are able to solve the field equation, analytically.

Substituting (23), the electromagnetic fields (21), and the
metric (20) into the field equations (7) and (8), one can obtain
the following solutions:

𝑓 (𝑟) =

2 (𝛼
2

+ 1)

2

(Λ − 4𝛽
2

) 𝑏
𝛾

(𝑛 − 2) (𝛼
2
− 𝑛 + 1)

𝑟
2−𝛾

−

𝑚

𝑟
𝑛−3−(𝑛−2)𝛾/2

−

8𝛽
2

(𝛼
2

+ 1) 𝑏
𝛾

(𝑛 − 2) 𝑟
𝑛−3−(𝑛−2)𝛾/2

∫ 𝑟
𝑛(1−𝛾/2)−2

{√1 + 𝜂

− ln(

𝜂

2

) + ln (−1 + √1 + 𝜂)} 𝑑𝑟,

(24)

Φ (𝑟) =

(𝑛 − 2) 𝛼

2 (𝛼
2
+ 1)

ln(𝑐 +

𝑏

𝑟

) , (25)

where 𝑐 and 𝑏 are constant of integration. We find that these
solutions will fully satisfy the system of (7) and (8) provided
we choose 𝑐 = 0. Note that 𝑏 has the dimension of [Length]
tomake the argument of logarithmic function dimensionless.
In the above solutions 𝛾 = 2𝛼

2

/(1 + 𝛼
2

), and

𝜂 =

𝑞
2

𝑏
(2−𝑛)𝛾

𝛽
2
𝑟
(𝑛−2)(2−𝛾)

. (26)

In the above expression,𝑚 appears as an integration constant
and is related to the mass of the black hole.The integration of
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(24) can be performed using the MATHEMATICA software.
The resulting solution can be written

𝑓 (𝑟) =

2 (Λ − 4𝛽
2

) (𝛼
2

+ 1)
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𝑏
𝛾
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2
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𝑟
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𝑚

𝑟
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+
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2

(𝛼
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2
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2
𝑏
𝛾

𝑟
2−𝛾

{1

−
2
𝐹
1
([

−1

2

,

𝛼
2

− 𝑛 + 1

2𝑛 − 4

] , [

𝛼
2

+ 𝑛 − 3

2𝑛 − 4

] , −𝜂)}

+

8𝛽
2
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2
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2
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2
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𝑏
𝛾

𝑟
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{√1 + 𝜂 − ln(

𝜂

2

)

+ ln (−1 + √1 + 𝜂)} ,

(27)

where
2
𝐹
1
([𝑎, 𝑏], [𝑐], 𝑧) is the hypergeometric function [74,

75]. It is worth mentioning that the solutions are ill-defined
for 𝛼 = √𝑛 − 1. We expect that, for large 𝛽, the function 𝑓(𝑟)

reduces to the 𝑛-dimensional charged rotating dilaton black
brane solutions given in [71]. Indeed, if we expand (27) for
large 𝛽, we arrive at

𝑓 (𝑟) =

2Λ (𝛼
2

+ 1)

2

(𝑛 − 2) (𝛼
2
− 𝑛 + 1)

𝑏
𝛾

𝑟
2−𝛾

−

𝑚

𝑟
𝑛−3−(𝑛−2)𝛾/2

+

2𝑞
2

(𝛼
2

+ 1)

2

𝑏
−(𝑛−3)𝛾

(𝑛 − 2) (𝛼
2
+ 𝑛 − 3) 𝑟

(𝑛−3)(2−𝛾)

−

𝑞
4

(𝛼
2

+ 1)

2

𝑏
−(2𝑛−5)𝛾

4𝛽
2
(𝑛 − 2) (𝛼

2
+ 3𝑛 − 7) 𝑟

(2𝑛−5)(2−𝛾)

+ O(

1

𝛽
4
) .

(28)

Setting 𝛼 = 𝛾 = 0 in (28), we reach

𝑓 (𝑟) =

𝑟
2

𝑙
2

−

𝑚

𝑟
𝑛−3

+

2𝑞
2

(𝑛 − 2) (𝑛 − 3) 𝑟
2𝑛−6

−

1

4𝛽
2
(𝑛 − 2) (3𝑛 − 7)

𝑞
4

𝑟
4𝑛−10

+ O(

1

𝛽
4
) .

