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Stationary axisymmetric binary configurations of unequal Kerr sources with a massless strut among 
them are developed in a physical representation. In order to describe interacting black holes, the axis 
conditions in the most general case are solved analytically deriving the corresponding 5-parametric 
asymptotically flat exact solution. In addition, we obtain concise formulas for the black hole horizons, 
the interaction force, as well as the thermodynamical characteristics of each source in terms of physical 
Komar parameters: mass Mi , angular momentum J i , and coordinate distance R , where such parameters 
are part of a cubic equation which can be interpreted as a dynamical law for interacting black holes with 
struts. Some limits are obtained and discussed.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Nowadays, the coalescence process among two interacting black 
hole (BH) sources has been considered an outstanding candidate 
to study and detect gravitational waves (GW) by the LIGO and 
Virgo Collaborations [1]. Due mainly to the fact that the numer-
ical simulations are the main tool at the moment of considering 
the merger process (MP) between two BHs, it motivates scien-
tists around the world to match this huge discovery with models 
within the framework of exact solutions. Nevertheless, it seems 
quite complicated to construct exact results describing physical 
models that can take into account all the possible interactions be-
tween the components of the binary system (BS) during the MP. In 
this respect, the double-Kerr-NUT (DKN) solution [2] developed by 
Kramer and Neugebauer almost four decades ago permits us to de-
scribe dynamical scenarios between two massive rotating sources 
in stationary axisymmetric spacetime, but in the absence of a sup-
porting strut (conical singularity (CS) [3,4]) the notion of dealing 
with BHs is spoiled due to the appearance of ring singularities off 
the axis. It is worth mentioning that rotating BS develop ring sin-
gularities off the axis if at least one of the masses turns out to 
be negative [5–7], regardless if the positive mass theorem [8,9] is 
fulfilled in the binary configuration. The last point suggests us to 
focus our attention in configurations of unequal binary BHs with 
a massless strut in between, with the main purpose of describ-
ing their dynamical and physical properties before the coalescence 
process may occur. However, until this day solving analytically the 
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axis conditions (AC) in the most general case has been one of the 
main technical (highly complicated) problems to treat binary con-
figurations of interacting BHs.

The present paper aims at solving for the first time the AC in 
order to derive a 5-parametric subclass of the DKN solution [2]. It 
represents the most general case with regard to the description of 
the dynamical interaction of binary configurations of unequal Kerr 
BHs with struts, with the main distinctive of being characterized 
by five arbitrary physical Komar parameters [10]: the masses Mi
and angular momenta J i , as well as the coordinate distance R . 
These parameters constitute a cubic algebraic equation, which in 
the absence of the strut is reduced to the equilibrium law for 
two nonequal Kerr particles [11]. We obtain simple formulas for 
both event horizons as a function of physical Komar parameters, 
with the main objective to determine some dynamical and ther-
modynamical characteristics of the BS. An interesting feature in 
our numerical analysis of the interaction force related to the CS 
reveals the existence of equilibrium states (without strut) during 
the MP, where both BHs are endowed with positive masses. As a 
consequence, we conclude that the CS cannot be eliminated when 
the MP is taking place, otherwise closed timelike curves (CTC) will 
appear outside the ergoregion of the new source that has been 
formed during such a process, therefore, it cannot be considered a 
BH.

2. The DKN solution in a physical representation

The well-known DKN solution constructed by Kramer and 
Neugebauer long time ago [2] represents a superposition of two 
massive rotating sources in stationary spacetimes. It was devel-
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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oped by employing Bäcklund transformations [13] as a modern 
generation technique of exact solutions in Einstein’s vacuum equa-
tions. Moreover, the DKN solution can also be derived through the 
Sibgatullin’s method (SM) [14] which is also very fit to describe 
electrovacuum spacetimes [15]. Both approaches start with a par-
ticular form of the Ernst potential [16] on the symmetry axis (the 
axis data), which is then extended in the whole spacetime. Accord-
ing to Ernst formalism [16], the vacuum Einstein field equations 
are reduced into a new complex equation for solving

(E + Ē)(Eρρ + ρ−1Eρ + Ezz) = 2(E2
ρ + E2

z ), (1)

being E = f + i� defined in Weyl–Papapetrou cylindrical coordi-
nates (ρ, z), where the subscript ρ or z denotes partial differenti-
ation. In this regard, the line element for stationary axisymmetric 
spacetimes is given by [17]

ds2 = f −1
[

e2γ (dρ2 + dz2) + ρ2dϕ2
]
− f (dt − ωdϕ)2, (2)

where the metric functions ω(ρ, z) and γ (ρ, z) can be derived 
from the following system of differential equations:

ωρ = −ρ f −2�z, ωz = ρ f −2�ρ,

4γρ = ρ f −2
(
|Eρ |2 − |Ez|2

)
, 2γz = ρ f −2Re(Eρ Ēz),

(3)

once we know a peculiar form of the Ernst potential E . For solving 
the nonlinear Eq. (1) by using the SM, the axis data for the Ernst 
potential in vacuum systems adopts the most general representa-
tion as follows [15]:

E(ρ = 0, z) := e(z) = 1 +
2∑

i=1

ei

z − βi
, (4)

where {ei, βi}, i = 1, 2, are arbitrary complex constants related to 
the Geroch–Hansen (GH) multipole moments [18,19]. At the same 
time, the SM begins with the characteristic equation

e(z) + ē(z) = 0, (5)

being αn , for n = 1,4, the roots of Eq. (5) that locate the sources on 
the symmetry axis. In order to change the old parameters {ei, βi}
by the new ones {αn, βi}, Eq. (4) is placed into Eq. (5)

2 +
2∑

i=1

(
ei

z − βi
+ ēi

z − β̄i

)
= 2

∏4
n=1(z − αn)∏2

i=1(z − βi)(z − β̄i)
, (6)

to obtain

e1 = 2
∏4

n=1(β1 − αn)

(β1 − β2)(β1 − β̄1)(β1 − β̄2)
, e2 = e1(1↔2). (7)

The DKN solution can be performed directly from the last for-
mulas of [15], with N = 2 and taking into account an absence of 
the electromagnetic field (	 = 0), where such a metric contains 
eight arbitrary real parameters. However, although the SM allows 
us to build the DKN solution in all the spacetime, the solution it-
self lacks of physical meaning at the moment one wishes to study 
the dynamical interaction between two rotating sources, therefore 
it is mandatory to solve the AC. At this point, it is worthwhile 
to stress the fact that solving analytically these conditions cannot 
be assumed as a trivial problem, and for that reason only identi-
cal cases taking the advantage of their symmetry property on the 
equatorial plane have been considered until this work [20–24]. Be-
fore solving the AC, we are going to depict the DKN problem with 
Fig. 1. Schematic representation of different types of unequal Kerr sources: (a) BH 
configuration σ 2

i > 0; (b) hyperextreme sources if σi → iσi (or σ 2
i < 0); (c) the 

extreme limit case σi = 0.

an aspect which contains a more physical representation. To do 
this, we notice that the Fodor–Hoenselaers–Perjés procedure [25]
permits us to calculate from Eq. (4) the first GH multipolar terms 
like the total mass of the system M , NUT charge J0 [12], and total 
angular momentum J of the system, which are given by

−e1 + e2

2
= M + i J0, − Im[e1β1 + e2β2]

2
= J . (8)

Replacing Eq. (7) into Eq. (8) yields the relation for the total 
mass

β1 + β2 + β̄1 + β̄2 +
4∑

n=1

αn = −2M (9)

where the parameters αn can be rewritten in terms of the relative 
distance R and the half-length rod σi as follows:

α1,2 = R

2
± σ1, α3,4 = − R

2
± σ2. (10)

Thereby we have reduced only one parameter of the DKN solu-
tion. It is important to mention that σi can take real positive or 
pure imaginary values representing BHs (subextreme sources) or 
relativistic disks (hyperextreme sources), respectively, as shown in 
Fig. 1. In what follows in this research we will consider only and 
exclusively BHs. In addition, to solve Eq. (9) one might choose the 
ansatz for βi

β1,2 = −M + iq± √
p + iδ

2
, (11)

where after using the following parametrization:

p = R2 − � + 2

(
ε1 − ε2 R

M

)
+ 2q(P1 + P2)

M
,

δ = −2(2P2 + Mq),

ε1,2 := σ 2
1 ± σ 2

2 , � := M2 − q2,

(12)

it guides us to simple expressions for the NUT charge and total 
angular momentum

J0 = q

2M

(
N

D

)
, J = Mq− P1 − P2

2
+ J0 P2

q
,

N := [q(P1 + P2) − ε2 R]2

− M2
[

4P1 P2 + (R2 − �)(2ε1 − �) + ε2
2

]
,

D := q2
[

M(R2 + M2 − 2�) + 2 (q(P1 + P2) + Mε1 − Rε2)
]

