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Abstract We have performed an analysis of the e+e− →
D(∗) D̄(∗) data in the region of the ψ(4040) and ψ(4160)

resonances which have a substantial overlap and require spe-
cial care. By using the 3P0 model to relate the different
D(∗) D̄(∗) production modes, we make predictions for pro-
duction of these channels and compare with experiment and
other theoretical approaches. As a side effect we find that
these resonances qualify largely as cc̄ states and the weight of
the meson–meson components in the wave function is very
small.

1 Introduction

The charmonium spectroscopy has been studied both the-
oretically and experimentally over four decades, but there
are still many debates in charmonium physics. Although the
charmonium system is well described below the open charm
threshold, for the charmonium states above the open charm
threshold there is no real consensus between experimental
information and theoretical results. Above the open charm
threshold charmonium states can decay into several two body
final states as stated in Refs. [1,2], the decay channels are
ψ(4040) → DD̄, DD̄∗, D∗ D̄, D∗ D̄∗, Ds D̄s , ψ(4160) →
DD̄, DD̄∗, D∗ D̄, D∗ D̄∗, Ds D̄s, Ds D̄∗

s , D
∗
s D̄s . It is also

important to consider charm meson production to understand
the hadron spectrum well.

Experimental research has been done to determine masses
and total widths of the ψ(4040) and ψ(4160) states. For
instance, the total cross section for hadron production in
e+e− annihilation was analysed in Ref. [3]. They measured
R values, which is defined as R = σ(e+e− → hadrons)/
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σ(e+e− → μ+μ−) with the BESII detector at center-of-
mass energies between 3.7 and 5.0 GeV. They show the R
values for the high mass charmonia structure in Fig. 1 of Ref.
[3] where the two resonances have some overlap. In the anal-
ysis they use an energy dependent total width and introduce
relative phases between the resonances in the fit. They con-
clude that the results are sensitive to the form of the energy-
dependent total width, and the influence of the phase angles
of the resonance parameters is important. The e+e− annihi-
lation with exclusive production of DD̄, DD̄∗, D∗ D̄∗ was
investigated in Ref. [4]. The authors mention that interfer-
ence between the resonances and noresonance contributions
is required to obtain a satisfactory description of the data,
somewhat a different interpretation than that of Ref. [3]. They
also measured �(ψ(4040) → DD̄)/�(ψ(4040) → D∗ D̄)

and find 0.24 ± 0.05 ± 0.12 and compare with a calculation
using the 3P0 model of Ref. [2]. The agreement is not good. It
is not clear how the spin-angular momentum algebra is done
for the 3P0 model in Ref. [2].

The quantum numbers assigned to the ψ(4040) and
ψ(4160) are 33S1 and 23D1 in Ref. [2], respectively. The
same assignment is done in Refs. [5–7]. The decay widths
of the ψ(4040) and ψ(4160) had been evaluated in the 3P0

model (Table X and XII in Ref. [2]) and also in Ref. [4]
(Table VI). The results are very different. In Ref. [8], the
authors calculate �(ψ(4040) → D0 D̄0)/�(ψ(4040) →
D0∗ D̄0 + cc) = 0.05 ± 0.03. Yet, this seems to be in con-
tradiction with the results of Ref. [4].

As one can see, there is no noconsensus on the interpreta-
tion of the data. Inclusive and exclusive cross sections for D+,
D−, and D∗

s production in e+e− annihilation are also avail-
able from Ref. [9]. There are further data from Belle [10],
where measurements of e+e− → D(∗)±D∗∓ using initial
state radiation are done. Further data from BES on e+e− →
hadrons are available in [11,12], which are analyzed in [13]
in terms of three resonances, ψ(4040), ψ(4160), ψ(4415),
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Fig. 1 Feynman diagrams of e+e− → R1(R2) → i i ′, where R1 ≡ ψ(4040) and R2 ≡ ψ(4160) and i, i ′ correspond to any of the D0 D̄0, D+ D̄−,
D0 D̄∗0, D∗0 D̄0, D∗+ D̄−, D+ D̄∗−, D∗0 D̄∗0, D∗+ D̄∗−, D+

s D̄−
s , D+

s D̄∗−
s , D∗+

s D̄−
s , D∗+

s D̄∗−
s channels

c̄

(ūu + d̄d + s̄s +c̄c)

c

Fig. 2 Hadronization process for ψ(4040)[ψ(4160)] → i i ′

with interference among them. We shall not consider the
ψ(4415), which is far away and disconnected from the other
two resonances and concentrate on the ψ(4040) and ψ(4160)

which overlap in the hadron production spectrum.
This paper is organized as follows. In Sect. 2, we

establish the formalism of calculating the cross section
for e+e− → hadrons through the dressed propagator of
the ψ(4040) and ψ(4160), In Sect. 3, we present the
results on the line shape of the ψ(4040) and ψ(4160)

fitting to the experimental data, the meson–meson proba-
bilities in the ψ(4040) and ψ(4160) wave functions and
the Z probabilities using the parameters extracted from
the fitting. A summary and conclusion is presented in
Sect. 4.