(29)

The last term in the right hand side of the above expression
is the leading nonlinear correction to the AdS black brane
with dilaton field. In the absence of a nontrivial dilaton (𝛼 =

𝛾 = 0), the above solutions reduce to the asymptotically AdS
charged rotating black brane solutions of Einstein gravity in
the presence of EN electrodynamics [52, 53]. Finally, in the
limit 𝛽

2

→ ∞ and 𝛼 = 0 = 𝛾, the solution given by (28)
has the form of the asymptotically AdS black brane solutions
[72, 76, 77]. Figures 1 and 2 depict the behavior of 𝑓(𝑟) given
by (27) for different 𝛼’s and 𝛽’s, respectively.
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Figure 1: The behavior of 𝑓(𝑟) versus 𝑟 with 𝑙 = 𝑏 = 1, 𝑞 = 0.5,
Ξ = 1.25, 𝑛 = 5, 𝛽 = 2, and 𝑚 = 1.5.
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Figure 2: The behavior of 𝑓(𝑟) versus 𝑟 with 𝑙 = 𝑏 = 1, 𝑞 = 0.8,
Ξ = 1.25, 𝑛 = 5, 𝛼 = 0.2, and 𝑚 = 0.5.

3.1. Asymptotic Behavior of the Spacetime. Next, we study the
geometry of this spacetime. For this purpose, we first seek
for the curvature singularities in the presence of dilaton and
nonlinear electrodynamic fields. It is a matter of calculation
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to show that the Ricci scalar and the Kretschmann invariant
behave as

lim
𝑟→0
+

𝑅 = ∞,

lim
𝑟→0
+

𝑅
𝜇]𝜌𝜎𝑅
𝜇]𝜌𝜎

= ∞,

(30)

which indicate that there is an essential singularity at 𝑟 = 0.
In order to study the asymptotic behavior of the solutions, we
expand the metric function 𝑓(𝑟) for 𝑟 → ∞ limit. We find

lim
𝑟→∞

𝑓 (𝑟) =

2Λ (𝛼
2

+ 1)

2

(𝑛 − 2) (𝛼
2
− 𝑛 + 1)

𝑏
𝛾

𝑟
2−𝛾

.
(31)

Let us note that, in the absence of the dilaton field (𝛼 = 0 = 𝛾),
the metric function becomes

lim
𝑟→∞

𝑓 (𝑟) = −

2Λ𝑟
2

(𝑛 − 1) (𝑛 − 2)

, (32)

which describes asymptotically AdS (Λ < 0) or dS (Λ > 0)
spacetimes.However, as one can see from (31), in the presence
of the dilaton field, the asymptotic behavior is neither flat nor
(A)dS. For example, taking 𝛼 = √2, 𝑛 = 6, and 𝑏 = 1, we have

lim
𝑟→∞

𝑓 (𝑟) = −

3Λ

2

𝑟
2/3

. (33)

Clearly, themetric function (33) is neither flat nor (A)dS.This
is consistent with the argument given in [17–19], which states
that no dilaton dS or AdS black hole solution exists with the
presence of only one or two Liouville-type dilaton potentials.
It is important to note that this asymptotic behavior is not
due to the nonlinear nature of the electrodynamic field, since
as 𝑟 → ∞ the effects of the nonlinearity disappear. Besides,
from the dilaton field (25) we see that as 𝑟 → ∞, the dilaton
field does not vanish, while in case of asymptotic flat or (A)dS
we expect to have lim

𝑟→∞
Φ(𝑟) = 0. Indeed, by solving the

field equation (8) we find

Φ (𝑟) =

(𝑛 − 2) 𝛼

2 (𝛼
2
+ 1)

ln(𝑐 +

𝑏

𝑟

) ; (34)

however, the system of (7)–(9) will be fully satisfied provided
we choose 𝑐 = 0. From the above arguments we conclude that
the asymptotic behavior of the obtained solutions is neither
flat nor (A)dS.