− M(2P + Mq)2,

(13)
2
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and now the axis data of the Ernst potential given by Eq. (4) and 
satisfying Eq. (5) results to be

E(0, z) = e1

e2
, e1 = z2 − [M + i(q+ 2 J0)]z + P+ + i P1

− 2i J0 [M − iq+ P2/q] ,

e2 = z2 + (M − iq)z + P− + i P2

P± := M(2� − R2) − 2 [Mε1 ± Rε2 ∓ q(P1 + P2)]

4M
.

(14)

The Ernst potential and full metric in the entire spacetime can 
be reduced eventually until get the following concise form [26]:

E = � + �

� − �
, f = ��̄ − ��̄

(� − �)(�̄ − �̄)
,

ω = 2q− 2Im
[
(� − �)Ḡ

]
��̄ − ��̄

, e2γ = ��̄ − ��̄

κoκ̄or1r2r3r4
,

� = 4σ1σ2(r1 − r3)(r2 − r4) − [R2 − (σ1 − σ2)
2]

× (r1 − r2)(r3 − r4),

� = 2σ2(R2 + ε2)(r1 − r2) + 2σ1(R2 − ε2)(r3 − r4)

− 4σ1σ2 R(r1 − r4 + r2 − r3),

G = −z� + σ1(R2 − ε2)(r3 − r4)(r1 + r2 + R)

+ σ2(R2 + ε2)(r1 − r2)(r3 + r4 − R) − 2σ1σ2

{2R[r1r2 − r3r4 − σ1(r1 − r2) + σ2(r3 − r4)]
+ ε2(r1 − r4 + r2 − r3)}, ri := airi

a1 = s1+
s̄1+

, a2 = s1−
s̄1−

, a3 = s2−
s̄2−

, a4 = s2+
s̄2+

,

κo = 64M3σ1σ2(R4 − 2ε1 R2 + ε2
2 )D

s̄1+ s̄1− s̄2+ s̄2−
,

s1± = q(P1 + P2) − M(� + M R)

− (R + M)(ε2 ± 2Mσ1) + iM[2P2 − q(R ± 2σ1)],
s2± = q(P1 + P2) − M(� − M R)

− (R − M)(ε2 ± 2Mσ2) + iM[2P2 + q(R ± 2σ2)],
r1,2 =

√
ρ2 + (z − R/2 ∓ σ1)2,

r3,4 =
√

ρ2 + (z + R/2 ∓ σ2)2,

(15)

where |a j | ≡ 1, for σ 2
i > 0. The above metric Eq. (15) represents 

the DKN solution, which contains seven parameters into the set 
{M, R, q, σ1, σ2, P1, P2}, and in the absence of J0 is reduced to the 
one considered earlier in Ref. [26]. As a matter of fact, the advan-
tage of this particular choice of the axis data Eq. (14) is that it 
gives us more information about several options to eliminate the 
NUT charge J0 with the main purpose to obtain an asymptotically 
flat exact solution, and later on, to solve the axis condition in be-
tween sources.

2.1. Two unequal Kerr BH sources apart by a strut: solving the axis 
conditions

By construction the metric Eq. (15) contains an elementary 
flatness in the upper part of the symmetry axis; it means that 
the conditions: ω(ρ = 0, α1 < z < ∞) = 0, and γ (ρ = 0, α1 <

z < ∞) = γ (ρ = 0, −∞ < z < α4) = 0 are automatically satisfied. 
Therefore, the remaining AC on the symmetry axis are

ω(ρ = 0,α2 < z < α3) = 0, ω(ρ = 0,−∞ < z < α4) = 0, (16)

which in terms of the canonical parameters {αn, βi} are given 
by [27]
Im

⎡
⎢⎢⎢⎣

∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 ±γ11 ±γ12 γ13 γ14
1 ±γ21 ±γ22 γ23 γ24
0 κ11 κ12 κ13 κ14
0 κ21 κ22 κ23 κ24

∣∣∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎦ = 0,

γ jn = (αn − β j)
−1, κ jn = (αn − β̄ j)

−1.

