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We study the decays of Λb → Λcð→ BnfÞl−ν̄ with l ¼ e, μ, τ, where Bn and f are the daughter baryon
and the rest of the particles in Λc cascade decays, respectively. In particular, we examine the full angular
distributions with polarized Λb and lepton mass effects, in which the time-reversal asymmetries are
identified. We concentrate on the decay modes of Λb → Λcð→ pK−πþÞl−ν̄ to demonstrate their
experimental feasibility. We show that the observables associated with the time-reversal asymmetries
are useful to search for new physics as they vanish in the standard model. We find that they are sensitive to
the right-handed current from new physics, and possible to be observed at LHCb.
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I. INTRODUCTIONS

The transitions of b → cl−ν̄ with l ¼ e, μ, τ have raised
great interest in both the theoretical and experimental
aspects [1,2]. In particular, the discrepancy of RDð�Þ ¼
ΓðB̄ → Dð�Þτ−ν̄Þ=ΓðB̄ → Dð�Þl−ν̄Þ with l ¼ e, μ has shown
that the possible contributions from new physics (NP) can
be as large as Oð10%Þ. Explicitly, we have that Rexp

D;D� ¼
ð0.340� 0.030; 0.295� 0.014Þ from the experiments
[2–4] and RSM

D;D� ¼ ð0.304� 0.003; 0.259� 0.006Þ from
the lattice QCD calculation [5], implying that NP can
play a significant role. For a review, one is referred
to Ref. [6].
On the other hand, LHCb has recently announced the

baryonic version of the ratio to be RΛc
¼ ΓðΛb →

Λcτ
−ν̄Þ=ΓðΛb → Λcl−ν̄Þ ¼ 0.242� 0.026� 0.040� 0.059

[7], where the first and second uncertainties are statistical
and systematic, respectively, and the third one comes from
the normalization channel of Λb → Λcπ

þ2π−. In contrast
to RDð�Þ , RΛc

is found to be larger in theory, given as RΛc
¼

0.324� 0.004 based on lattice QCD [8]. Such opposite
behavior indicates that there would be some theoretical
errors, which have not been properly considered. Thus,

as a complementarity, it is useful to examine the angular
distributions [9–11]. In most of the works in the literature,
Λb is assumed to be unpolarized. However, it is important
to analyze the polarized cases, since the polarization
fraction Pb is recently found to be around 3% in proton-
proton collisions at center-of-mass energies of 13 TeV [12].
We emphasize that with Pb ≠ 0, the time-reversal (TR)
asymmetries can be observed without the cascade decays of
Λc as we will show in this work. Moreover, the value of 3%
is twice larger than BðΛc → Λπþ; pK0

SÞ, and hence it is
useful to study the cases with Pb ≠ 0 for probing the TR
asymmetries.
The angular distribution of Λb → Λcð→ pK0

SÞμ−ν̄ with
polarized Λb was first given in Ref. [13]. In this work,
we provide the full angular distributions of Λb →
Λcð→ BnfÞl−ν̄, where Bn is the daughter baryon and f
stands for the rest of the daughter particles. In contrast to
those in the literature, we extend the study to the three-body
Λc decays to include Λc → pK−πþ and Λc → Λlþν. In
particular, Λc → pK−πþ has a great advantage for the
experimental detection, since all the particles in the final
states are charged.
In the standard model (SM), the TR asymmetries in

Λb → Λcð→ BnfÞl−ν̄ are zero due to the absence of the
weak phase in the Λb → Λc transition. Clearly, a non-
vanishing TR asymmetry indicates the existence of NP with
a new CP violating phase beyond the SM.
The layout of this work is given as follows. In Sec. II, we

present the angular distributions of the SM parametrized by
the helicity amplitudes. In Sec. III, we discuss the effects
from NP, and show that they can be absorbed by redefining
the helicity amplitudes. In Sec. IV, we estimate the TR
asymmetries and their feasibility to be measured at LHCb.
At last, we conclude the study in Sec. V.
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II. DECAY OBSERVABLES

In the SM, the amplitudes ofΛb → Λcl−ν̄ are dominated
by the weak interaction at tree level, given as

GFffiffiffi
2

p Vcbgμνūlγμð1 − γ5ÞvhΛcjc̄γνð1 − γ5ÞbjΛbi; ð1Þ

where GF is the Fermi constant, Vcb corresponds to the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element,
and ul and v are the Dirac spinors of charged leptons
and antineutrinos, respectively. In this work, we do not
specify the flavors of (anti)neutrinos as they cannot be
distinguished in the experiments.
We further decompose the amplitudes by expanding the

Minkowski metric,

gμν ¼ εμt ðqÞε�νt ðqÞ −
X
λ¼0;�

εμλðqÞε�νλ ðqÞ; ð2Þ

where q ¼ ðq0; q⃗Þ and ε are the four-momentum and
polarization vector of the off-shell W boson, respectively.
The subscript in ε denotes the helicity, where t indicates
timelike while the others spacelike. In particular, we
have that

εμ� ¼ 1ffiffiffi
2

p ð0;�1; i; 0ÞT; εμ0 ¼ ð0; 0; 0;−1ÞT;

εμt ¼ ð−1; 0; 0; 0ÞT; ð3Þ

in the center of mass frame of l−ν̄, which would be referred
to as the q⃗ frame in the following. Notice that the relative
phases between ε are crucial as they interfere in the decay
distributions. In this work, they are fixed by the lowering
operators, given by