4. Thermodynamics of Black Branes

It is easy to show that the metric given by (20) and (27) has
both Killing and event horizons [71]. The Killing horizon is
a null surface whose null generators are tangent to a Killing
field. It is easy to see that the Killing vector,

𝜒 = 𝜕
𝑡
+

𝑘

∑

𝑖=1

Ω
𝑖
𝜕
𝜙𝑖
, (35)

is the null generator of the event horizon, where Ω
𝑖
is the

𝑖th component of angular velocity of the outer horizon which

may be obtained by analytic continuation of the metric. The
Hawking temperature and the angular velocities of the outer
event horizon can be obtained as

𝑇
+

=

𝑓
󸀠

(𝑟
+
)

4𝜋Ξ

= −

𝛼
2

+ 1

4𝜋Ξ

𝑟
1−𝛾

+
{

2 (Λ − 4𝛽
2

) 𝑏
𝛾

(𝑛 − 2)

+

8𝛽
2

𝑏
𝛾

𝑛 − 2

[√1 + 𝜂
+
− ln(

𝜂
+

2

)

+ ln (−1 + √1 + 𝜂
+
)]} ,

Ω
𝑖
=

𝑎
𝑖

Ξ𝑙
2
,

(36)

where 𝜂
+

= 𝜂(𝑟 = 𝑟
+
) and we have used 𝑓(𝑟

+
) = 0 for

deleting 𝑚. For large 𝛽, we can expand 𝑇
+
and arrive at the

temperature of the higher dimensional black branes in EMd
gravity [71]:

𝑇
+

= −

Λ (𝛼
2

+ 1) 𝑏
𝛾

2𝜋Ξ (𝑛 − 2)

𝑟
1−𝛾

+

−

𝑞
2

(𝛼
2

+ 1) 𝑏
−𝛾(𝑛−3)

2𝜋Ξ (𝑛 − 2)

𝑟
5−2𝑛−3𝛾+𝑛𝛾

+
+ O(

1

𝛽
2
) .

(37)

The mass and angular momentum of the black branes
(𝛼 < √𝑛 − 1) can be calculated through the use of (18).
Denoting the volume of the hypersurface boundary at con-
stant 𝑡 and 𝑟 by 𝑉

𝑛−2
= (2𝜋)

𝑘

Σ
𝑛−𝑘−2

, the mass and angular
momentum per unit volume 𝑉

𝑛−2
of the black branes can be

obtained as

𝑀 =

𝑏
(𝑛−2)𝛾/2

16𝜋𝑙
𝑛−3

{

(𝑛 − 1 − 𝛼
2

) Ξ
2

+ 𝛼
2

− 1

1 + 𝛼
2

}𝑚, (38)

𝐽
𝑖
=

𝑏
(𝑛−2)𝛾/2

16𝜋𝑙
𝑛−3

(

𝑛 − 1 − 𝛼
2

1 + 𝛼
2

)Ξ𝑚𝑎
𝑖
. (39)

Note that, in order to avoid repeating the factor 𝑉
𝑛−2

, we
calculate, in this paper, the mass 𝑀 and extensive quantities
such as angular momentum 𝐽

𝑖
, entropy 𝑆, and charge 𝑄

appearing in first law of thermodynamics per unit volume.
For the static case where 𝑎

𝑖
= 0 (Ξ = 1), the angular

momentum per unit volume vanishes, and therefore 𝑎
𝑖
’s are

the rotational parameters of the black branes.
Black hole entropy typically satisfies the so-called area law

of the entropy [2, 78, 79]. This near universal law applies to
almost all kinds of black holes and black branes in Einstein
gravity [80–83]. It is easy to show that the entropy per unit
volume 𝑉

𝑛−2
of the black brane can be written as

𝑆 =

Ξ𝑏
(𝑛−2)𝛾/2

𝑟
(𝑛−2)(1−𝛾/2)

+

4𝑙
𝑛−3

.
(40)
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The electric charge per unit volume 𝑉
𝑛−1

can be found by
calculating the flux of the electric field at infinity, yielding

𝑄 = −

1

4𝜋𝑉
𝑛−1

∫

Σ

∇
𝜇
(𝜕
𝑌
L (𝑌) 𝐹

𝜇]
) 𝑑𝑆]

= −

1

8𝜋𝑉
𝑛−1

∮

𝜕Σ

𝜕
𝑌
L (𝑌) 𝐹

𝜇]
𝑑𝑆
𝜇] =

Ξ𝑞

4𝜋𝑙
𝑛−3

,

(41)

where the volume is replaced by an arbitrary spacelike
hypersurfaceΣ (partial Cauchy surface) with boundary 𝜕Σ. In
addition, the volume element on Σ is a nonspacelike covector
(1-form) 𝑑𝑆] and 𝑑𝑆