(17)

The condition with + sign is equivalent to kill the NUT charge 
(gravitomagnetic monopole), that is given explicitly above by 
Eq. (13), while the other one containing a − sign disconnects the 
region in between sources; it means that after solving such a con-
dition, the mass in the middle region does not contribute to the 
total ADM mass [28], thus both sources will be apart by a mass-
less strut. Due to the fact that we have at hand several possibilities 
among the seven parameters that could eliminate J0, without tak-
ing into account the trivial case q = 0, we are going to select the 
option

ε1 = �

2
+ [q(P1 + P2) − ε2 R]2 − M2(4P1 P2 + ε2

2 )

2M2(R2 − �)
. (18)

Surprisingly, the extremely complicated axis condition (with −
sign) from Eq. (17) eventually is reduced to a quadratic equation 
for ε2, P1 and P2, namely

q(R + M)
[
(R + M)(R2 − �) − Mq2

]
ε2

2

+
[

M(R2 − �)2 + 2(R + M)
(
�(R2 − �) − Mq2 R

)]
× (P1 + P2)ε2 + q[M2(R2 + M R + q2)(P1 − P2)

2

+ (� + M R)(� − M R − R2)(P1 + P2)
2] − M2(R2 − �)

× {[Mq2 + (R + M)(R2 + M R + q2)](P1 − P2)

− Mq(R + M)(R2 − �)} = 0.

(19)

This quadratic equation is solved by adopting the following 
parametrization:

ε2 = − (� + M R)(P1 + P2) + Mr(R2 − �)

q(R + M)
,

P1,2 = Mq2 − (R + M)(R2 − �)

2P0
r − q2(R2 + M R + q2)

2(R + M)P0

s2

r

± R2 − �

2(R + M)
s ∓ q(R2 − �)

2(R + M)
+ q(R2 + M R + 2q2)

2(R + M)

s

r

− q2 P0

2(R + M)

1

r
, P0 := (R + M)2 + q2,

(20)

where it is observed that there exists a symmetry property in 
our ansatz that solves the AC since P1,2 → −P2,1, ε2 → −ε2, and 
ε1 → ε1, under the transformations s → s, r → −r. This special 
characteristic means that we are interchanging the location of the 
components of the BS as well as their physical properties.

3. Physical representation for the BH horizons

In order to obtain a real physical representation of the double-
Kerr solution we must calculate the Komar parameters of the BS. 
To perform such a task we will use the well-known Tomimatsu 
formulas [29] for stationary axisymmetric spacetimes in vacuum

Mi = − 1

8π

∫
Hi

ω Im(Ez)dϕdz,

J i = − 1

8π

∫
ω

(
1 + 1

2
ω Im(Ez)

)
dϕdz,

(21)
Hi
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where the integrals are evaluated over the BH horizons, which are 
defined as null hypersurfaces Hi = {α2i ≤ z ≤ α2i−1, ϕ ≤ 2π, ρ →
0}, i = 1, 2. Substituting Eqs. (15), (18), and (20) inside Eq. (21), 
one obtains the individual mass and angular momentum for each 
BH

M1,2 = M

2
± q[(R + M)2 + q2] − (R2 + M R + q2)s

2r(R + M)
,

J1,2 = M1,2

(
s ± r

2

)
.

(22)

It follows that the total mass M = M1 + M2 and total angular mo-
mentum J = J1 + J2, where s = a1 + a2 and r = a1 − a2, being 
ai ≡ J i/Mi the individual angular momentum per unit mass. On 
the other hand, from Eq. (13) the following relation arises

J − Mq= (R2 − �)(q− a1 − a2)

2(R + M)
, (23)

and it is reduced to a dynamical law for interacting Kerr sources 
with struts via the expressions contained in Eq. (22), namely

q3 − (a1 + a2)q
2 + (R + M1 + M2)

2q− (R + M1 + M2)

× [a1(R + M1 − M2) + a2(R − M1 + M2)] = 0.
(24)

Finally, combining Eqs. (18), (20), and (24), the explicit formulas 
for both unequal σi in terms of Komar physical parameters are 
given by

σ1 =
√

M2
1 − a2

1 + γ12, σ2 =
√

M2
2 − a2

2 + γ21,

γ12 := 4a1M2
a1M2q

2 + [M1(q+ a1 − a2) + a1 R]P0

P 2
0

,

γ21 := 4a2M1
a2M1q

2 + [M2(q− a1 + a2) + a2 R]P0

P 2
0

,

(25)

where σ2 = σ1(1↔2) . The solving of the AC Eq. (17) and the phys-
ical functional form of each half-length horizon σi are two of the 
principal results of this paper. It is worth mentioning that both 
horizons can be entirely depicted in terms of the five parame-
ters {M1, M2, a1, a2, R} after solving analytically the above cubic 
Eq. (24), whose roots explicitly are

q(k) = −b1 + ei2πk/3
[
bo +

√
b2

o − a3
o

]1/3

+ e−i2πk/3ao

[
bo +

√
b2

o − a3
o

]−1/3

, k = 0,1,2,

ao := b2
1 − b2, bo := (1/2)

