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We propose a construction of generalized cuts of Feynman integrals as an operation on the domain of the
Feynman parametric integral. A set of on-shell conditions removes the corresponding boundary
components of the integration domain, in favor of including a boundary component from the second
Symanzik polynomial. Hence integration domains are full-dimensional spaces with finite volumes, rather
than being localized around poles. As initial applications, we give new formulations of maximal cuts, and
we provide a simple derivation of a certain linear relation among cuts from the inclusion-exclusion
principle.
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Generalized cuts of Feynman integrals are discontinu-
ities around their Landau singularities. The operation of
cutting a Feynman integral, or by extension a physical
scattering amplitude, has been widely used for computa-
tion in on-shell or unitarity methods, whether from a
reconstruction based directly on discontinuities, as a
seed for finding solutions of their differential equations,
or through pattern-matching based on their functional
structure.
Cuts are typically defined by constraining a subset of the

internal momenta to be on-shell, and their computation can
be carried out by taking residues at that locus. Here, we
outline a complementary approach in terms of Feynman
parameters. The Landau conditions for the presence of a
singularity are formulated at first in terms of both loop
momenta and Feynman parameters. Focusing on the loop
momenta gives the customary on-shell conditions.
Focusing instead on the Feynman parameters, we interpret
the conditions in terms of changing the boundaries of the
domains of integration. Specifically, the coordinate hyper-
planes of the parameters corresponding to cut edges are
eliminated as boundaries, and the second Symanzik poly-
nomial F will be used in their place. We justify this
interpretation in terms of the Landau conditions, and with
reference to a physical notion of discontinuities. Maximal
cuts are obtained by integrating over a region bounded only
by F ¼ 0. We find a new expression for maximal cuts at
one loop and illustrate the possibility of finding multiple
solutions beyond one loop.

In this framework, we can derive a linear relation among
cut and uncut one-loop integrals in a very simple way, by an
inclusion-exclusion argument on regions with the appro-
priate boundaries. We conclude with prospects for extend-
ing this argument to multiloop integrals, along with various
suggestions for further exploration.
Feynman-parametric integrals and their cuts.—Review

of Feynman parameters: An L-loop Feynman integral
with E internal edges inD spacetime dimensions is given in
its momentum representation as [1]

I ¼
Z �YL

l¼1

dDkl
iπD=2

�
BQ

E
i¼1 A

νi
i
: ð1Þ

The numerator B is an arbitrary polynomial in the kin-
ematic variables. Here we treat singularities in generality,
so the numerator plays no role, and we omit it henceforth.
The inverse propagators in the denominator take the form

Ai ¼ m2
i − q2i − i0; ð2Þ

with masses mi and momenta qi that are linear combina-
tions of the external momenta and loop momenta kl, and
they are raised to integer powers νi.
Feynman parameters are the integration variables intro-

duced by rewriting the denominators in the following form:

1Q
E
i¼1 A

νi
i
¼ ΓðνÞQ

E
i¼1 ΓðνiÞ

Z
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dEα

×
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i¼1 αiAiÞν

; ð3Þ

where ν ¼ P
E
i¼1 νi, and S is any nonempty subset of

f1;…; Eg.
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Review of Landau equations and cuts: The Landau
equations [2,3] are a set of necessary conditions for a
singularity to occur in the integral. For each i ∈ f1;…; Eg,

αiAi ¼ 0; ð4Þ

and for each closed loop of the graph, l ¼ 1;…; L,

XE
i¼1

αi
∂Ai

∂kl
¼ 0: ð5Þ

Notice that the conditions of Eq. (4) factorize, so for each
Landau singularity, there is a subset J ⊆ f1;…; Eg, such
that