ðJx − iJyÞε1;0 ¼
ffiffiffi
2

p
ε0;−1; ð4Þ

where Jx;y are the SOð3Þ rotational generators. On the other
hand, in the center of the mass frame of Λb with q⃗ ¼ −jq⃗jẑ,
which would be referred to as the Λb frame, we have

εμ� ¼ 1ffiffiffi
2

p ð0;∓1; i; 0ÞT; εμ0 ¼
1ffiffiffiffiffi
q2

p ð−jq⃗j; 0; 0; q0ÞT;

εμt ¼
−1ffiffiffiffiffi
q2

p qμ; ð5Þ

which are useful for the latter purpose.
Plugging Eq. (2) in Eq. (1), we have

GFffiffiffi
2

p Vcb

�
LtBt −

X
λ¼0;�

LλBλ

�
; ð6Þ

and

BλW ¼ ε�μλW hΛcjc̄γμð1 − γ5ÞbjΛbi;
LλW ¼ εμλW ūlγμð1 − γ5Þv; ð7Þ

with λW ¼ t; 0 and�. Note that BλW and LλW depend on the
polarizations of the baryons and leptons, respectively. It is
clear that in Eqs. (6) and (7), the amplitudes are decom-
posed as the products of Lorentz scalars, describing
Λb → ΛcW−� (BλW ) and W−� → l−ν̄ (LλW ). A great ad-
vantage is that BλW and LλW can be computed independently
in the Λb and q⃗ frames, respectively, reducing the three-
body problems to the products of two-body ones.
To proceed further, we have to consider the polarizations

of the baryons and leptons. To this end, it is convenient to
parametrize BλW as

BλW ¼ ε�μλW ūc

��
f1ðq2Þγμ − if2ðq2Þ

σμν
Mb

qν þ f3ðq2Þ
qμ
Mb

�

−
�
g1ðq2Þγμ − ig2ðq2Þ

σμν
Mb

qν þ g3ðq2Þ
qμ
Mb

�
γ5

�
ub;

ð8Þ

where f1;2;3 and g1;2;3 represent the form factors, Mb is the
mass of Λb, and σμν ¼ iðγμγν − γνγμÞ=2. The helicity
amplitudes are calculated by

Hλc;λW ¼ BλW ðλb ¼ λc − λW; λc; p⃗c ¼ −q⃗ ¼ jp⃗cjẑÞ; ð9Þ

where λbðcÞ corresponds to the angular momentum (hel-
icity) of ΛbðcÞ, p⃗c is the three-momentum of Λc in the Λb

frame, and the conventions of the Dirac spinors are given in
Appendix A. Plugging Eq. (5) in Eq. (8), we obtain
explicitly that

H�1
2
�1 ¼

ffiffiffiffiffiffiffiffiffi
2Q−

p �
f1þ

Mþ
Mb

f2

�
� ffiffiffiffiffiffiffiffiffi

2Qþ
p �

−g1þ
M−

Mb
g2

�
;

H�1
2
0 ¼−

ffiffiffiffiffiffiffi
Q−

q2

s �
Mþf1þ

q2

Mb
f2

�

�
ffiffiffiffiffiffiffi
Qþ
q2

s �
M−g1−

q2

Mb
g2

�
;

H�1
2
t ¼−

ffiffiffiffiffiffiffi
Qþ
q2

s �
M−f1þ

q2

Mb
f3

�

�
ffiffiffiffiffiffiffi
Q−

q2

s �
Mþg1−

q2

Mb
g3

�
; ð10Þ

where M� ¼ Mb �Mc, Mc is the mass of Λc, and
Q� ¼ ðM�Þ2 − q2. Note that both the form factors and
amplitudes depend on q2.
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On the other hand, the antineutrinos have positive
helicities, and LλW depends only on λl the helicity of
l−. From the definitions of h�, given by

hþ ¼ L0

�
λe ¼

1

2
; p⃗l ¼ −p⃗ν ¼ jp⃗ejẑ

�
;

h− ¼ L−1

�
λe ¼ −

1

2
; p⃗l ¼ −p⃗ν ¼ jp⃗ejẑ

�
; ð11Þ

we explicitly have

h−¼−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðq2−m2

lÞ
q

; hþ¼
ffiffiffiffiffi
δl

p
h−; δl¼

m2
l

2q2
; ð12Þ

with Eqs. (3) and (7) with p⃗lðνÞ the three-momentum of
l−ðν̄Þ in the q⃗ frame.

The angular distributions of Λb → Λcð→ BnfÞl−ν̄ can
be obtained by piling up the Wigner-d matrices of dJ,
read as

∂
6ΓðΛb → Λcð→ BnfÞl−ν̄ÞÞ

∂q2∂ cos θb∂ cos θc∂ cos θl∂ϕc∂ϕl
¼ BðΛc → BnfÞ

ζðq2Þ
32π2

X
λl;λ;λb

ρλb;λb jAc
λhλl j2

×
���X

λc;λW
ð−1ÞJWHλc;λWd

1
2ðθbÞλbλc−λWd

1
2ðθcÞλcλdJW ðθlÞλW λl−1

2
eiðλcϕcþλlϕlÞ

���2;
ζðq2Þ ¼ G2

F

24π3
jVcbj2

ðq2 −M2
lÞ2jp⃗cj

8M2
bq

2
; ð13Þ

where BðΛc → BnfÞ are the branching fractions of
Λc → Bnf, ρ�;� ¼ ð1� PbÞ=2, λðb;c;lÞ ¼ �1=2, jp⃗cj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
QþQ−

p
=2MBb

, the factor of ð−1ÞJW comes from
Eq. (6) along with JW ¼ 0ð1Þ for λW ¼ tð�; 0Þ, and Ac

λ
are associated with the up-down asymmetries of
Λc → Bnf. Here, the definitions of the angles can be found
in Fig. 1, where θb;c and θl are defined in the center of mass
frames of Λb;c and l−ν̄, respectively, while ϕc;l are the
azimuthal angles between the decay planes.
The derivation of Eq. (13) is sketched in Appendix B.