[
3b1b2 − b3 − 2b3

1

]
,

b1 := −(a1 + a2)/3, b2 := (R + M)2/3,

b3 := −(R + M)[a1(R + M1 − M2) + a2(R − M1 + M2)].

(26)

The parameter q is the key for a better understanding of the 
dynamical interaction between two Kerr sources, and since this 
dynamical law is represented by a cubic equation, there exists 
at least one real root which in this case is given by the phase 
k = 0. So, we have that q can take positive or negative val-
ues depending on whether the configuration is co or counter-
rotating as shown in Fig. 2. The constant line q = 0 gives us 
the following condition among two nonequal counter-rotating Kerr 
BHs [27]:

J2 = − J1M2
(

R + M1 − M2
)

, (27)

M1 R − M1 + M2
Fig. 2. Several figures of q in the unequal case, for M1 = 1 M2 = 2, a1 = 1.5, and 
different angular momentum values per unit mass a2 indicated by the subindex.

whose identical case M1 = M2 = m and a1 = −a2 = a, represents 
one of the most simple exact solutions in which there is no need 
to solve the AC. It was derived first in Refs. [20,22,23]. Moreover, 
after the redefinition M1 = M2 = m, a1 = a2 = a ≡ j/m, and q = 2q, 
from Eq. (24) one recovers the cubic equation for identical coro-
tating Kerr sources [24]

q3 − j

m
q2 + (R + 2m)2

4
q − R(R + 2m) j

4m
= 0. (28)

3.1. Physical and thermodynamical properties

The first physical property we will consider in this two-body 
configuration is the interaction force associated with the strut; a 
line source of pressure deforming the BH horizons. It can be com-
puted by means of the formula [4,30]

F = 1

4
(e−γs − 1), (29)

being γs the metric function γ evaluated on the middle region 
corresponding to the CS among sources. It is really amazing how 
simple turns out to be the formula for the interaction force be-
tween two Kerr sources, which takes the final form

F = M1M2[(R + M)2 − q2]
(R2 − M2 + q2)[(R + M)2 + q2] . (30)

If q = 0 and there is no rotation (ai = 0) we recover the first 
known expression of the force for two Schwarzschild BHs [3]

F = M1M2

R2 − (M1 + M2)2
. (31)

The force tends to zero as the sources move further and further 
away from each other. In this case if R → ∞, the parameter q →
a1 + a2, and the force contains the following aspect:

F 	 M1M2

R2
[1 + M2 − 3(a1 + a2)

2

R2

+ 4(a1 + a2)[ J + 4(M2a1 + M1a2)]
R3

+ O

(
1

R4

)
],

(32)

which is the formula already given by Dietz and Hoenselaers [31]
with an extra term containing more information about the spin–
spin interaction at large distances. It should be remarked that in 
the limit R → ∞ is also recovered from Eq. (25) the expression 
σi =

√
M2

i − J 2
i /M2

i for one isolated Kerr BH. In addition, we ob-

serve from Eq. (30) that the strut disappears with the condition 
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q = −ε(R + M), ε = ±1, leading us to the non-trivial expressions 
for σi obtainable from Eq. (25) in this equilibrium situation [11]

σ1 =
√

M2
1 − a2

1 + δ12, σ2 =
√

M2
2 − a2

2 + δ21,

δ12 := M2a1
a1(M + M1 + 2R) − 2M1[a2 + ε(M + R)]

(M + R)2
,

δ21 := M1a2
a2(M + M2 + 2R) − 2M2[a1 + ε(M + R)]

(M + R)2
,

(33)

whereas the equilibrium law is derived from Eq. (24) and given 
by [11]

J1 + J2 + R ( J1/M1 + J2/M2) + ε(R + M1 + M2)
2 = 0. (34)

Turning now our attention to the thermodynamical features of 
the BS, where is well-known that each BH fulfills the Smarr for-
mula [32]