Aj ¼ 0 for j ∈ J; αk ¼ 0 for k ∉ J: ð6Þ

The conditions Aj ¼ 0 are on-shell conditions constraining
the loop momenta. We say that the propagators indexed by
j ∈ J are cut. In the momentum-space integral Eq. (1),
these conditions can be imposed by replacing the Aj factors
with corresponding delta functions [4], or by taking resi-
dues [5]. The result of this operation on the Feynman
integral is a discontinuity called a cut integral, denoted
by CJI.
In Feynman parameter space, we focus on the second

equation of Eq. (6), the complement of the usual on-shell
conditions, as the defining condition for the cut CJI. After
rewriting the integral of Eq. (1) with the identity Eq. (3),
one can integrate the loop momenta, leaving an integral
over the Feynman parameters αi as follows:

I ¼
Γ
�
ν − LD

2

�
Q

E
i¼1 ΓðνiÞ

Z
αi≥0

dEα

× δ

�
1 −

X
i∈S

αi

��YE
i¼1

ανi−1i

�
Uν−ðLþ1ÞD=2

F ν−LD=2 ; ð7Þ

where U and F are the first and second Symanzik
polynomials.
The Landau equations can be recast in terms of Feynman

parameters as

αk ¼ 0 for k ∉ J;
∂F
∂αj

¼ 0 for j ∈ J; ð8Þ

provided that U ≠ 0 [6].
Cuts and contours: The conditions αk ¼ 0 appear in

the boundary of the domain of integration of Eq. (7). It was
noted in [11] that the Landau conditions treat singular
surfaces and boundaries on the same footing.
Our proposal is to interpret generalized cut integrals

through modification of the integration contours of Eq. (7),
eliminating the hyperplanes fαk ¼ 0gk∉J as boundaries, in

favor of including the singular surface F ¼ 0 as a
boundary.
This interpretation is supported by the second Landau

equation. At a singularity where U ≠ 0, the second equa-
tion of Eq. (8) indicates that the gradient of F is normal to
the coordinate hyperplanes associated to the cut. In other
words, the surface F ¼ 0 is tangent to this set of hyper-
planes. So it is plausible that crossing the singularity creates
a new region bounded by F ¼ 0 and the hyperplanes
fαk ¼ 0gk∉J, which can be taken as a domain of integration
for defining CJI as a parametric integral. We will make this
idea more precise in the cases studied in the following
sections.
The idea of using full-dimensional integration con-

tours is related to constructing a basis of the homology
group associated with a generalized hypergeometric func-
tion [12]. The integration contours are most properly
constructed as twisted cycles, meaning that they include
information about the choice of the Riemann sheet with
respect to the multivalued integrand. In practice, to obtain
the functions that interest us, it is sufficient to integrate in
the usual way, employing dimensional regularization as
needed.
Notation and conventions: We use the delta function in

the parametric integral to restrict our attention to the
hyperplane HS defined by 1 −

P
i∈S αi ¼ 0. We denote

the coordinate hyperplanes by Hi ≡ fαi ¼ 0g, the restric-
tion of F ¼ 0 to HS by F, and the integration region of the
uncut integral by Δ. Where integral formulas are given, it is
to be understood that parameters such as D are chosen to
ensure convergence, for example through dimensional
regularization.
Discontinuities and contours.—Let us examine the dis-

continuity of the Feynman integral in a general kinematic
variable denoted by s. Here we interpret the discontinuity as
the difference in the value of a function in approaching the
real axis from opposite sides. More formally, a disconti-
nuity is the change resulting from analytic continuation
around a Landau variety, which can be treated with Picard-
Lefschetz theory [5,11,13–16].
To see explicit discontinuities in mass and momentum

invariants, we refer to the graphical definitions of the
Symanzik polynomials,

U ¼
X
T∈T 1

Y
ei∉T

αi;

