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Abstract

Non-trivial outer algebra automorphisms may be utilized in λ-deformations of (gauged) WZW models 
thus providing an efficient way to construct new integrable models. We provide two such integrable de-
formations of the exact coset CFT SU(2)k × U(1)/U(1)q with a vector and axial residual gauge. Besides 
the integer level k and the deformation parameter λ, these models are characterized by the embedding pa-
rameter q of the U(1) factor. We show that an axial-vector T-duality persists along the deformations and, 
therefore, the models are canonically equivalent. We demonstrate integrability even though the space is 
non-symmetric and compute the RG-flow equations for the parameters λ and q. Our example provides 
an integrable deformation of the gravitational solution representing a Euclidean three-dimensional black 
string.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

After the major success of using worldsheet integrability to provide rigorous tests for the 
AdS/CFT correspondence, deformations of two-dimensional σ -models which preserve integra-
bility has attracted considerable attention in order to describe more general theories. In particular, 
an interesting application is to reduce the number of (super)symmetries, either in the gauge 
theories or in the black brane backgrounds, whilst preserving the computational power of in-
tegrability.

In this paper we focus on integrable deformations of the λ-type which finitely deform two-
dimensional σ -models corresponding to exact conformal field theories (CFTs). In its original 
formulation [1] the deformation acts on the Wess-Zumino-Witten (WZW) model on a Lie group 
G and connects it to the non-Abelian T-dual of the Principal Chiral Model (PCM) on G. In 
the past years, several generalizations have been constructed and studied. Most prominently, λ-
deformations of symmetric spaces [1,2] interpolate between gauged WZW models with vectorial 
residual gauge and non-Abelian T-duals of symmetric space σ -models. In [3] the λ-deformations 
were generalized to Green-Schwarz (GS) σ -models and applied to the AdS5×S5 superstring. In 
both cases, classical integrability was easily shown using, respectively, the Z2 and Z4 grading 
of the spaces. Furthermore, both the non-marginal deformed (gauged) WZW models as well as 
the deformed GS models are known to describe consistent type-II supergravity solutions, re-
spectively by dressing the bosonic background with appropriate RR fields [4–6] or by extracting 
them directly from the GS formulation [7–10] (see also [11] for the pure-spinor formulation of 
λ-AdS5×S5).1 In addition, there are constructions, starting with the work of [12], describing de-
formations smoothly interpolating between exact CFTs in the UV and the IR, in full agreement 
with Zamolodchikov’s C-theorem [13], as further was illustrated in [14].

In the present research we consider asymmetric λ-deformations in which the possibility of 
other anomaly free residual gauges, based on Lie-algebra outer automorphisms, for the gauged 
WZW model was exploited [15].2 In particular, when the Lie group admits such an automor-
phism, one can deform gauged WZW models with an asymmetric residual gauge (rather than 
a vectorial residual gauge) which typically describe topologically different target spacetimes 
[19–21]. A prominent application is a deformation of the two-dimensional Witten black hole 

1 In that respect, if the deformations can be embedded in supergravity by turning on RR-fields as well as fermions, they 
are at least to leading order, marginal.

2 Other anomaly free gaugings utilized in the constructions of λ-deformations by considering tensor product CFTs, 
and their studies, can be found in [16–18].
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[22] which was, together with its connection to Sine-Liouville theory, described in [15]. Here 
we will construct a non-trivial example utilizing an outer automorphism, by focusing on another 
interesting family of CFTs, corresponding to the three-dimensional Horne-Horowitz black string 
[23]. This singular background is characterized by a mass, charge and dilaton profile. The gauged 
WZW model description in Euclidean signature is based on SU(2) × U(1)/U(1)q , where the 
gauge group U(1)q acts axially. The parameter q characterizes a linear combination of the Cartan 
elements and particularly relates to the physical parameters of the black string solution. Using 
the asymmetric λ-formulation we can deform this theory but since the space does not admit a 
Z2-grading and G is non-semisimple, classical integrability and one-loop renormalisability of 
the theory is not immediately ensured. However, we will show that there is an unanticipated 
important connection to the anisotropic XXZ (biaxial) SU(2) λ-model, a particular case of the 
model constructed in [24], which is known to be integrable and renormalisable. Furthermore, an 
interesting feature is that in the resulting spacetimes a U(1) isometry survives after the deforma-
tion.

This paper is organized as follows: In section 2 we review and generalize asymmetric λ-
deformations in order to include the possibility of anisotropic effects. In section 3 we construct 
the target spaces of λ-deformations of SU(2) × U(1)/U(1)q with a vectorial and axial residual 
gauge and show, in the latter case, the connection to the anisotropic SU(2) λ-deformation. Using 
the surviving U(1) isometry we show that the axial and vector deformations are canonically 
related via an Abelian T-duality. Although this is well known at the CFT level [25–27] an axial-
vector T-duality along the non-marginal deformation is an unseen feature. We end this section 
by showing classical integrability and one-loop renormalizability. We conclude in section 4 and 
discuss possible future directions.

2. Asymmetric λ-deformations

In this section we review the work of [15] who formulated λ-deformations of G/H gauged 
WZW models with asymmetric residual gauge by generalizing the deformations of [1,2]. In ad-
dition, while the construction of [15] was done for the isotropic case, here we include anisotropic 
effects in which the deformation is encoded in a matrix � instead of a single parameter λ. 
Furthermore, we remark that these constructions can be cast in the formalism of the usual 
λ-deformations, after a redefinition of the deformation matrix, although integrability is more 
apparent in the asymmetrically gauged formulation.