Mi = κi Si

4π
+ 2�i J i = σi + 2�i J i, i = 1,2, (35)

being κi the so-called surface gravity of the ith BH, which is re-
lated to the corresponding angular velocity �i by means of [31,
33]

κi =
√

−�2
i e−2γ Hi , �i := ω−1

i , (36)

where ωi and γ Hi are the constant values of the metric functions 
ω and γ on the axis part associated to each horizon Hi . Addition-
ally, Si is the area of the horizon. Taking into account Eqs. (24) and 
(25) it follows that the angular velocities, surface gravities and the 
area of the horizons acquire the final compact expressions

�1 = M1 − σ1

2 J1
= J1 F1

2M2
1(M1 + σ1)

,

κ1 = σ1 P0[(R + σ1)
2 − σ 2

2 ]
[P0(M1 + σ1) − 2M1a1q]2 + a2

1(R2 − �)2
,

S1 = 4π
[P0(M1 + σ1) − 2M1a1q]2 + a2

1(R2 − �)2

P0[(R + σ1)2 − σ 2
2 ] ,

F1 := 1 − 4M2

a1

[
a1M2q

2 + [M1(q+ a1 − a2) + a1 R]P0

P 2
0

]
,

�2 = �1(1↔2), κ2 = κ1(1↔2), S2 = S1(1↔2).

(37)

On the other hand, in order to interpret the interaction between 
BHs, by looking once more the denominator of the above formula 
of the force, at first sight it seems that the merger limit occurs 
whether R tends to a minimal value given by R0 = √

M2 − q2 =
σ1 + σ2, from which the interaction force F → ∞. At this particu-
lar value of the distance we notice from Eq. (24) [or Eq. (23)] that 
q = J/M , and therefore the values of the half-length horizons are

σ1 =
√

M2
1 − a1M2

1[a1(R0 + M1 − M2) + 2M2a2]
(M1 + M2)2(R0 + M1 + M2)

,

σ2 =
√

M2
2 − a2M2

2[a2(R0 − M1 + M2) + 2M1a1]
(M1 + M2)2(R0 + M1 + M2)

.

(38)

Let us now consider that both BHs become extremal; i.e., σ1 =
σ2 = 0, thus the minimal value R0 = 0 befalls when q = M , and 
because q = J/M , the MP will produce a single extreme BH of 
mass M = M1 + M2 and total angular momentum J = J1 + J2, 
satisfying a well-known relation given by

J1 + J2 = (M1 + M2)
2. (39)
Fig. 3. The behavior of the interaction force for M1 = 1, M2 = 2, a1 = 1.5, and 
several angular momentum values per unit mass a2 labeled with a subindex. The 
merger limit is indicated by a vertical asymptote.

Then, a natural question arises: What values the angular mo-
menta of the BHs are taking during the MP in this extreme case? 
The answer of this question comes immediately from Eq. (38), by 
settling σ1 = σ2 = 0; having that

J1 = M1(M1 + M2), J2 = M2(M1 + M2), (40)

whose sum J1 + J2 clearly recovers Eq. (39). Apparently, this de-
scription of the MP corresponds to a BS composed by corotat-
ing sources; in agreement with Ref. [23] in the identical case. 
Moreover, if q = 0, and therefore R = M1 + M2, the BH hori-
zons become statics during the merger limit since σ1 = M1 and 
σ2 = M2 [27], as well as identical when both sources result to be 
extreme [23,27]. In both static cases the merger limit begins to 
form a single Schwarzschild BH containing a total mass equal to 
the sum M1 + M2 whose area of its horizon satisfies the relation 
S = S1 + S2 = 16π(M1 + M2)

2.
It is well-known that the concept of two rotating BHs in equi-

librium without a supporting strut before the system merges is 
not possible since at least one source develops a ring singular-
ity off the axis. This pathology has been associated mainly to the 
presence of negative masses in the DKN solution [5–7], being also 
observed when the total ADM mass [28] of the BS is positive, and 
the solution does not violate the positive mass theorem [8,9]. Fig. 3
supports such a statement, where it is observed that the force is 
never crossing the horizontal axis if both masses are positive, but 
apparently it does during the MP. So, this bring us to consider the 
following scenario: The BHs are interacting with a CS among them 
before they reach the merger limit; this is due to the fact that the 
spin–spin interaction is not enough to counterbalance the gravita-
tional attraction. Later on, the MP is taking place and the BS begins 
to form a single source of mass M = M1 + M2 and angular mo-
mentum J = J1 + J2. If the MP is occurring, we are wondering the
following questions:

i) the strut can be removed during the MP?
ii) the new source that is being generated is a BH?
To answer the first question, we find very illustrative to plot the 

stationary limit surfaces (SLS) for both BHs until get the point in 
which the strut is eliminated. In Figs. 4(a), 4(b), and 4(c) we have 
assigned the initial values M1 = 1, M2 = 2, a1 = 0.7, and a2 = 1.5, 
where Figs. 4(a) and 4(b) show two disconnected ergoregions at 
the coordinate distances R = 3.27 and R = 3.252, respectively. The 
merger limit is given at R = 2.7348 and the MP has begun, as it 
is shown in Fig. 4(c). Finally, Fig. 4(d) depicts the case when the 
MP is taking place, where the second BH must increase rapidly 
its spin to the value a2 = 4.2 in order to repel the first BH and 
establishes an equilibrium situation at R = 0.08443; therefore, the 
CS has been removed.
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Fig. 4. The SLS ( f = 0) of the BS with a strut among sources for the values M = 1, 
M = 2, a1 = 0.7, and a2 = 1.5, as well as different values for R; (a) R = 3.27, (b) R =
3.252, (c) R = 2.7348 (the merger limit). (d) During the MP at R = 0.08443, the 
second BH tends to increase its rotation to compensate the repulsion of the first 
one and remove the strut, where CTC appear outside the ergoregion.

Table 1
Numerical values for equilibrium states during the MP, fixing the val-
ues in the masses M1 = 1 and M2 = 2.

σ1 σ2 a1 a2 R q

1.36892 0.96607 1.2 −5.2 0.09545 −3.09545
0.78173 0.39310 0.7 4.2 0.08443 3.08443
1.22305 1.01419 −0.7 4.9 0.05394 3.05394
1.40981 0.29261 −1.44 5.42 0.18168 3.18168
2.36235 1.27626 5.0 −7.4 0.20998 −3.20998

With regard to the second question, on the nature of the new 
source. Table 1 shows a set of numerical values satisfying equi-
librium states during the MP. In all cases we have evaluated the 
condition M2 − J 2/M2, which results to be always negative and 
the new source develops CTC outside the ergoregion. This interest-
ing aspect is noticed in Fig. 4(d) after plotting the region where 
the metric coefficient gϕϕ of the line element Eq. (2), satisfies 
gϕϕ = −ρ2 f −1 + f ω2 > 0. On the other hand, for a wide range of 
numerical values we have not found CTC outside the ergoregion, 
when the strut is not eliminated during the MP and the condition 
M2 − J 2/M2 ≥ 0 is fulfilled. Therefore, we conclude that the CS 
should not be removable even when the MP is occurring, in order 
to not break the notion of being treating with binary BHs.

4. Final remarks

This paper is devoted to conclude one of the main problems 
during almost the last four decades that might help to study in 
the most general case dynamical and thermodynamical aspects of 
two interacting BHs in stationary axisymmetric vacuum systems: 
the solving of the axis conditions. Our suitable parametrization of 
the double Kerr solution [2] including the NUT charge led us to 
consider the desirable parametrization which eventually simplified 
and helped us to solve the axis condition in between sources. Af-
ter that, we have been capable to obtain nontrivial expressions for 
the BH horizons σi , i = 1, 2, in terms of the five arbitrary physical 
Komar parameters {M1, M2, a1, a2, R} as well as the thermody-
namical features contained within the Smarr formula [32]. These 
five physical parameters satisfy a dynamical law for interacting 
BHs with struts; a cubic algebraic equation, which is reduced to 
the equilibrium law for two arbitrary Kerr sources [11] in the ab-
sence of the strut. The numerical analysis reveals that the presence 
of the CS cannot be avoided if the final state of the MP should be 
a BH. It is worthwhile to mention that the physical representa-
tion considered in this work is more transparent at the moment of 
considering astrophysical phenomena related to GW, like the col-
lision of two BHs, since the quasinormal modes of GW will be in 
terms of these physical parameters. We are convinced that our re-
sults will help not only to derive further exact models regarding 
geodesics around binary BHs with the main objective to research 
GW during the MP, but also they can be useful at the moment 
of studying lensing/shadow models to probe the horizon geometry 
of binary BHs that could be observed in experiments such as the 
Event Horizon Telescope [34].
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