F ¼ U
XE
i¼1

αim2
i −

X
ðT1;T2Þ∈T 2

� Y
ei∉ðT1;T2Þ

αi

�
q2ðT1;T2Þ; ð9Þ

where T 1 is the set of spanning trees of the Feynman graph
and T 2 is the set of spanning 2-forests with connected
components T1 and T2, in which qðT1;T2Þ is the momentum
flowing between the connected components. Since the
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kinematic dependence is only in the polynomial F , the
discontinuity operation acts only on that factor.
For simplicity, suppose that there exists a region in the

space of kinematic variables in which F is positive
throughout the integration region Δ, called a Euclidean
region. Thus Δ is contained in the interior of F > 0.
The i0 prescription in Eq. (2) can be associated to the

kinematic invariants, and thus to F − i0, so that the
discontinuity of F λ is

Discs½F λ� ¼ ðF − i0Þλ − ðF þ i0Þλ
¼ −θ½−F �½−F �λ2i sinðπλÞ; ð10Þ

where θ is the unit step function. Inserting this expression
into the integral, we see concretely from the factor θ½−F �
that F ¼ 0 has effectively become a boundary of the
integration region.
Mass discontinuities: The effect of a discontinuity

operation on the integration region is most clearly seen
in varying the mass of a single edge. Consider the example
of a scalar triangle. See Fig. 1(a). As the value of m2

3 is
analytically continued from positive to negative values, F
crosses into the integration region at the point H1 ∩ H2,
eliminating H3 as a boundary.
Momentum discontinuities: Discontinuities in momen-

tum invariants are less elementary. In multiloop integrals, it
may be necessary to combine multiple cuts (multiple
choices of cut edges) to reproduce the full discontinuity.
Each cut diagram has a separate integration region. In our
example of the scalar triangle, as p2

3 crosses the normal
threshold, where F is tangent to H3, the integration region
bounded only by F and H3 appears, seen in Fig. 1(b) [17].
Relation of discontinuities to cuts: As noted above,

discontinuities exist in a more general sense captured by
Picard-Lefschetz theory, and they are represented by the
full set of cuts even when the corresponding Landau
singularities may not have solutions in real kinematics.
For example, the functions expressing mass and momen-
tum discontinuities may be analytically continued to other
kinematic regions, or equivalently, computed directly in
other regions via cut integrals. Cuts can be defined modulo

iπ in order to preserve invariance under analytic continu-
ation. In the present discussion, the analytic continuation of
cuts is derived from the analytic continuation ofF . For cuts
to agree with discontinuities, we should normalize the
contours by the factor −2i sin½πðLD=2 − νÞ� from Eq. (10),
where we have taken the value of λ from Eq. (7). If D is an
even integer minus 2ϵ, this factor is of order ϵ.
One-loop cuts: For example, in a one-loop integral,

integration domains can be continued back to the Euclidean
region, as shown in Fig. 2. The cut integral CJI can be
interpreted as the Feynman integral over the integration
domain ΓJ bounded by F and fHkgk∉J. In particular, the
domain associated to the maximal cut is Γ½n�, which is
bounded only byF ¼ 0. The choice of boundaries does not
define the region uniquely. The tangency of F to the
hyperplanes seen from the second Landau equation implies
that with the exception of Γ½n�, we should take the
integration domain of a cut integral to exclude Δ [18].
If cuts are defined such that they agree with disconti-

nuities up to sign, and we assume single powers of
propagators, then if J ≠ =0 and D is an integer minus 2ϵ,

CJI ¼ sinðπϵÞ
π

Γ
�
n −

D
2

�Z
ΓJ

ωF
D
2
−n; ð11Þ

where ω is the volume form induced on HS [19].
Maximal cuts.—We carry out some more checks of our

proposal by evaluating maximal cuts in a few simple cases.
A maximal cut is defined by setting Aj ¼ 0 for all j. None
of the coordinate hyperplanes remain as boundaries of the
integration region; the region for the maximal cut contour is
bounded only by F. Maximal cuts of multiloop integrals are
not necessarily unique.
One-loop integrals: The maximal cut of a scalar one-

loop n-point integral with unit powers of propagators can

FIG. 1. Integration domains of mass and momentum disconti-
nuities of the scalar triangle (a) Discontinuity in m2

3, (b) Dis-
continuity in p2

3.