𝜇] is the area element of 𝜕Σ. We should
note that, for linear Maxwell case (𝛽 → ∞), one obtains
𝜕
𝑌
L(𝑌) = −1.
The electric potential𝑈, measured at infinity with respect

to the horizon, is defined by

𝑈 = 𝐴
𝜇
𝜒
𝜇
󵄨
󵄨
󵄨
󵄨
󵄨𝑟→∞

− 𝐴
𝜇
𝜒
𝜇
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟+

, (42)

where𝜒 is the null generator of the horizon given by (35). One
can easily show that the vector potential𝐴

𝜇
corresponding to

the electromagnetic tensor (21) can be written as

𝐴
𝜇
= (Ξ𝛿

𝑡

𝜇
− 𝑎
𝑖
𝛿
𝑖

𝜇
)

𝑞 (𝛼
2

+ 1) 𝑏
(4−𝑛)𝛾/2

𝛼
2
+ 𝑛 − 3

⋅ 𝑟
3−𝑛−(4−𝑛)𝛾/2

3
𝐹
2
([

1

2

, 1,

3 − 𝑛 − 𝛼
2

4 − 2𝑛

] ,

[2,

7 − 3𝑛 − 𝛼
2

4 − 2𝑛

] , −𝜂) ,

(43)

where
3
𝐹
2
is the hypergeometric function andwe have set the

constant of integration equal to zero. Therefore, the electric
potential may be obtained as

𝑈 =

𝑞 (𝛼
2

+ 1) 𝑏
(4−𝑛)𝛾/2

Ξ (𝛼
2
+ 𝑛 − 3)

⋅ 𝑟
3−𝑛−(4−𝑛)𝛾/2

+ 3
𝐹
2
([

1

2

, 1,

3 − 𝑛 − 𝛼
2

4 − 2𝑛

] ,

[2,

7 − 3𝑛 − 𝛼
2

4 − 2𝑛

] , −𝜂
+
) .

(44)

Now, we are in a position to verify the first law of ther-
modynamics. In order to do this, we obtain the mass 𝑀

as a function of extensive quantities 𝑆, J, and 𝑄. Using the
expression for the mass, the angular momenta, the entropy,
and the charge given in (38), (39), (40), (41) and the fact that
𝑓(𝑟
+
) = 0, one can obtain a Smarr-type formula as

𝑀(𝑆, J, 𝑄) =

[(𝑛 − 1 − 𝛼
2

)𝑍 + 𝛼
2

− 1] J
𝑙 (𝑛 − 1 − 𝛼

2
)√𝑍 (𝑍 − 1)

, (45)

where J = √∑
𝑘

𝑖
𝐽
2

𝑖
, and 𝑍 = Ξ

2 is the positive real root of the
following equation:

J +
𝛽
2

𝑙
4−𝑛

(𝛼
2

+ 1)

2𝜋 (𝑛 − 2) (𝑛 − 1 − 𝛼
2
)

⋅ 𝑏
𝛼
2

√𝑍 (𝑍 − 1)(

4𝑆𝑙
𝑛−3

√𝑍

)

(𝑛−1−𝛼
2
)/(𝑛−2)

⋅ {(𝑛 − 1 − 𝛼
2

)

⋅ [ln(−1 + √1 + 𝜁) − ln(

𝜁

2

) + √1 + 𝜁]

+ (𝑛 − 2)

⋅
2
𝐹
1
([−

1

2

,

𝛼
2

− 𝑛 + 1

2𝑛 − 4

] , [

𝛼
2

+ 𝑛 − 3

2𝑛 − 4

] , −𝜁)

+

(𝑛 − 1) (𝑛 − 2)

8𝑙
2
𝛽
2

(𝛼
2

− 𝑛 + 1) + 𝛼
2

− 2𝑛 + 3}

= 0,

(46)

where 𝜁 = 𝜋
2

𝑄
2

/(𝑆
2

𝛽
2

). We can regard the parameters 𝑆, J,
and 𝑄 as a complete set of extensive parameters for the mass
𝑀(𝑆, J, 𝑄) and define the intensive parameters conjugate to 𝑆,
J, and𝑄. These parameters are, respectively, the temperature,
the angular velocities, and the electric potential, which are
defined as

𝑇 = (

𝜕𝑀

𝜕𝑆

)

𝐽,𝑄

,

Ω
𝑖
= (

𝜕𝑀

𝜕𝐽
𝑖

)

𝑆,𝑄

,

𝑈 = (

𝜕𝑀

𝜕𝑄

)

𝑆,J
.