The index λ corresponds to λBn
− λf with λBn

and λf the
helicities of Bn and f in Λc → Bnf, respectively. If f
contains more than two particles, we simply group them

together, forming an angular momentum eigenstate in
the center-of-mass frame of f, acquiring an effective
helicity.
In the case of Λc → pK−πþðΛlþνÞ, Ac

λ depends on the
three-momentum of pðΛÞ and angles in K−πþ ðlþνÞ as
well. However, we integrate out the dependence for
simplicity in this work. In addition, the cascade decays
of τ− can be included by continually piling up the Wiger-d
matrices inside Eq. (13). The interested readers are referred
to Ref. [11]. Note that the overall q2 dependence in Eq. (13)
can be cast in a more symmetric form by recognizing
jp⃗lj ¼ ðq2 −m2

lÞ=
ffiffiffiffiffiffiffi
4q2

p
in the q⃗ frame.

We expand the angular distributions as

∂
6ΓðΛb → Λcð→ BnfÞl−ν̄Þ

∂q2∂Ω⃗
¼ BðΛc → BnfÞ

ζðq2Þ
32π2

X26
i¼1

ReðX iða�; b�; t�ÞDiðΩ⃗ÞÞPiðα; PbÞ; ð14Þ

where α are the up-down asymmetries of Λc → Bnf, Ω⃗ ¼ ðθb;c;l;ϕc;lÞ, and explicit forms of X i, Pi andDi can be found in
Table I, where we have taken the abbreviations,

a� ¼ H�1
2
;0; b� ¼ H∓1

2
;∓1; t� ¼ H�1

2
;t; jξ2j ¼ jξ2þj þ jξ2−j; jξ2Δj ¼ jξ2þj − jξ2−j; ð15Þ

with ξ ¼ a, b, t and P2 ¼ ð3 cos2 θl − 1Þ=2. The real-valued function in Eq. (14) guarantees that the partial decay widths
are real. For an illustration, we have

FIG. 1. Definitions of the angles, where Bn represents the
daughter baryon and f the rest of the decay particles.
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ReðX7D7Þ ¼
3ffiffiffi
2

p ½Reð2δlðt−b�þ − b−t�þÞ þ ða−b�þ þ b−a�þÞÞ cosϕl sin θb sin θl−

× Imð2δlðt−b�þ − b−t�þÞ þ ða−b�þ þ b−a�þÞÞ sinϕl sin θb sin θl�; ð16Þ

ReðX12D12Þ ¼
3ffiffiffi
2

p ½Reð2δlðb−t�− − tþb�þÞ − ðaþb�þ þ b−a�−ÞÞ cosðϕl þ ϕcÞ sin θc cos θc
− Imð2δlðb−t�− − tþb�þÞ − ðaþb�þ þ b−a�−ÞÞ sinðϕl þ ϕcÞ sin θc cos θc�; ð17Þ

by the identity of ReðX iDiÞ ¼ ReðX iÞReðDiÞ−
ImðX iÞImðDiÞ. For those Di, which are independent of
ϕc;l, we simply have ReðX iDiÞ ¼ X iDi. Notice that ξ� are
real in the SM, and any observations of nonzero ImðX iÞ
would be a smoking gun of NP. The angular distributions of
Λb → Λcð→ Bn fÞlþν can be obtained directly by taking

θl → π − θl and α → −α. In practice, δl can be taken
as zero as an excellent approximation in the SM, with
which t� can be neglected as well since they are always
followed by δl.
It is interesting to point out that, under the parity trans-

formation, the helicity amplitudes behave differently as

TABLE I. The angular distributions of Λb → Λcð→ BnfÞl−ν̄ with P2 ¼ ð3 cos2 θl − 1Þ=2 and the parameters of
a, b and t defined in Eq. (15).

i X i Pi Di

1 ðδl þ 1Þðjaj2 þ jbj2Þ þ 3δljtj2 1 1

2 ð2δl − 1Þðjaj2 − 1
2
jbj2Þ 1 P2

3 −6δlðReðaþt�þÞ þ Reða−t�−ÞÞ þ 3
2
jbΔj2 1 cos θl

4 ðδl þ 1ÞðjaΔj2 þ jbΔj2Þ þ 3δljtΔj2 Pb cos θb
5 ð2δl − 1ÞðjaΔj2 − 1

2
jbΔj2Þ Pb cos θbP2

6 −6δl½Reðaþt�þÞ − Reða−t�−Þ� − 3
2
jbΔj2 Pb cos θb cos θl

7 3ffiffi
2

p ½2δlðt−b�þ − b−t�þÞ þ ða−b�þ þ b−a�þÞ� Pb eiϕl sin θb sin θl

8 3ffiffi
2

p ð2δl − 1Þðb−a�þ − a−b�þÞ Pb eiϕl sin θb sin θl cos θl
9 ðδl þ 1ÞðjaΔj2 − jbΔj2Þ þ 3δljtΔj2 α cos θc
10 ð2δl − 1ÞðjaΔj2 þ 1