FIG. 2. Integration domains of an n-point one-loop integral in
Euclidean kinematics, shown for n ¼ 3.
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be computed in generality. In Eq. (7), set νi ¼ L ¼ 1, and
take S ¼ ½n�. The graph polynomials are U ¼ P

n
j¼1 αj,

which is set to 1 by the delta function, and
F ¼ P

n
i;j¼1 Yijαiαj, where the Yij are entries of the

modified Cayley matrix, Yij ¼ 1
2
½m2

i þm2
j − ðqi − qjÞ2�.

It is convenient to introduce the n-vectors α ¼
ðα1;…; αnÞT and e ¼ ð1;…; 1ÞT . Let Y be the symmetric
matrix with entries Yij. Then U ¼ eTα and F ¼ αTYα, and
the maximal cut integral is

Z
αTYα≥0

dnα δð1 − eTαÞðαTYαÞD2−n

¼ 1ffiffiffiffiffiffiffiffiffiffi
detY

p ðeTY−1eÞn−D2 πn−1
2

Γ
�
D
2
− nþ 1

�

Γ
�
D−nþ1

2

� ; ð12Þ

which agrees with the analytic result of [11].
Sunrise with one massive propagator: For the scalar

integral depicted in Fig. 3(b), we choose S ¼ f1; 2g and set
α1 ¼ x, α2 ¼ 1 − x, α3 ¼ y, where α3 is the parameter of
the massive edge.
Then the graph polynomials are U ¼ xð1 − xÞ þ y,

F ¼ y½m2yþðm2−p2Þxð1−xÞ�. Integrating U3−D=2FD−3

between the two roots of F ðyÞ produces a hypergeometric
function, 2F1, whose argument is 1 − p2=m2. The remain-
ing x dependence is simply a factor ½xð1 − xÞ�ðD−4Þ=2;
integrating between the intersection points of the factors
of F ¼ 0 at x ¼ 0 and x ¼ 1 reproduces the known
discontinuity in p2, as given, for example, in [20].
In this example, there are two independent maximal cuts.

It is interesting to note that both can be obtained by a
suitable choice of contour bounded only by F. For example,
we can obtain a second independent solution by integrating
between y ¼ 0 and y ¼ ∞, and then integrating over all
values of x.
Double-edged trianglewithmassless propagators and two

legs off shell: For the scalar integral depicted in Fig. 3(b),
we choose S ¼ f1; 2g and set α1 ¼ x, α2 ¼ 1 − x, α3 ¼ y,
α4 ¼ z. Here there is only one maximal cut. The two factors
of the polynomial F ¼ −z½p2

3yþ p2
1xð1 − xÞ� create four

unbounded regions of integration. Integrating over any of
them gives the same result up to normalization, which is
proportional to ½p2

3ðp2
3 − p2

1Þ�ðD−4Þ=2 and agrees with the
known result as given for example in [20].

Remark: Nonmaximal cuts of the integrals in Fig. 3
also agree with known results.
The decomposition theorem from the inclusion-exclusion

principle.—A primary motivation of this work is the study
of linear relations among cut integrals. For one-loop
integrals, several such relations were analyzed in [11].
Of particular interest is the equivalence of an uncut n-point
scalar integral to the sum of all its 1-line and 2-line cuts,

Xn
j¼1

CfjgI þ
X

fj;kg⊆½n�
Cfj;kgI ≡ −ϵI mod iπ: ð13Þ

Here we are working in dimensional regularization and
assuming that D is an even integer minus 2ϵ. This relation
was derived from a decomposition theorem in the homol-
ogy of Feynman integrals [13] showing that the singularity
at infinite momentum can be exchanged for the singular-
ities associated to cuts of edges. The singularity at infinity
produces the term on the right-hand side of Eq. (13). In fact,
the decomposition theorem involves the homology classes
of all combinations of cut edges, not just single edges and
pairs. The reason that they do not appear in Eq. (13) is that
the relation is given modulo iπ, consistent with defining
cuts to be invariant under analytic continuation to different
kinematics. Computed as residues or discontinutes, cuts of
larger numbers of edges are accompanied by higher powers
of iπ relative to the first two [21]. We can now give a
version of this relation that is exact in the Euclidean region,
from which it can be analytically continued to other regions
as desired.
The derivation follows very simply from the inclusion-