Consider a general Lie group G with Lie algebra generators ta , a ∈ {1, 2, . . . , dimG}, which 
are normalized as Tr(tatb) = ηab , and satisfy the commutation relations [ta, tb] = ifab

ctc. Alge-
bra indices will be raised and lowered using ηab. We will assume that the Lie algebra of G has an 
automorphism W acting on the generators as W(ta) = Wb

atb . In addition, the following relations 
are satisfied

Tr
(
W(ta)W(tb)

) = Tr(tatb) , W
([ta, tb]) = [W(ta),W(tb)] = ifab

cW(tc) . (2.1)

Consider next the asymmetrically gauged WZW action [19,20]

Sk(g,A±) = Sk(g) + k

π

∫
d2σ Tr(A−∂+gg−1 − B+g−1∂−g + A−gB+g−1

− 1

2
A+A− − 1

2
B+B−) ,

(2.2)

where Sk(g) is the standard WZW action for the group g at level k given by [28]
3
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Sk(g) = − k

2π

∫
d2σ Tr(g−1∂+gg−1∂−g) + k

12π

∫
(g−1dg)3 . (2.3)

When G is compact, the level k is a positive integer, while for non-compact G the level k is a 
positive number. In addition, A± and B± are gauge fields which are not independent since they 
are built up by the same components Aa±. Indeed, in terms of representation matrices we have 
that A± = Aa±ta and B± = Ba±ta = W(A±) = Aa±W(ta), with Ba± = Wa

bA
b±. The above action 

is invariant under gauge transformations which in their infinitesimal form read

δg = −εLg + gεR , δA± = −∂±εL + [A±, εL] , δB± = −∂±εR + [B±, εR] , (2.4)

where εL = εata and εR = εaW(ta). Notice that due to the properties of the automorphism in 
(2.1) we may replace in (2.2) the term Tr(B+B−) by Tr(A+A−). In the spirit of [1] and [15] we 
add to (2.2) the gauge invariant term

SE(g̃,A±) = − 1

π

∫
d2σ EabTr(tag̃−1D+g̃)Tr(tag̃−1D−g̃) , (2.5)

where Eab is a matrix of couplings and D±g̃ = ∂g̃ − A±g̃ are the covariant derivatives for 
minimal coupling. This term is on its own gauge invariant provided that δg̃ = −εLg̃. Since the 
gauge symmetry acts with no fixed point in g̃ we may fix the gauge symmetry as g̃ = 1.3 Then 
after defining as in [1] the matrix

� = k(k1 + E)−1 , (2.6)

one obtains the action

Sk,�(g,A±,W) = Sk(g) + k

π

∫
d2σ Tr(A−∂+gg−1 − B+g−1∂−g + A−gB+g−1

− A+�−1A−) .

(2.7)

This action is invariant under the parity-like transformation

σ+ ↔ σ− , g → g−1 , A± ↔ B∓ , W → WT , � → W�T WT . (2.8)

For W = 1 the gauge fields A± and B± coincide and one would obtain, after integrating out 
the gauge fields, the standard σ -model action of [1], corresponding to λ-deformations of WZW 
models by current bilinears. Moreover, if we split the matrix � = (λG/H , λH ) and set λH = 1H

and λG/H = λ then we will obtain, after integrating out the gauge fields, the λ-deformations of 
vectorially gauged coset G/H CFTs [1]. In this latter case, but with W non-trivial, one would 
obtain the λ-deformations of asymmetrically gauged coset G/H CFTs of [15].

On-shell the gauge fields satisfy the constraints

A+ = (
�−T − DW

)−1
∂+gg−1, A− = (

D−1 − W�−1)−1
g−1∂−g , (2.9)

where D represents the adjoint action as D(ta) = Db
atb = gtag

−1 and thus Dab = Tr(tagtbg
−1). 

The resulting effective action valid at large k, but exactly in the matrix �, is obtained by substi-
tuting (2.9) into (2.7)

Sk,�(g,W) = Sk(g) + k

π

∫
d2σ J a+

(
W�−1 − D−1)−1

ab
J b− , (2.10)

3 We could equally well replace (2.5) by an action invariant under the right transformations δg̃ = g̃εR . This would not 
affect our results, but it would redefine the matrix � below.
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where J a+ = −i Tr(ta∂+gg−1) and J a− = −i Tr(tag−1∂+g). This action is accompanied with a 
non-constant dilaton profile coming from the elimination of gauge fields when performed in the 
path integral

e−2
 = e−2
0 detη det
(
�−1 − WT DT

)
, (2.11)

with 
0 constant. In general this contribution is important if one attempts to embed these models 
to supergravity. In this work, it plays a rôle in discovering the part of the diffeomorphism needed 
to compute the β-functions as we will see explicitly below. Note that, as in the anisotropic PCM, 
the action (2.10) is expected to be integrable only for special choices of the matrix �ab.

The above action, as in the original λ-deformations, has the symmetry [29,30]

g → g−1, � → �−1, k → −k . (2.12)

In the case with � = (λG/H , 1H ) there is also a residual dimH asymmetrical gauge invariance 
acting as

g → h−1gh̃ , A
(H)
± → h−1(A

(H)
± − ∂±)h , A

(G/H)
± → h−1A

(G/H)
± h , (2.13)

with h = eX and h̃ = eW(X) (connected to the identity) for X in the Lie subalgebra of H ⊂ G. 
Hence, the fields A(H)

± are still genuine (but non-propagating) gauge fields, while A(G/H)
± are 

auxiliary. That means that we should gauge fix dimH parameters in the group element g in the 
effective action (2.10).