(47)

Numerical calculations show that the intensive quantities
calculated by (47) coincide with (36) and (45). Thus, these
thermodynamics quantities satisfy the first law of thermody-
namics

𝑑𝑀 = 𝑇𝑑𝑆 +

𝑘

∑

𝑖=1

Ω
𝑖
𝑑𝐽
𝑖
+ 𝑈𝑑𝑄. (48)

5. Thermal Stability of the Black Branes in
Canonical and Grand-Canonical Ensembles

In this section, we intend to investigate thermal stability of
our nonlinearly charged rotating black brane solutions in
both canonical and grand-canonical ensembles. We know
that the entropy of a thermally stable system is at local
maximum. The aim of thermal stability analysis is to find
the situations under which the system is stable thermally;
that is, its entropy is a local maximum. Therefore, the
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stability of charged rotating black brane is studied in terms
of entropy 𝑆(𝑀,𝑄, J). However, the thermal stability can also
be discussed in terms of internal energy. When the entropy is
at local maximum, the internal energy is at local minimum.
Hence, we can equivalently analyse thermal stability in terms
of Legendre transformation of entropy, namely, internal
energy 𝑀(𝑆,𝑄, J). This analysis is commonly done by study-
ing the determinant of the Hessian matrix of 𝑀(𝑆,𝑄, J) with
respect to its extensive variables 𝑋

𝑖
, H𝑀
𝑋𝑖𝑋𝑗

= [𝜕
2

𝑀/𝜕𝑋
𝑖
𝜕𝑋
𝑗
]

[84–86]. The positivity of H𝑀
𝑋𝑖𝑋𝑗

shows that the system is
thermally stable. The number of thermodynamic variables
depends on the ensemble in which the system is studied. For
instance, in canonical ensemblewhere the charge and angular
momenta are fixed, the entropy is the only variable and
consequently H𝑀

𝑋𝑖𝑋𝑗

reduces to (𝜕
2

𝑀/𝜕𝑆
2

)
𝑄,J. Thus, in this

ensemble, the positivity of (𝜕2𝑀/𝜕𝑆
2

)
𝑄,J is sufficient to ensure

the thermal stability of course in the ranges the temperature
𝑇 is positive as well. In grand-canonical ensemble𝑄 and J are
no longer fixed.

Since the presence of charge does not change stable
solutions to unstable ones [76, 77], we first study thermal
stability for uncharged case; that is, 𝑞 → 0. In this case

(

𝜕
2

𝑀

𝜕𝑆
2

)

J

=

(𝑛 − 1) (𝛼
2

+ 1) [(Ξ
2

− 1) (𝑛 − 2𝛼
2

) + Ξ
2

(1 − 𝛼
2

)]

𝜋Ξ
2
𝑙
5−𝑛

𝑏
(𝑛−4)𝛾/2

[(𝛼
2
+ 𝑛 − 3) Ξ

2
+ 1 − 𝛼

2
]

⋅ 𝑟
(3−𝑛−𝛼

2
)/(𝛼
2
+1)

+
,

(49)

H𝑀
𝑆J =

16 (1 − 𝛼
2

) 𝑙
2(𝑛−4)

𝑟
2(2−𝑛)/(𝛼

2
+1)

+

𝑏
(𝑛−2)𝛾

Ξ
4
[(Ξ
2
− 1) 𝛼

2
+ 1 + (𝑛 − 3) Ξ

2
]

. (50)

Since Ξ
2

≥ 1, both (49) and H𝑀
𝑆J are positive for 𝛼 ≤

1; therefore the uncharged rotating solutions are stable in
both canonical and grand-canonical ensembles provided 𝛼 ≤

1. For this case, the temperature is also always positive as
one can see from (37). As pointed out before, the charge
cannot change thermal stability and therefore we always have
thermally stable rotating black brane solutions for 𝛼 ≤ 1.This
fact is illustrated in Figures 3 and 4 for different values of 𝑟

+
.

The positivity of temperature for them is shown in Figure 5.
For different 𝑞’s, Figures 6 and 7 show that charge does not
affect the thermal stability and therefore charged solutions
are still stable for 𝛼 ≤ 1. The positivity of 𝑇 for mentioned
parameters in Figures 6 and 7 is shown in Figure 8.