exclusion principle applied to bounded regions. We refer
again to Fig. 2. The set of integration domains ΓJ with
J ≠ 0, associated to cuts, is linearly independent. The
domain Γ0 ¼ Δ associated to the uncut integral can be
expressed in terms of the others by an alternating sum,
giving

X
0⊂K⊆½n�

ð−1Þn−jKjΓK ¼ Γ0: ð14Þ

Now we use this expression as an integration contour for
the Feynman integral and recall Eq. (11). The sum on the
left becomes the sum of all cuts times π cscðπϵÞ. This is the
exact version of the relation Eq. (13) [22], before simplify-
ing π cscðπϵÞ to 1=ϵ and dropping the higher-order cuts by
working modulo iπ.
Thus a simple picture of one-loop cut relations emerges

from the combinatorics of regions in parameter space.
Beyond one loop, F can exhibit more complicated behavior
involving factorization or self-intersection, and as men-
tioned in the previous section, cuts are not always unique.
Analytic continuation may change the number of integra-
tion regions. Nevertheless, there are indications of similarly

FIG. 3. Examples of two-loop graphs (a) Sunrise with one
massive propagator, (b) Two-scale double-edged triangle.
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visible cut relations in simple multiloop cases. These issues
and results will be presented in forthcoming work.
Summary and discussion.—In parametric space, cut

integrals may be defined using integration domains
bounded by the second Symanzik polynomial and the
coordinate hyperplanes complementary to the set of cut
edges. Maximal cuts are integrated over domains bounded
only by the second Symanzik polynomial. These integral
representations may further expand the utility of parametric
techniques, including numerical treatments, and may sim-
plify some aspects of analytic continuation by focusing on
the graph polynomials. It would be interesting to consider
these integration domains in the Lee-Pomeransky repre-
sentation [23] and the Baikov representation [4,24].
A complete treatment of discontinuities should include

second-type singularities involving the infinite limit of loop
momentum. For one-loop integrals, the decomposition
theorem relates them to first-type singularities described
by cutting edges, and for simpler multiloop integrals there
are apparently similar relations. Second-type singularities
are associated to U ¼ 0 [7,25], so this condition may
play some role as a boundary as well. Alternatively,
compactifying the full integration domain might improve
the analysis of regions.
By using cut contours defined by their boundaries, we

have been able to give a simple inclusion-exclusion picture
underlying the relation of Eq. (13), lifting the relation to an
equality rather than a congruence. It would be interesting
to investigate similar relations at higher loop order, to see to
what extent the one-loop relations can be applied to
subgraphs, and to understand cut relations for non-
polylogarithmic Feynman integrals such as the ones found
in [26]. More generally, the graphical structure of the
Symanzik polynomials [27] could lead to recursive rela-
tions among cut integrals.
Our construction was inspired by the period matrix of

generalized hypergeometric functions, for which a basis of
integration contours that are dual to a basis of integrands
related by integration-by-parts identities leads to an algebraic
coaction [28,29]. It will be interesting to see if this repre-
sentation of cut integrals sheds light on the diagrammatic
coaction for Feynman integrals [20,30,31], which is based on
a similar duality, or on the representation of Feynman
integrals as generalized hypergeometric functions.
More broadly, the idea of identifying discontinuities as

integrals over full-dimensional algebraic varieties might
find application in other classes of functions, such as
complete amplitudes in which some of the singularities
of individual Feynman integrals have canceled out. In
contexts where loop amplitudes are computed as volumes
of some geometry (e.g., [32–34]), it would be interesting to
see whether cuts are also volumes, and to explore the nature
of those geometries.
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