2
jbΔj2Þ α cos θcP2

11 6δlðReða−t�−Þ − Reðaþt�þÞÞ − 3
2
jbj2 α cos θc cos θl

12 3ffiffi
2

p ½2δlðb−t�− − tþb�þÞ − ðaþb�þ þ b−a�−Þ� α eiΦ sin θc cos θc

13 3ffiffi
2

p ½2δlðaþb�þ − b−a�−Þ þ ðb−a�− − aþb�þÞ� α eiΦ sin θc cos θc cos θl
14 ð2δl þ 1Þaþa�− Pbα sin θb sin θcP2

15 2δlðjaj2 þ jbj2Þ − ðjaj2 þ 1=2jbj2Þ Pbα cos θb cos θcP2

16 δlðjaj2 − jbj2 þ 3jtj2Þ þ ðjaj2 − jbj2Þ Pbα cos θb cos θc
17 −6δlðReðaþt�þÞ þ Reða−t�−ÞÞ − 3

2
jbΔj2 Pbα cos θb cos θc cos θl

18 ð2 − 4δlÞa−a�þ Pbα e−iϕc sin θb sin θcP2

19 ð1 − 2δlÞb−b�þ Pbα eiðϕcþ2ϕlÞ sin θb sin θcP2

20 −2δlðaþa�− þ 3tþt�−Þ − 2aþa�− Pbα eiϕc sin θb sin θc
21 ð2δl − 1Þb−b�þ Pbα eiðϕcþ2ϕlÞ sin θb sin θc
22 6δlðaþt�− þ tþa�−Þ Pbα eiϕc sin θb sin θc cos θl
23 3ffiffi

2
p ½ðb−a�þ − a−b�þÞ − 2δlðb−t�þ þ t−b�þÞ� Pbα eiϕl sin θb sin θl cos θc

24 3ffiffi
2

p ½ðb−a�− − aþb�þÞ − 2δlðb−t�− þ tþb�þÞ� Pbα eiΦ sin θc sin θl cos θb

25 3ffiffi
2

p ½2δlða−b�þ þ b−a�þÞ − ða−b�þ þ b−a�þÞ� Pbα eiϕl sin θb sin θl cos θc cos θl

26 3ffiffi
2

p ½2δlðb−a�− − aþb�þÞ − ðaþb�þ þ b−a�−Þ� Pbα eiΦ sin θc sin θl cos θb cos θl
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a� → a∓; b� → b∓; t� → −t∓; ð18Þ

so that ReðX7;12Þ and ImðX7;12Þ are parity even and odd,
respectively. If Λb is unpolarized (Pb ¼ 0), it is clear
that ϕc and ϕl cannot be measured separately. In this case,
it is convenient to introduce a new set of azimuthal
coordinates as

Φ ¼ ϕl þ ϕc; 0 < Φ < 2π;

ΦΔ ¼ 1

2
ðϕl − ϕcÞ; − π < ΦΔ < π: ð19Þ

To obtain the unpolarized angular distributions from the
polarized ones, one can integrate over ΦΔ and cos θb, in
whichD4−8;14−26 are zero. As a cross-check, we find that the
results are identical to those given in Ref. [10].
With Table I, one can construct several observables in a

model independent way. The simplest ones would be the
partial and total decay widths, read as

dΓðΛb → Λcl−ν̄Þ
dq2

¼ ζðq2ÞX1; ð20Þ

and

Γ ¼ ΓðΛb → Λcl−ν̄Þ ¼
Z ðMb−McÞ2

m2
l

ζðq2ÞX1dq2; ð21Þ

respectively. It shall be clear that Γ is independent of
Λc → Bnf. Likewise, there are several observables that
can be defined independent of Λc → Bnf, and it is
reasonable to measure them separately as they do not
suffer from the smallness of BðΛc → BnfÞ. In fact,
the angular distributions without cascade decays can
be obtained straightforwardly by integrating over
ðcos θc;ϕcÞ, resulting in

∂
4ΓðΛb → Λcl−ν̄Þ

∂q2∂ cos θb cos θl∂ϕl

¼ ζðq2Þ
8π

X8
i¼1

ReðX iða�; b�; t�ÞDiðΩ⃗ÞÞPið0; PbÞ; ð22Þ

which is clearly independent of α. As a cross-check, we
find that Eq. (22) reduces to the ones given by Ref. [14]
with an appropriate substitution.
There are some quantities that deserve a closer look.

The forward-backward asymmetries for W−� → l−ν̄ and
Λc → Bnf are defined as

AFB ¼ 2

�Z
1

0

−
Z

0

−1

�
Γcos θld cos θl

¼ 1

Γ

Z ðMb−McÞ2

m2
l

ζðq2ÞX3dq2;

APL ¼ 2

α

�Z
1

0

−
Z

0

−1

�
Γcos θcd cos θc

¼ 1

Γ

Z ðMb−McÞ2

m2
l

ζðq2ÞX9dq2; ð23Þ

where we have adopted the shorthand notation,

ΓΩ⃗ ¼ 1

BðΛc → BnfÞ
1

Γ
∂ΓðΛb → Λcð→ BnfÞl−ν̄Þ

∂Ω⃗
: ð24Þ

The up-down asymmetries AUD, on the other hand, are
given by

AUD ¼ 2

Pb

�Z
1

0

−
Z

0

−1

�
Γcos θbd cos θb

¼ 1

Γ

Z ðMb−McÞ2

m2
l

ζðq2ÞX4dq2; ð25Þ

which require Pb ≠ 0 for an experimental measurement.
Here, it is an appropriate place to revisit Ac