Now, we discuss the stability for nonlinearly charged
rotating black brane solutions for 𝛼 > 1. One can see from
(50) that 𝛼 = 1 is the root of H𝑀

𝑆J . Numerical investigations
show that 𝛼 = 1 is the root of determinant of Hessian matrix
in charged case too. Also, for 𝛼 > 1, H𝑀

𝑆,𝑄,J is always negative
as H𝑀
𝑆J obviously is (see (50)). Therefore, we have unstable

solutions for 𝛼 > 1 in grand-canonical ensemble. Figures 4
and 7 illustrate this fact. However, in canonical ensemble we
have both stable and unstable solutions for 𝛼 > 1. Figures
3 and 6 show that there is an 𝛼max (>1) that we have stable

𝛼
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2
M
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Figure 3: The behavior of (𝜕
2

𝑀/𝜕𝑆
2

)
𝑄,J versus 𝛼 with 𝑙 = 𝑏 = 1,

𝑞 = 0.8, Ξ = 1.25, 𝑛 = 5, and 𝛽 = 2.
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Figure 4: The behavior of H𝑀
𝑆,𝑄,J versus 𝛼 with 𝑙 = 𝑏 = 1, 𝑞 = 0.8,

Ξ = 1.25, 𝑛 = 5, and 𝛽 = 2. Note that the curve corresponding to
𝑟
+
= 1 is rescaled by a factor 10

−1.

solutions for values lower than it (note that 𝛼 < √𝑛 − 1;
see sentences above (38)). There is also 𝑟

+max that for 𝑟
+

>

𝑟
+max solutions are unstable (see Figure 9). The behavior of

(𝜕
2

𝑀/𝜕𝑆
2

)
𝑄,J in terms of 𝑞 and 𝛽 is depicted in Figures 10

and 11, respectively. These figures show that there are 𝑞min
and 𝛽min that for values greater than them black branes are
thermally stable.



Advances in High Energy Physics 9

T

0.5 1 1.5

0.3

0.6

0.9

r+ = 1

r+ = 1.5
r+ = 2

𝛼

Figure 5: The behavior of 𝑇 versus 𝛼 with 𝑙 = 𝑏 = 1, 𝑞 = 0.8,
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6. Conclusions and Discussions

In this paper, we studied the higher dimensional action
in the context of dilaton gravity and in the presence of
the logarithmic nonlinear electrodynamics. By varying the
action, we found the field equations of this theory. Then,
we constructed a new class of charged, rotating black brane
solutions, with 𝑘 = [(𝑛 − 1)/2] rotation parameters, in
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an arbitrary dimension. We found that the presence of the
dilaton field changes the asymptotic behavior of the obtained
solutions to be neither flat nor (A)dS. We presented the
suitable counterterm which removes the divergences of the
action in the presence of the dilaton field. In the absence of
a nontrivial dilaton (𝛼 = 𝛾 = 0), these solutions reduce
to the asymptotically AdS charged rotating black brane
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solutions of Einstein theory in the presence of logarithmic
nonlinear electrodynamics [52, 53]. When 𝛽 → ∞, these
solutions reduce to the charged rotating dilaton black brane
solutions given in [71]. We also calculated the conserved
and thermodynamic quantities of the spacetime such as
mass, angular momentum, temperature, entropy, and electric
potential and checked that the first law of thermodynamics
holds on the black brane horizon.
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Then, we explored thermal stability of the nonlinearly
charged rotating black brane solutions in both canonical and
grand-canonical ensembles.We found that in both ensembles
the solutions are thermally stable for 𝛼 ≤ 1, while for 𝛼 >

1 the solutions are always thermally unstable in the grand-
canonical ensemble, where 𝛼 is the dilaton-electromagnetic
coupling constant. In the canonical ensemble, however, we
can have both stable and unstable solutions for 𝛼 > 1. We
found that, in this ensemble, there is 𝛼max > 1 for which the
solutions are thermally stable provided𝛼 < 𝛼max.The pointed
out results imply that the thermal stability is ensemble-
dependent and 𝛼 influences the stability under thermal
perturbations. These results are expectable since different
ensembles allow different sets of quantities to be variable
and a thermally stable system is one which is stable under
varying variable quantities. On the other hand, values of
conserved and thermodynamic quantities depend on values
of parameters such as 𝛼 and therefore the fact that dilaton-
electromagnetic coupling has direct effect on thermal stability
of the system seems natural.

It is notable to mention that, in this paper, we only
constructed the charged rotating dilaton black branes of
nonlinear electrodynamics with flat horizon. One can try to
construct the rotating dilaton black holes of this theory with
curved horizon. One can also investigate the thermodynamic
geometry of these solutions. The latter issue is now under
investigation and the results will be presented elsewhere.
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