An important remark is that the effect of the automorphism W is only non-trivial when W is an 
outer automorphism of G. For instance, let us assume that it is possible to write W(ta) = wtaw

−1

for some w. Then, for any � eq. (2.7) can be rewritten as Sk,�(g, A±, W) = Sk,�(gw, A±, 1), 
similar as in the undeformed case. When the automorphism W is inner, that is when w ∈ G, all 
that one obtains is a trivial field redefinition from g ∈ G to gw ∈ G so that the construction is 
the same as in the original W = 1 case, that is the vector gauging. When the automorphism W is 
outer, such a field redefinition is not possible, and the asymmetrical gauging will deform target 
spaces which are topologically different from the usual vectorially gauged cases [19–21]. In 
particular, when the matrix entries for W are different than unity in the directions of a subgroup 
H ⊂ G one can systematically construct deformations of the asymmetric cosets G/H CFTs.

Classical integrability as well as one-loop renormalisability of the asymmetrical isotropic 
λ-deformations was demonstrated in [15] in the cases that � = λ1G and � = (λ1G/H , 1H )

assuming for the latter that the Lie subalgebra Lie(H) underlies a Z2 grading for Lie(G).4

The form of the action (2.10) and the dilaton (2.11) suggest that the effect of an automorphism 
can be absorbed in the deformation matrix �, by redefining � → �W and using that W satisfies 
WηWT = η. This fact enables one to map these models to the λ-deformed models of [1,16] with 
a general coupling matrix and therefore adds a class of integrable deformed models constructed 
from non-trivial outer automorphisms.

3. λ-Deformations of SU(2) × U(1)/U(1)q

In this section we explicitly construct the two possible λ-deformations of the SU(2) ×
U(1)/U(1)q coset CFT which have an axial and vectorial residual gauge. Although these de-

4 In [15] it was also illustrated how non-trivial outer automorphisms can be incorporated into λ-deformations on semi-
symmetric spaces, in which case Lie(G) admits a Z4 grading, without destroying classical integrability, by generalizing 
the construction of [3].
5
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formations are not marginal, we will show that the axial-vector T-duality persists along the 
deformation line, and hence that they are canonically equivalent according to [31,32]. One of 
the deformations–namely the one corresponding to the axial gauging–corresponds to the defor-
mation of the Euclidean black string solution of [23]. Although SU(2) ×U(1) is non-semisimple 
and the subalgebra Lie(U(1)q) does not realize a Z2 grading of Lie(SU(2) × U(1)), we still 
demonstrate classical integrability of the deformed theories and we compute the one-loop RG-
flow equations of parameters. Finally, we show that remarkably the axial deformation can be 
described as the particular biaxial anisotropic SU(2) λ-deformation constructed in [24].

We will parametrize a group element g ∈ G by Euler angles as

g = gSU(2) · gU(1) , (3.1)

where

gSU(2) = e
i(φ1−φ2)

2 σ3eiωσ1e
i(φ1+φ2)

2 σ3 =
(

eiφ1 cosω ie−iφ2 sinω

ieiφ2 sinω e−iφ1 cosω

)
,

gU(1) = eixσ0 ,

(3.2)

with σi being the usual Pauli matrices and σ0 = 12. We will utilize the corresponding Lie algebra 
in the following basis

t = 1√
2

{
σ1, σ2,

−qσ3 + σ0√
1 + q2

,
σ3 + qσ0√

1 + q2

}
, (3.3)

where the parameter q ∈ R defines the relative weights in mixing σ0 and σ3 in the Cartan sub-
algebra, and the overall factor is such that Tr(tatb) = δab . In this basis the non-vanishing and 
q-dependent Lie algebra structure constants are

f123 = −
√

2 q√
1 + q2

, f124 =
√

2√
1 + q2

, (3.4)

the rest of the components follow from antisymmetry. We will construct λ-deformations with 
both the vector and the axial-type by gauging the subgroup H generated by t4. Hence we take 
the deformation matrix in the basis (3.3) to be diagonal as

(�ab) = diag(λ,λ,λ3, λ4) = diag(λ,λ,λ,1) . (3.5)

The axial-type then deforms directly the Euclidean black string [23] for which we recall that the 
physical properties depend on q . At this point, the parameter q simply determines the relative 
weights of gauging a subgroup action generated by σ0 vs. σ3. We denote this subgroup as U(1)q .

For the (original) vector λ-model we must take W = 14. The infinitesimal residual vector 
gauge transformation δV g = iε [t4, g] acts explicitly as

δV x = 0 , δV φ1 = 0 , δV φ2 = − 2ε√
2(1 + q2)

, δV ω = 0, (3.6)

and thus taking φ2 = 0 in (3.1) fixes the gauge completely.
For the axial λ-model the automorphism W should act on the subgroup U(1)q as W(t4) = −t4. 

To ensure the properties (2.1) of W on the full SU(2) × U(1) algebra, it should act as

W {t1, t2, t3, t4} = {t1,−t2,−t3,−t4} . (3.7)
6
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We note that this action can not be written as W(ta) = wtaw
−1 for some two-dimensional matrix 

w and thus W is an outer automorphism. Other choices, such as flipping the sign of t1 instead of t2
are connected to (3.7) by an inner automorphism W ′(t)a = wW(t)aw

−1 with w = diag(1, −1) ∈
SU(2) ×U(1). Indeed, this w can be obtained from (3.1) by setting ω = 0, φ1 = π/2, x = −π/2. 
Hence this apparent ambiguity amounts to a field redefinition between the resulting σ -models. 
The infinitesimal residual gauge transformation δAg = iε(gt4 + t4g) transforms both x and φ1
in (3.1)

δAx = 2qε√
2(1 + q2)

, δAφ1 = 2ε√
2(1 + q2)

, δAφ2 = 0 , δAω = 0 . (3.8)

Choosing x = 0 completely fixes the axial gauge freedom.
There are two particular limits concerning the parameter q for which these models are known. 