λ in Eq. (13)
explicitly. We have

jAc
�1

2

j2 ¼ 1

2
ð1� αÞ; ð26Þ

where α are the up-down asymmetries of Λc → Bnf, with
the experimental values given by [3]

αðΛc →Λπþ;Σ0πþ;Σþπ0;pK0
sÞ

¼ ð−0.84�0.09;−0.55�0.11;−0.73�0.18;0.2�0.5Þ:
ð27Þ

Similarly, for the three-body Λc decays, we have α ¼ Ac
UD,

where Ac
UD are defined by substituting Λc → Bnf for

Λb → Λcl−ν̄ in Eq. (25). In particular, α are found to be

αðΛc → pK−πþ;ΛlþνÞ ¼ ð0.89� 0.10;−0.32Þ; ð28Þ

from the SUð3ÞF analysis [15] and light-front quark model
[16], respectively.
The azimuthal angles are closely related to the triple

product asymmetries, which flip signs under TR trans-
formation [17]. To probe them, we define
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T l ¼ 1

Pb

�Z
π

0

−
Z

π

2π

�
Γϕl

dϕl ¼ −
π2

8Γ

Z ðMb−McÞ2

m2
l

ζðq2ÞImðX 7Þdq2;

T c ¼
1

α

��Z
π

0

−
Z

π

2π

�
dΦ

���Z
1

0

−
Z

0

−1

�
d cos θc

�
Γϕl;cos θc

¼ −
2

3πΓ

Z ðMb−McÞ2

m2
l

ζðq2ÞImðX12Þdq2; ð29Þ

which are proportional to the complex phases of ξ�, and
vanish without NP. Comparing to the direct CP asymme-
tries, TR asymmetries do not require strong phases, which
are great advantages to probe CP violation as strong phases
are absent in the semileptonic decays. Note that one can
also construct other TR asymmetries from X8;13;18–26.

III. CONTRIBUTIONS FROM POSSIBLE
NEW PHYSICS

Let us consider the dimension-six effective Hamiltonian
from NP with left-handed neutrinos, read as

HN
eff ¼

GFffiffiffi
2

p Vcb½c̄ðCS þ CPγ5ÞbðūlPLvÞ

þ c̄γμðCLPL þ CRPRÞbðūlγμPLvÞ
þ CTðūlσμνPLvÞc̄σμνb�; ð30Þ

where PR;L ¼ ð1� γ5Þ, CS;P;R;L;T are the Wilson coeffi-
cients, which are complex and depend on the lepton flavors
in general, and N in the superscript indicates that NP is
considered. The effects of CS;P;R;L can be absorbed by
redefining the amplitudes as

aN� ¼ ð1þCLÞa� þCRa∓; bN� ¼ ð1þCLÞb� þCRb∓;

tN� ¼ ð1þCLÞt� þCRt∓−
ffiffiffiffiffiffiffiffiffiffiffiffi
Qþq2

p
ml

CSfs�
ffiffiffiffiffiffiffiffiffiffiffi
Q−q2

p
ml

CPgp;

ð31Þ

where fs and gp are defined by

hΛcjc̄ð1þ γ5ÞbjΛbi ¼ ūcðfs þ gpγ5Þub: ð32Þ

The derivations can be found in Appendix B. Note that in
Eq. (31), ξ� are calculated within the SM given in Eq. (10).
The angular distributions can be easily obtained by sub-
stituting ξN� for ξ� in Table I. In the case of CR;S;P ¼ 0, the
effect of CL can be absorbed by redefining Vcb as
Vcbð1þ CLÞ, leaving the angular distributions unaltered.
Therefore, in the following, we would simply take CL ¼ 0.
Let us first consider the case that CR ≠ 0 with CS;P ¼ 0.

For the total decay widths, CR would be polluted by the
uncertainties of the form factors. However, we can utilize
that ξ� are real, whereas CR can be complex in general.
Plugging Eq. (31) in Eq. (16), we arrive at

ImðXN
7 Þ ¼ 3

ffiffiffi
2

p
ImðCRÞðaþbþ − a−b−Þ;

ImðXN
12Þ ¼ 3

ffiffiffi
2

p
ImðCRÞðaþb− − a−bþÞ; ð33Þ

where we have taken ξ� as real, calculated by Eq. (10).
On the other hand, the effects of CS;P are largely

enhanced by the smallness of the lepton quark masses
when q2=m2

l ≫ 1. Therefore, measuring t� in high q2

regions would be useful to constrain the values of CS;P. To
diminish the uncertainties from the form factors, one can
examine the complex phases, given by

ImðXN
7 Þ ¼

3ffiffiffi
2

p ml

"
−ImðCSÞ

ffiffiffiffiffiffiffi
Qþ
q2

s
fsðbþ þ b−Þ þ ImðCPÞ

ffiffiffiffiffiffiffi
Q−

q2

s
gpðb− − bþÞ

#
;

ImðXN
12Þ ¼

3ffiffiffi
2

p ml

"
ImðCSÞ

ffiffiffiffiffiffiffi
Qþ
q2

s
fsðbþ þ b−Þ þ ImðCPÞ

ffiffiffiffiffiffiffi
Q−

q2

s
gpðb− − bþÞ

#
; ð34Þ

where we have taken CR ¼ 0. By collecting Eqs. (33) and (34), the net effects of NP on T l;c are summarized as follows:

T l¼−
3π2

8
ffiffiffi
2

p ðImðCRÞYR− ImðCSÞYSþ ImðCPÞYPÞ

T c¼−
ffiffiffi
2

p

π
ðImðCRÞY0

Rþ ImðCSÞYSþ ImðCPÞYPÞ; ð35Þ
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where

Yð0Þ
R ¼ 1

Γ

Z ðMb−McÞ2

m2
l

2ζðaþbþð−Þ − a−b−ðþÞÞdq2;

YS ¼
1

Γ

Z ðMb−McÞ2

m2
l

ζml

ffiffiffiffiffiffiffi
Qþ
q2

s
fsðbþ þ b−Þdq2;

YP ¼ 1

Γ

Z ðMb−McÞ2

m2
l

ζml

ffiffiffiffiffiffiffi
Qþ
q2

s
gpðb− − bþÞdq2: ð36Þ

Notice that Γ also depends on CR;S;P. However, in this work, we take CR;S;P as zero in Γ as a first order approximation, and

therefore Yð0Þ
R;S;P can be computed once the form factors are given.

To examine TR asymmetries in the experiments, we define

ΔNl ≡ Nðπ > ϕl > 0Þ − Nð2π > ϕl > πÞ ¼ ϵNΛb
T lBðΛb → Λþ

c l−νÞPb;

ΔNf ≡ Nðπ > ϕc > 0; cos θc > 0Þ þ Nð2π > ϕc > π; cos θc < 0Þ
− Nðπ > ϕc > 0; cos θc < 0Þ − Nð2π > ϕc > π; cos θc > 0Þ

¼ ϵNΛb
T cBðΛb → Λþ

c l−νÞBðΛc → BnfÞαðΛc → BnfÞ; ð37Þ

which hold at N → ∞ with N the number of the observed events, where NΛb
is the numbers of Λb in experiments, and ϵ is

the efficiency for the experimental reconstruction. To reduce the statistical uncertainties in ΔNf, we can sum over the decay
modes of Λþ

c , given as

ΔNc ¼
X
f

jNfj ¼ ϵNΛb
T cBðΛb → Λþ

c l−νÞ
X
Bnf

jBðΛc → BnfÞαðΛc → BnfÞj: ð38Þ

As ΔNl;c are proportional to T l;c, a nonzero value of ΔNl or ΔNc would be a smoking gun of NP.

The full angular distributions including the tensor
operator are given in Appendix C. For simplicity, we take
CT ¼ 0 in the numerical analysis, as they cannot be
reduced to the form of Eq. (6), which breaks the angular
analysis. In addition, the tensor operator is closely related
to the scalar ones by the Fierz transformation in the
leptoquark effective field theory [18].

IV. NUMERICAL RESULTS

As mentioned in Sec. III, nonzero signals of T l;c can be
clear evidence of CP violation from NP with tN� largely
enhanced in high q2 regions by CS;P. In Eq. (35),
ImðCR;S;PÞ are in general free parameters of NP, whereas

Yð0Þ
R;S;P can be computed by the form factors. In this work,

we utilize the homogeneous bag model to estimate the form
factors [19], which agree well with those by the lattice QCD
calculation as well as the heavy quark symmetry [8].

The values of Yð0Þ
R;S;P are listed in Table II, from which

one can see that YR and Y0
R are both sizable for all flavors,

giving us a good opportunity to examine ImðCRÞ. In
contrast, the values of YS;P for l ¼ e and μ are suppressed
due to ml. For l ¼ τ, YS;P are still 3 times smaller than

Yð0Þ
R . Hence, ImðCS;PÞ are much more difficult to be

observed in the experiments comparing to ImðCRÞ.
To explain the excesses of RDð�Þ , CR;S;P are found to be

tiny for l ¼ e and μ, but fortunately, CR ¼ �0.42ð7Þi is
huge for l ¼ τ [18]. We have plotted ζð∂Yð0Þ

R =∂q2Þ for
l ¼ τ in Fig. 2, where the bands represent the uncertainties
from the form factors. One can see that the ideal q2 region
to search for the asymmetries lies around 7 GeV2 < q2 <
9 GeV2, since they are huge within the region. Finally,

putting the values of Yð0Þ
R and CR ¼ �0.42ð7Þi in Eq. (35),

we find that

T l ¼ �0.16ð3Þ; T c ¼ �0.08ð2Þ; ð39Þ

TABLE II. Parameters defined in Eq. (35), where the uncer-
tainties come from the model calculation.

l YR Y0
R YS YP

e −0.238ð11Þ 0.703(13) < 10−4 < 10−4

μ −0.237ð12Þ 0.701(13) −0.0037ð2Þ 0.0136(2)
τ −0.149ð6Þ 0.438(8) −0.039ð2Þ 0.180(2)

TIME-REVERSAL ASYMMETRIES IN Λb … PHYS. REV. D 106, 053006 (2022)

053006-7



for Λb → Λcτ
−ν̄. Notice that the signs are irrelevant for

searching evidence of NP as long as they are nonzero. To
estimate the results at LHCb run 2, we take NΛb

¼ 5 × 109,
Pb ¼ 0.03, ε ¼ 10−4, and

X
f

jBðΛc → BnfÞαðΛc → BnfÞj ¼ 6 × 10−2; ð40Þ

resulting in that jΔNlj ≈ 50 and ΔNc ≈ 20 for l ¼ τ,
which are large and ready to be measured. Here,
Eq. (40) is derived by crunching up the numbers in
Eqs. (27) and (28).
To probe the effects of the scalar operators, we find that

X6, which can be understood as a combination of AFB and
AUD, is sensitive toCS;P for l ¼ τ. The results are plotted in
Fig. 3, where we have taken CP ¼ CS.