When q → 0, which we will refer to as the coset limit, t4 → σ3. In that case both the axial and 
vector gaugings would produce, up to a trivial field redefinition, the same SU(2)/U(1) × U(1)

(deformed) background since SU(2) has no outer automorphisms. When q → ∞, which we will 
refer to as the group limit, t4 → σ0 and the axial gauging would lead to the λ-deformed SU(2)

group manifold.
Let us finally point out that one may cast the above deformation in terms of the untwisted 

basis

t̃ = 1√
2

{
σ1, σ2, σ3, σ0

}
, (3.9)

but with the deformation matrix �̃ in (2.10) being non-diagonal. For both the vector and the axial 
cases this is easily found to be

(�̃ab) =

⎛⎜⎜⎜⎜⎝
λ 0 0 0
0 λ 0 0

0 0 q2λ3+λ4
1+q2

q(λ4−λ3)

1+q2

0 0 q(λ4−λ3)

1+q2
λ3+q2λ4

1+q2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
λ 0 0 0
0 λ 0 0

0 0 1+q2λ

1+q2
q(1−λ)

1+q2

0 0 q(1−λ)

1+q2
λ+q2

1+q2

⎞⎟⎟⎟⎟⎠ , (3.10)

where we took λ3 = λ and λ4 = 1 as in (3.5).

3.1. Deformed σ -model geometry

3.1.1. Vectorial gauge symmetry
Using the above, the vectorial λ-deformation of the SU(2)k × U(1)/U(1)q coset CFT as 

derived from (2.10) is found to have the metric

ds2 = k

(
1 + λ

1 − λ
(1 + q2)dx2 + 1 − λ

1 + λ

(
dω2 + cot2 ω(dφ1 + qdx)2

)
+ 4λ

1 − λ2

(
cosφ1dω + sinφ1 cotω(dφ1 + qdx)

)2
)

,

(3.11)

and dilaton

e−2
 = e−2
0 sin2 ω , (3.12)

whereas the antisymmetric tensor is vanishing. The undeformed λ = 0 point gives the metric
7
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ds2 = k
(
(1 + q2)dx2 + dω2 + cot2 ω(dφ1 + qdx)2

)
. (3.13)

In this case the q-dependence can be undone by an obvious shift of the φ1 coordinate5 and a 
rescaling of the free boson x. The non-trivial part of the metric was found in [33] and corresponds 
to the usual SU(2)/U(1) parafermionic CFT [34]. Its interpretation of its Minkowski analytic 
continuation as a two-dimensional black hole and the importance of the dilaton factor (3.12) was 
discussed in [22]. For generic λ, however, the q-dependence can not be undone as the isometry in 
φ1 is destroyed by the deformation. The isometry in the x-direction is on the other hand preserved 
which, as we will see below, allows us to perform a T-duality transformation.6 Furthermore, one 
can readily verify that the q → 0 limit gives the λ-deformed SU(2)/U(1) background of [1]
times an additional U(1) factor in x. As a side note, one can also verify that the non-perturbative 
symmetry (2.12) (where g → g−1 sends ω → −ω, φ1 → −φ1, x → −x and φ2 → φ2) indeed 
holds in the background geometry. In addition, there is the discrete symmetry

q → −q , x → −x . (3.14)

Physical quantities, such as the β-function equations and operator anomalous dimensions, should 
respect this discrete symmetry as well as (2.12).

Finally, note the zoom-in limit near the singularity at ω = 0. This strong coupling limit makes 
sense if we also take λ near one. Specifically, let, as in [1],

φ1 = x1

2k
, ω = x2

2k
, x = y

2k
, λ = 1 − κ2

k
, (3.15)

and take the limit k → ∞. We find that

ds2 = 1 + q2

2κ2 dy2 + κ2

2

(dx1 + qdy)2

x2
2

+ 1

2κ2

(
dx2 + x1

dx1 + qdy

x2

)2

, (3.16)

and that

e−2
 = e−2
0x2
2 , (3.17)

where we have appropriately shifted 
0 in order to absorb a k-dependent constant and make 
sense of the limiting procedure. According to the general results of [1] the above background 
corresponds to the non-Abelian T-dual of the coset SU(2) × U(1)/U(1)q (in which the right 
acting U(1)q is gauged) performed with respect to the left acting (SU(2) × U(1))L isometry. In 
addition, we have checked that this is a genuine three-dimensional geometry and not of the direct 
product type.

3.1.2. Axial gauge symmetry and anisotropic SU(2)

We now turn to the case of the axial gauging. Using the above, the background of the axial 
λ-deformation of SU(2)k × U(1)/U(1)q as derived from (2.10) has the metric

ds2 = k
1 + λ

1 − λ

1

�(
q2(1 − λ)2 cos2 ω dφ2

1 + (1 + q2)
(
(1 − λ)2 cos2 φ2 + (1 + λ)2 sin2 φ2

)
sin2 ω dφ2

2

5 Here we do not pay particular attention to global issues related to the range of values of the various variables.
6 We have verified that the Killing vector equations admit only the isometry along x.
8
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+
(
q2(1 − λ)2 + ((1 − λ)2 + 4λ(1 + q2) cos2 φ2) cos2 ω

)
dω2 (3.18)

−2λ(1 + q2) sin 2φ2 sin 2ω dφ2dω
)

,

where

� = (1 + λ)2 cos2 ω + q2((1 + λ)2 − 4λ sin2 ω cos2 φ2
)
. (3.19)

Unlike the vectorial case, there is a non-vanishing antisymmetric tensor given by

B = − k

2
cos 2ω dφ1 ∧ dφ2

− k

�

((
(1 + λ)2 + 4λq2 cos2 φ2

)
cos2 ω sin2 ω dφ1 ∧ dφ2

+ λq2 sin 2ω sin 2φ2 dφ1 ∧ dω
)

,

(3.20)

where the first line arises from a specific gauge choice for the two-form field coming from the 
WZ term on SU(2). Finally, the dilaton is

e−2
 = e−2
0� . (3.21)

Possible singularities of the above background may arise from locations where � vanishes. It 
turns out that, there are no such points and therefore our background is not singular.