1 In the region of
9 GeV2 < q2 < 10 GeV2, X 6 can be enhanced largely. In
particular, it is twice larger with CS ¼ 0.2 in comparison to
that in the SM.

V. SUMMARY

Based on the helicity formalism, we have given the full
angular distributions of Λb → Λcð→ BnfÞl−ν̄. In particu-
lar, we have identified TR violating terms, which vanish in
the SM due to the lack of relative complex phases. Since
strong phases are not required in these TR violating
observables in contrast to the direct CP asymmetries,
they can be reliably calculated. The angular distributions
have been given explicitly with the helicity amplitudes in
Table I. We have cross-checked our results with those in
Refs. [10,14], and found that they are consistent. Note that
our results can be easily applied to Ξb → Ξcð→ BnfÞl−ν̄
with trivial modifications.
Notably, the effects of NP can be absorbed by redefining

the helicity amplitudes as demonstrated in Eq. (31) with ξ�
calculated in the SM. We recommend the experiments to
measure the TR violating observables of T l;c defined in
Eq. (29) for searching NP as they vanish in the SM. To
compare with the experiments, ΔNl;c have been defined by
the numbers of the observed events, which are proportional
to T l;c. Based on CR ¼ �0.42ð7Þi for l ¼ τ, we have
obtained that jΔNl;cj ≈ 50, 20 at LHCb run 2, which are
sufficient for measurements. On the other hand, we have
pointed out that X6 is sensitive to CS;P for Λb → Λcτ

−ν̄,
which can be largely enhanced in the high q2 region.
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APPENDIX A: DIRAC SPINORS

In this work, we choose fermions and antifermions in pẑ
and −pẑ directions, respectively. We have that

uþ ¼

0
BBB@

Eþ
0

E−

0

1
CCCA; u− ¼

0
BBB@

0

Eþ
0

−E−

1
CCCA;

vþ ¼

0
BBB@

E−

0

−Eþ
0

1
CCCA; v− ¼

0
BBB@

0

−E−

0

−Eþ

1
CCCA; ðA1Þ

with “�” denoting the helicities, E� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
E�m

p
, andm the

particle mass. Notice that the relative signs are crucial,
fixed by the relations

FIG. 2. q2 dependence of ζð∂Yð0Þ
R =∂q2Þ in Λb → Λcτ

−ν̄, where
the bands represent the uncertainties caused by the form factors.

FIG. 3. q2 dependence of X6ζ=Γ with l ¼ τ for CS ¼ 0, 0.1
and 0.2, respectively.

1The scenario of CP ¼ −CS is ruled out by the lifetime
of B−

c [20].
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u−¼Lu
zRyðπÞðLu

z Þ−1uþ; v−¼ðLv
zÞ−1RyðπÞLv

zvþ; ðA2Þ

where Ry is the rotation matrix toward ŷ, and Lu;v
z are the

Lorentz boost operators toward ẑ. Here, Lu;v
z are taken in a

way such that Lu−1
z u� and Lv

zv� are at rest.

APPENDIX B: ANGULAR DISTRIBUTIONS IN
THE STANDARD MODEL

We now sketch the derivation of Eq. (13). We start with a
two-body decay of i → f1f2, where i and f1;2 are unspe-
cific particles. The decay distribution is given as

∂
2Γði → f1f2Þ
∂ϕ∂ cos θ

∝
X
λ1;λ2

jhp; θ;ϕ; λ1; λ2jUð∞;−∞Þji; J; Jzij2;

ðB1Þ

jp; θ;ϕ; λ1; λ2i
¼ RzðϕÞRyðθÞðjf1; p⃗ ¼ pz⃗; λ1i ⊗ jf2; p⃗ ¼ −pz⃗; λ2iÞ;

ðB2Þ

where U is the time evolution operator, J and Jz are the
angular momentum and its z component of the initial
particle, Ry;z are the rotational operators pointing toward
ðy; zÞ, and λ1;2 are the helicities of f1;2. In the decay
distributions, we have to sum over the helicities of the
outgoing particles as they are difficult to be probed in the
experiments.
In two-body systems, states with definite angular

momenta and helicities can be constructed as

jλ1; λ2; J; Jzi ¼
1

ð2J þ 1Þπ
Z

d cos θdϕjp; θ;ϕ; λ1; λ2i

× eiJzϕdJðθÞJz λ1−λ2 ; ðB3Þ

along with the identity

1 ¼
X
J;Jz

4π

2J þ 1
jJ; Jz; λ1; λ2ihJ; Jz; λ1; λ2j: ðB4Þ

Notice that in Eq. (B3), λ1;2 are unaltered because they
are rotational scalars. By inserting Eq. (B4) in Eq. (B1),
we obtain

∂
2Γði → f1f2Þ
∂ϕ∂ cos θ

∝
X
λ1;λ2

jeiJzϕdJðθÞJz λ1−λ2Hλ1λ2 j2; ðB5Þ

with

Hλ1;λ2 ≡ hJ; Jz; λ1; λ2jUð∞;−∞Þji; J; Jzi: ðB6Þ

Clearly,Hλ1;λ2 is independent of Jz sinceU must be a scalar.
In Eq. (B5), we see that the decay distributions are
separated into two different parts. The kinematic part is
described by the Wigner-d matrix whereas the dynamical
part by Hλ1;λ2.
The three-body decay distributions can be obtained by

decomposing the systems into a product of two-body
decays as demonstrated in Eq. (6).