In the undeformed limit the above reduces to the CFT background

ds2 = k
(
dω2 + 1

q2 + cos2 ω
(q2 cos2 ωdφ2

1 + (1 + q2) sin2 ωdφ2
2)

)
,

B = k
q2 sin2 ω

q2 + cos2 ω
dφ1 ∧ dφ2 ,

e−2
 = e−2
0(q2 + cos2 ω) ,

(3.22)

where we have neglected in B the term −k

2
dφ1 ∧dφ2. This is the Euclidean analytic continuation 

of the black string solution of [23]. Hence, the solution (3.18)-(3.20) is the λ-deformation of the 
above mentioned CFT.

An important feature of the axial deformation is that it can be recast in terms of the three-
parameter anisotropic SU(2) λ-deformation of [24] in the particular case when two of the 
parameters are equal, i.e. the biaxial or XXZ case. This is seen by computing (2.10) and (2.11)
for SU(2) in the usual basis t = 1√

2
(σ2, σ2, σ3) and W = 13 with deformation matrix

(�ab) = diag

(
λ,λ,

1 + λ + 2q2λ

1 + λ + 2q2

)
. (3.23)

We find that the metric, antisymmetric tensor and dilaton coincides with the axial background 
upon the field redefinitions φ1 ↔ φ2 and ω → ω− π

2 . Due to the form of the above matrix, this is 
an anisotropic SU(2) deformation of XXZ type, a particular case of the fully anisotropic model 
� = diag(λ1, λ2, λ3) constructed in [24].

Finally, let

φ1 = 2ỹ
, φ2 = x1

, ω = x2 − π
, λ = 1 − κ2

, (3.24)

q 2k 2k 2 k

9
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which is analogous to (3.15). Then in the limit k → ∞, the background (3.19)-(3.21), becomes

ds2 = �−1
(

2κ2x2
2dỹ2 + 1 + q2

2κ2 (x1dx1 + x2dx2)
2 + (1 + q2)κ2

2
dx2

1 + q2κ2

2
dx2

2

)
,

B = �−1
(

1

2q

(
x2

2 − q2(x2
1 − x2

2 + κ4)
)
dx1 − qx1x2 dx2

)
∧dỹ ,

e−2
 = e−2
0� ,

(3.25)

with the function

� = q2x2
1 + (1 + q2)x2

2 + q2κ4, (3.26)

and where we have performed a constant shift in the dilaton to take a sensible limit in k → ∞. 
Again this background is non-singular. Whilst in general [15] the limit k → ∞ of asymmetrical 
λ models does not have a non-Abelian T-dual interpretation, we will see in what follows that the 
deformed Euclidean black string in this limit is the Abelian T-dual to (3.16) and (3.17), a feature 
that goes beyond the non-Abelian limits.

3.2. Relating the vector and axially deformed theories via T-duality

We would like to point out the striking connection between the deformed axial and vector the-
ories via Abelian T-duality. This is well known in the undeformed coset CFTs at λ = 0 [25–27], 
but nevertheless it persists along the full (non-marginal) deformation line. We first make the field 
renamings x → θ/k, φ1 → φ2 and ω → ω − π/2 in the vector background (3.11) and (3.12)
as well as φ1 → θ̃/q in the axial background (3.18)-(3.21). Starting from the redefined vector 
background one can perform a T-duality along the isometric coordinate θ using the well-known 
Buscher procedure. Then, we produce precisely the (redefined) axial background (3.18)-(3.21). 
Hence, for generic λ we have an Abelian axial-vector T-duality between field theories which are 
non-conformal at the bosonic level. This means that the two deformed backgrounds are canon-
ically equivalent, implying for instance that one may verify equally well classical integrability 
for either one of them. A similar comment applies for the β-function equations, i.e. we may use 
either background to compute the β-functions for the couplings λ and q . Below in Fig. 1 we have 
schematically encoded the interplay of T-duality and the λ-deformations in our example.

Fig. 1. Web of T-dualities and λ-deformations.
10
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3.3. Classical integrability and the Lax pair

The (SU(2) × U(1))/U(1)q coset does not have a Z2 grading. This is apparent from the 
fact that the structure constants with solely coset generators are non-vanishing, i.e. f123 in (3.4). 
Hence, the general proof of integrability by encoding the classical equations of motion in terms 
of a Lax pair given for any λ-deformed symmetric space in [2] and in [15] (for non-trivial outer 
automorphisms) does not apply in our case. Instead, we have to investigate integrability issues 
for the backgrounds corresponding to the vector and axial gauge symmetries on their own. Since 
these are related by T-duality and the latter preserves integrability we may focus on either the 
deformation based on the vector gauging or on that based on the axial one. We found it more 
conveniently to work with the axial case and in particular the formulation in which the automor-
phism is given by (3.7) and the deformation matrix by (3.5). Furthermore, even though our model 
is equivalent to the biaxial λ-deformed anisotropic SU(2) model of [24] which is integrable, we 
present here the explicit derivation of the Lax pair in the axial formulation having in mind future 
applications.

The equations of motion for the general asymmetrical λ-deformed model (2.7) can be cast in 
terms of the gauge fields satisfying (2.9) as

∂+A− − �−T ∂−(A+) = [�−T A+,A−] ,

�−1∂+(A−) − ∂−A+ = [A+,�−1A−] ,
(3.27)

where we have used the fact that W is an automorphism. Note that they have the same form as 
the corresponding equations of motion in the W = 1 case [24]. Nevertheless, the dependence on 
the particular automorphism is hidden in the on-shell expressions for the gauge fields in (2.9). In 
order to specialize to the coset case we let the matrix � = (λ1G/H , 1H ). Next we also split the 

gauge fields as A± = (
A

(G/H)
± , A(H)

±
)
. Then after projecting to the subgroup and to the coset we 

cast these equations as (two of the projected equations are actually equivalent)

∂−A
(H)
+ − ∂+A

(H)
− +

[
A

(H)
+ ,A

(H)
−

]
+ λ−1

[
A

(G/H)
+ ,A

(G/H)
−

]
= 0 ,

∂−A
(G/H)
+ − λ−1∂+A

(G/H)
− + λ−1

[
A

(H)
+ ,A

(G/H)
−

]
+

[
A

(G/H)
+ ,A

(H)
−

]
+ λ−1

[
A

(G/H)
+ ,A

(G/H)
−

]
= 0 ,

λ−1∂−A
(G/H)
+ − ∂+A

(G/H)
− +

[
A

(H)
+ ,A

(G/H)
−

]
+ λ−1

[
A

(G/H)
+ ,A

(H)
−

]
+ λ−1

[
A

(G/H)
+ ,A

(G/H)
−

]
= 0 ,

(3.28)

where the last terms of the second and third equations are not present in the case of symmetric 
spaces. In the case at hand it seems that there are seven equations in total. However, it turns out 
that from the on-shell constraints for the gauge fields (2.9) one can derive the following relation

2qλA4± + (1 + λ)A3± = 0 , (3.29)

where we have used the basis in (3.3). By means of this relation one may readily verify that the 
first equation in (3.28) is already captured by the projection to t3 of the sum of the second and the 
third equations. Hence, there is a total of six independent equations in terms of six independent 
gauge fields Aα±, α = 1, 2, 3, which determine the classical evolution of the fields {ω, φ1, φ2}.

Next, we try to find the Lax connection representing (3.28) by making the following ansatz 
based on symmetry arguments
11
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L±(z) = a±A4±t4 + b±
(
A1±t1 + A2±t2

) + c±A3±t3, (3.30)

with a±, b± and c± unknown constants. In order to generate conserved charges, at least one 
of the unknown constants should depend on an arbitrary complex parameter [35]. They will be 
determined by enforcing that the Lax flatness condition

∂+L−(z) − ∂−L+(z) − [
L+(z),L−(z)

] = 0 , (3.31)

is solved by (3.28) and the relation (3.29). After substituting the solutions for the derivatives of 
the gauge fields Aα± found from (3.28) into (3.31) we remarkably find only four independent 
equations for the six unknown coefficients, given by

q√
1 + q2

(
c+ + c− − (1 + λ)b+b−

) = 0 ,

1√
1 + q2

(a+ + a− − 2λb+b−) = 0 ,

q√
1 + q2

(
b+ + b− − (1 + λ)c+b−

) + (1 + λ)2(1 − a+)b−
2q

√
1 + q2 λ

= 0 ,

q√
1 + q2

(
b+ + b− − (1 + λ)b+c−

) + (1 + λ)2(1 − a−)b+
2q

√
1 + q2 λ

= 0 ,

(3.32)

and where the overall factors in q have been kept in order to be able to take the extreme limiting 
cases below. We thus clearly have a two-parameter redundancy in the system. In the limiting 
cases, however, this reduces to the ordinary one-parameter redundancy. Indeed, for q → 0 the 
t3-direction decouples because of (3.29) and the first equation of (3.32) is non-existing. Hence 
we have three equations for the four unknowns a±, b± which one can verify is solved by the 
symmetric coset solution of [2]

q → 0 : L±(z) = A4±t4 + z±1λ−1/2(A1±t1 + A2±t2
)
, (3.33)

where z ∈ C is the only arbitrary spectral parameter. Similarly, for the limit q → ∞ the t4-
direction decouples and the second equation of (3.32) is non-existing, so that we have three 
equations for the four unknowns b±, c± which are solved by the group solution [2]

q → ∞ : L±(z) = 2

1 + λ

1

1 ∓ z
Aα±tα , α = 1,2,3 . (3.34)

For general values of the parameter q , on the other hand, we have a two parameter family of 
solutions of (3.32). The solution is conveniently presented by first defining the functions

a(ξ, ζ, ε) ≡ (1 + λ)2ξ(1 − ζ ) + 2q2λ(ξ − ζ )(1 + ξ)

(1 + λ)2(ε − ζ )ξ
,

b(ξ, ζ, ε) ≡
√

(1 + λ)2ξ + q2λ(1 + ξ)2

(1 + q2)λ(1 + λ)2ξ2 ,

c(ξ, ζ, ε) ≡ (1 + λ)2ξ(ε − 1) + 2q2λ(ε − ξ)(1 + ξ)

2q2λ(1 + λ)(ε − ζ )ξ
,

(3.35)

where ξ , ζ and ε are complex parameters which are related by the constraint
12
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ξ(ε − ζ ) + 1 + q2

2
ξ(ε + 1)(ζ − 1)

+ λq2

(1 + λ)2

(
(ξ + 1)2(ε − ζ ) + (1 + q2)(ζ − ξ)(ε + 1)(ξ + 1)

)
= 0 ,

(3.36)

allowing for two independent parameters among them as advertised.7 The various coefficients in 
the Lax pair turn out to be

a± = a(ξ±1, ζ±1, ε±1) , b± = b(ξ±1, ζ±1, ε±1) , c± = c(ξ±1, ζ±1, ε±1) .

(3.37)

One can verify that this solution reduces to the coset case (3.33) in the q → 0 limit (with c±
decoupled) after the redefinition ξ = z2 and to the group solution (3.34) in the q → ∞ limit 

(with a± decoupled) after the redefinition ξ = 1 − z

1 + z
.