APPENDIX C: CONTRIBUTIONS FROM SCALAR
AND CURRENT OPERATORS

The contributions of CL are given by

ξ� → ð1þ CLÞξ�; ðC1Þ

due to the same coupling in the SM. Furthermore, those of
CR can be obtained straightforwardly by

ξ� → ξ� þ CRξ∓; ðC2Þ

as c̄γμPL;Rb are related by the parity.
The scalar operators contribute to the amplitudes as

Gfffiffiffi
2

p VcbLN
t BN

t ; LN
t ¼ CūlPLvν;

BN
t ¼ C−1ūcðCSfs þ CPgpγ5Þub; ðC3Þ

where C is a constant, Clearly, BN
t and LN

t can be viewed as
the transitions of Λb → ΛcP− and P− → l−ν̄, respectively,
with P− an effective particle from NP. As P− is spinless,
LN
t BN

t is only related to LtBt in Eq. (6). By adjusting C such
that LN

t ¼ Lt, we arrive at

tN� ¼ t� −
ffiffiffiffiffiffiffiffiffiffiffiffi
Qþq2

p
ml

CSfs �
ffiffiffiffiffiffiffiffiffiffiffi
Q−q2

p
ml

CPgp: ðC4Þ

By collecting Eqs. (C1), (C2), and (C4), we obtain Eq. (31).
It is interesting to see that all the contributions can be
encapsulated in ξ�, which already exist in the SM.

APPENDIX D: CONTRIBUTIONS
FROM TENSOR OPERATOR

To cooperate the tensor operator with the helicity
amplitudes, by utilizing Eq. (2) we decompose the products
of the Minkowski metric as

ðgμνgμ0ν0 − gμ
0νgμν

0 Þ
¼

X
λ

ð−Vμμ0
1 ðλÞVνν0�

1 ðλÞ þ Vμμ0
2 ðλÞVνν0�

2 ðλÞÞ; ðD1Þ

with
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Vμμ0
1 ðλÞ ¼

�
εμt ε

μ0
λ − εμ

0
t ε

μ
λ

	
;

Vμμ0
2 ðλÞ ¼ 1ffiffiffi

2
p

�
εμλ1ε

μ0
λ2
− εμ

0
λ1
εμλ2

	
; ðD2Þ

and

ðλ1; λ2Þ ¼ ð1;0Þ; ð1;−1Þ; ð0;−1Þ; for λ¼ 1;0;−1: ðD3Þ

To see that V1;2 can be viewed as spacelike vectors, in the q⃗
frame, we define

ðV⃗1Þi ¼ V0i
1 ; ðV⃗2Þi ¼ ϵijkV⃗

jk
2 ; ðD4Þ

with i; j; k ¼ x, y, z and ϵijk the totally antisymmetric
tensor. It shows that V1 and V2 are spacelike, which are
essentially spin-1 under the SOð3Þ rotational group.
The results can be understood in terms of the group

theory, given as2

ð1 ⊕ 3Þ1 ⊗ ð1 ⊕ 3Þ2 ¼ ð1 ⊕ 3 ⊕ 6ÞS þ ð3 ⊕ 3̄ÞA; ðD5Þ

where 1, 3, and 6 are the representations of the SOð3Þ
rotational group, and we have used the fact that a four-
vector is 1 ⊕ 3. In Eq. (D5), “S” and “A” in the subscripts
indicate symmetric and antisymmetric between the first and
second objects, respectively. The antisymmetric nature of
σμν forces us to select the second solution, where 3 and 3̄
correspond to V1 and V2, respectively.
Now, we are able to rewrite the transition matrix element

of the tensor operator as

gμνgμ
0ν0 ðūlσμμ0PLvÞhΛcjc̄σνν0bjΛbi ¼

X
λ;n

LVn
λ BVn

λ ;

LVn
λ ¼ ð−1Þn

2
iVμμ0

n ðλÞūlσμμ0PLv;

BVn
λ ¼ −iVνν0�

n ðλÞhΛcjc̄σνν0bjΛbi; ðD6Þ

which can be understood as a product of Λb → ΛcVn and
Vn → l−ν̄, with Vn effectively spin-1 particles. The hel-
icity amplitudes of the lepton sector are given as

ðhV1þ ; hV1− Þ ¼
�
−

1ffiffiffi
2

p h−;−
ffiffiffi
2

p
hþ

�
;

ðhV2þ ; hV2− Þ ¼
�
1

2
h−; hþ

�
; ðD7Þ

with

hV1;2
� ¼ LV1;2

�1
2
−1
2

�
λl ¼ � 1

2
; p⃗l ¼ −p⃗ν ¼ pẑ

�
; ðD8Þ

describing ðV1 → l−ν̄Þ and ðV2 → l−ν̄Þ, respectively. For
the baryon sector, the helicity amplitudes read as

HVn
λc;λ

¼ BVn
λ ðλb ¼ λc − λ; p⃗c ¼ −q⃗ ¼ jp⃗cjẑÞ; ðD9Þ

with HVn
λc;t

¼ 0 and V1;2 being spacelike.
The sixfold angular distributions now take the form

BðΛc → BnfÞζðq2Þ
X
λl;λ;λb

ρλb;λb

����Ac
λ

X
λc;λW

�
CTh

V1

λl

�
HV1

λc;λW
−

1ffiffiffi
2

p HV2

λc;λW

�

þð−1ÞJWHλc;λWhλl

�
d

1
2ðθbÞλb λc−λWd

1
2ðθcÞλc λdJW ðθlÞλW λl−1

2
eiðλcϕcþλlϕlÞ

����2; ðD10Þ

which cannot be reduced to Eq. (13) by redefining the amplitudes. Thus, Table I would no longer be suitable after the tensor
operator is considered.
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