We have represented the equations of motion on a non-symmetric space in terms of a flat Lax 
connection which depends on two arbitrary (spectral) parameters. This suggests an excessive 
generation of conserved charges. As far as we are aware, there are no such examples known in the 
literature; at least in the landscape of integrable deformed σ -models. However, the origin of the 
second redundancy becomes clear when we recast the axial model as the anisotropic XXZ SU(2)

λ-deformation explained above. Pursuing in the same way, the Lax pair can be represented, using 
the untwisted basis (3.9), as

L±(z) = α(z±1)(Ã1± t̃1 + Ã2± t̃2) + β(z±1)Ã3± t̃3 + γ (ζ )Ã4± t̃4 , (3.38)

with the equations of motion (3.27) and the constraints (2.9) evaluated for the matrix (3.23)
(enhanced with a fourth entry equal to unity), and with the coefficients given by

α(z) =
√

(1 + λ)2z + q2λ(1 + z)2

(1 + q2)λ(1 + λ)2z2 ,

β(z) = (1 + λ)2z + 2q2λ(1 + z)

(1 + λ)(1 + λ + 2q2λ)z
,

γ (ζ ) = ζ ,

(3.39)

where z, ζ ∈ C remain free. The additional redundancy in ζ can be attributed to the residual 
gauge direction, since we may simply choose the gauge Ã4± = 0. This is in accordance with the 
anisotropic SU(2) formulation of [24], in which there is no residual gauge, and the equations of 
motion only exhibit a single spectral parameter.

3.4. Renormalization group flow

For symmetric G/H spaces the RG-flow of the deformation parameter was found by dif-
ferent methods in [29,7] and the same result holds for non-trivial automorphisms as well [15]. 
For non-symmetric spaces the RG-flow is more involved. The interested reader may consult 
several such cases in subsection 3.1 of [36]. One issue that has not been definitively settled is 

7 Of course the above expression (3.36) can be easily solved for ε. However, the solution is not particularly illuminating 
so that we will not present it explicitly.
13
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whether an integrable model is a consistent truncation and stays integrable under the RG-flow. 
An additional complication here is that the group G = SU(2) × U(1) is non-semisimple and the 
general considerations of [36], and earlier work, can not be applied. Hence, we have to investi-
gate the RG-flow properties of our examples on their own and find the corresponding running 
for the parameters λ and q using the gravitational method and the explicit deformed geometry. 
The canonical equivalence between the axial and vector deformed theories allows one to choose 
either one in order to derive the one-loop RG-flow equations. We choose to work with the vector 
model since in that case the background antisymmetric tensor is zero and the computational task 
is seemingly easier.

As argued, we will calculate the β-functions of our model using the gravitational method. For 
a general σ -model, the one-loop β-functions in the absence of torsion are given by [37–39]

dGμν

d logμ2 = Rμν + ∇μξν + ∇νξμ , (3.40)

where Rμν is the target space Ricci tensor, ∇ is the usual Christoffel connection and ξμ cor-
responds to possible reparametrizations along the flow needed for consistency. In our case we 
use the vector geometry (3.11) and (3.12) and we make the following ansatz ξμ(ω, φ, x) =
∇μ
 + aμ(ω, φ)x. By exploiting the integrability conditions of the system we find that we must 
take

ξx = − 2λx

k(1 − λ2)
, ξφ1 = 2λ sin 2φ1

k(1 − λ2)
, ξω = −1 + λ2 − 2λ cos 2φ1

k(1 − λ2)
cotω , (3.41)

such that the renormalisation of parameters does not introduce additional couplings at one-loop. 
Note that after raising the index on ξμ with the vector metric, the components of the diffeomor-
phism have no dependence of the parameter q . Then, it turns out that the β-function equations 
are given by

dλ

dt
= − λ

k(1 + q2)
− 2q2λ2

k(1 + q2)(1 + λ)2 ,

dq

dt
= − qλ

k(1 − λ2)
,

(3.42)

where we defined the RG time t = logμ2. The level k does not run which is consistent with the 
fact that it is an integer. Let us point out that this result is to leading order in 1/k (one-loop) but 
at finite values of λ and q . As a consistency check, the above result is invariant under the discrete 
symmetries (2.12) and (3.14) and we obtain the right behaviours in the limiting cases. For λ → 0
and q generic there is a line of fixed points in the UV corresponding to the gauged WZW models 
on (SU(2) × U(1))/U(1)q . For q → ∞ the running of the deformation parameter λ coincides 
with the result for the λ-deformed SU(2) group manifold. For q → 0, the running coincides with 
the results for the λ-deformed SU(2)/U(1) symmetric space [29,7]. In general, for small λ the 
operator driving the deformation away from the conformal point is the parafermion bilinear of 
the theory. For symmetric spaces the anomalous dimension of this operator suffices to determine 
completely the flow of the parameter λ, i.e. the linear in λ term in (3.42). The additional term 
in that equation is presumably due to the fact that the space is non-symmetric. Interestingly, the 
β-function for λ is in a sense a linear combination of the group and coset cases, weighted with 
q , and thus the running of λ at one-loop receives both a semi-classical (from the coset action) 
and truly quantum (from the group) contribution. This is similar to examples provided in [36]. In 
addition, as expected from the equivalence to the biaxial SU(2) λ-deformed model demonstrated 
14
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above, we have checked the equivalence of the corresponding β-functions. In particular, eq. (6.2) 
of [30] with λ1 = λ2 = λ and λ3 as in (3.23) gives rise to the system (3.42) above.

In the remainder of this section we discuss the RG phase portrait of the system (3.42) pre-
sented in Fig. 2 in which the arrows point towards the IR. The system has the RG invariant

� = 1 + 2(1 + 2q2)λ + λ2

q4(1 − λ)2 , (3.43)

which labels the RG trajectories and moreover is invariant under the discrete symmetries (2.12)
and (3.14). We relax the requirement that λ ∈ [0, 1], which is the physical region by construction, 
by extending this interval to include both negative and arbitrarily large values. In the UV, we 
reach the line of fixed points λ = 0 for constant parameter q corresponding to the gauged WZW 
CFTs. The line with λ = 1 is the strong coupling region where the non-Abelian T-dual limit was 
taken. This zoom-in limit where the level k tends to infinity, i.e. as in (3.15) and in (3.24), is still 
valid when taken in the β-function equations (3.42) and gives

dκ2

dt
= 2 + q2

2(1 + q2)
,

dq

dt
= − q

2κ2 . (3.44)

The RG-flow invariant of this system is given by

θ = 1 + q2

q4κ4 , (3.45)

which follows by taking the zoom-in limit in the RG-flow invariant (3.43). More generally, for 
λ > 0 the conserved quantity � is always positive. For negative λ it is still positive in the blue 
shaded region and negative below it. For � < 0 we see cyclic flows starting and ending at the 
point p2 with q = 0 and λ → −1. Although this resembles a fixed point, for both the vector and 
the axial cases the σ -model description breaks down as the determinant of the metrics vanishes 
identically. The occurrence of cyclic flows is consistent with [40].

4. Conclusions

In this work we provide an integrable deformation of the Euclidean three-dimensional black 
string using asymmetric λ-deformations on SU(2) × U(1)/U(1)q . We show that these models 
continue to be canonically related by an axial-vector T-duality despite the fact that the deforma-
tions are not marginal. Furthermore, we show that they have an equivalent description in terms of 
an anisotropic SU(2) deformation, a feature that one would not anticipate without the knowledge 
of the residual gauge symmetry. In the axial gauge formulation–which is the one that is easily 
transformed to a deformation of the Lorentzian black string–we proof classical integrability and 
one-loop renormalisability although in this case the space is non-symmetric and the Lie group 
is non-semisimple. This adds another example to the apparent relation between integrability and 
renormalisability for two-dimensional sigma models, of which an understanding is emerging 
from e.g. [41,42] and references therein, although here based on a non-symmetric space.

A peculiar feature of the gauge formulation is that the Lax pair admits a second spectral 
parameter. This clearly asks for a more thorough integrability analysis, in particular in terms 
of a twist function. It would be interesting to see whether this second spectral parameter could 
play a useful rôle in deriving the underlying symmetry properties of the deformed black string 
and possible extensions to deformed black brane backgrounds. In that respect for the anisotropic 
XXZ formulation, which has no residual gauge symmetry and as pointed out no second spectral 
15
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Fig. 2. RG evolution of {q, λ} as given in (3.42). We have redefined the RG time t to absorb the level k which at one-loop 
effects only the rate of the flow. The black line for λ = 0 is the line of UV fixed points of gauged WZW models for 
generic q . The black dot p1 represents the well-known SU(2)/U(1) CFT, while p2 is the point where the geometrical 
description breaks down. The red line for λ = 1 defines a strong coupling regime corresponding to the non-Abelian 
T-dual of the σ -model (for the vector case) or its Abelian T-dual (for the axial case). The RG trajectories labeled as 
pink, orange, blue and green have an RG invariant � = ∞, 6359/4, 7 and −26/4, respectively. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

parameter, the quantum group symmetries and the twist function were derived and studied in 
[40].

A compelling future direction is to go to Lorentzian signature and study the blackness of the 
deformed black string. In particular it would be interesting to analyse the gravitational implica-
tions, such as the near-horizon and asymptotic geometry, of the deformation. At the undeformed 
CFT point (λ = 0) the axial background (3.22) can be analytically continued to Lorentzian signa-
ture by transforming the parameters as k → −k and q2 → −(1 +ρ2) and the coordinate variables 
as ω → iR, φ1 → iX0/

√
1 + ρ2, and φ2 → iX1/ρ. In this case one finds the semi-classical 

Horne-Horowitz black string solution in terms of the variables of [43]. The original background 
[23] is obtained after the transformation [43] cosh2 R = r+−r

r+−r− , X0 → t/
√

k and X1 → x/
√

k, 
and defining

r+ = M ≡
√

2

k
(1 + ρ2)ea, r− = Q2

M
≡

√
2

k
ρ2ea, ρ2 = r−

r+ − r−
, (4.1)

after which one finally gets the Horne-Horowitz black string metric

ds2 = −
(

1 − r+
r

)
dt2 +

(
1 − r−

r

)
dx2 + k

4r2

(
1 − r+

r

)−1 (
1 − r−

r

)−1
dr2 . (4.2)

Note that r is extended to a global coordinate taking all positive values. At r = 0 there is the 
line of curvature singularities and r = r± are the event and inner horizons, respectively. The 
constant a represents the constant part of the dilaton, whereas M the mass and Q the charge 
of the black string. The fact that this geometry has two isometries in t and x implies that this 
metric represents a charged black string which is straight and static. Interestingly, performing the 
same set of analytic continuations and transformations on the deformed background results in an 
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RG phase portrait where the undeformed gauged WZWs are still located in the UV. A further 
important project is to embed the deformed background in type-II supergravity using a suitable 
ansatz for the RR fields. This is necessary to derive the physical parameters such as the deformed 
charge and mass of the black string using the low energy supergravity action.

Finally, it would be interesting to study the usage of non-trivial outer automorphisms in other 
coset spaces admitted by the Dynkin diagram of G. For instance, interesting cases include the 
CFT and the static configuration of NS5-branes on a circle which arise, respectively, from the 
asymmetric [44] or null [45] gauging of H = U(1) × U(1) in G = SL(2, R) × SU(2). A more 
direct study is to compare the effect of the outer automorphism on the β-functions of the de-
formed non-symmetric Einstein space SU(3)/U(1)2 found in [36] (this coset has importance in 
ten-dimensional string compactifications).
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