2 Formalism

The Feynman diagrams of hadron production in e+e− anni-
hilation for ψ(4040) and ψ(4160) are shown in Fig. 1. The
first part of the Feynman diagrams in Fig. 1 is the electro-
magnetic interaction and the second part of the diagrams is
strong interaction. In the second part, we assume the ψ reso-
nances to be cc̄ states and insert a q̄q pair with the quantum
numbers of the vacuum between the cc̄, the quark compo-
nents of the ψ(4040) and ψ(4160), in order to produce the

D(∗) D̄(∗) pairs. This is called hadronization and the mecha-
nism of hadronization is shown in Fig. 2.

We show the hadronization procedure in detail. We
will include a q̄q pair with the quantum numbers of
the vacuum and will obtain a pair of mesons. These
meson pairs could be vector-vector (VV ), pseudoscalar-
vector (PV ), vector-pseudoscalar (V P) or pseudoscalar-
pseudoscalar (PP) meson. To do this, we first write the q̄q
matrix M

M = (qq̄) =

⎛
⎜⎜⎝
uū ud̄ us̄ uc̄
dū dd̄ ds̄ dc̄
sū sd̄ ss̄ sc̄
cū cd̄ cs̄ cc̄

⎞
⎟⎟⎠ . (1)

The hadronization in the flavor space proceeds as

cc̄ → c
4∑

i=1

q̄i qi c̄ =
4∑

i=1

cq̄i qi c̄ = (MM)44. (2)

On the hadron level we can write the M matrix in terms
of the physical mesons. This matrix M could be the vector
or the pseudoscalar matrix. The vector matrix V is given by

V =

⎛
⎜⎜⎜⎝

1√
2
ρ0 + 1√

2
ω ρ+ K ∗+ D̄∗0

ρ− − 1√
2
ρ0 + 1√

2
ω K ∗0 D̄∗−

K ∗− K̄ ∗0 φ D∗−
s

D∗0 D∗+ D∗+
s J/ψ

⎞
⎟⎟⎟⎠ . (3)

and the pseudoscalar matrix can be written as

P =

⎛
⎜⎜⎜⎜⎜⎝

1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ D̄0

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K 0 D−

K− K̄ 0 − 1√
3
η +

√
2
3 η′ D−

s

D0 D+ D+
s ηc

⎞
⎟⎟⎟⎟⎟⎠

.

(4)

where the standard η−η′ mixing of Ref. [14] is used. Finally
as we mentioned before, the hadronization gives rise to PP ,
PV , V P , VV in terms of two mesons and hence we have

(PP)4,4 = D0 D̄0 + D+D− + D+
s D−

s , (5)

(PV )4,4 = D0 D̄∗0 + D+D∗− + D+
s D∗−

s , (6)

(V P)4,4 = D∗0 D̄0 + D∗+D− + D∗+
s D−

s , (7)

(VV )4,4 = D∗0 D̄∗0 + D∗+D∗− + D∗+
s D∗−

s . (8)
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where we have neglected η2
c , ηc J/ψ , J/ψ J/ψ , since they

are too heavy relative to the other channels.
Let us come back again to Fig. 1. First there is an interac-

tion e+e− → R1(2) and then decay of R1(2) → i i ′ where i i ′
correspond to the D0 D̄0, D+ D̄−, D0 D̄∗0, D∗0 D̄0, D∗+ D̄−,
D+ D̄∗−, D∗0 D̄∗0, D∗+ D̄∗−, D+

s D̄−
s , D+

s D̄∗−
s , D∗+

s D̄−
s ,

D∗+
s D̄∗−

s channels. The couplings of e+e− → R1 and
e+e− → R2 are different and the couplings of R1 → i i ′ and
R2 → i i ′ are also different. However, for each resonance we
can relate the amplitude for D0 D̄0, D+ D̄−, D0 D̄∗0, D∗0 D̄0,
D∗+ D̄−, D+ D̄∗−, D∗0 D̄∗0, D∗+ D̄∗−, D+

s D̄−
s , D+

s D̄∗−
s ,

D∗+
s D̄−

s , D∗+
s D̄∗−

s production by means of the 3P0 model
used in the paper of Ref. [15]. In this model one uses the
most basic q̄q configuration that provides the q̄q state with
vacuum quantum numbers. Since q̄ has negative parity we
need L = 1 to restore the parity, which implies that the spin
S is S = 1 such that the total angular momentum J can be
J = 0. The spin angular momentum components are consid-
ered together with the spin of the cc̄ components to finally
provide the spin of the D(∗) D̄(∗) pairs, which are produced
in p-wave. Details on the angular momentum algebra for the
process are given in Ref. [15].

Now let us write the matrix element of the first part
(electron-positron pair annihilation) of the Feynman dia-
grams of Fig. 1 as

t ′ ∼ ev̄(p1)γ
μu(p2)εμ(γ ) (9)

where u(p2) and v̄(p1) are the spinors of the electron and
positron, respectively and εμ(γ ) is the polarization of the
photon. Then the square of the absolute value of the matrix
element is obtained as follows

|t ′|2 ∼ 4e2

2m2m
(pμ

1 pν
2 − p1.p2g

μν + pν
1 p

μ
2 )εμεν (10)

where the original photon polarizations εμεν become the R
polarization after γ → ψ conversion, and in the R rest frame
only the spatial components of εμ remain. Then we write the
whole matrix element as

t ∼ ev̄(p1)γ
μu(p2)εμ fR DR ARi p

′ 1

p2
γ

(11)

where DR is a propagator of the R meson, fR is aγ → ψ con-
version factor and ARi the coupling of the R to each i i ′ chan-
nels (D0 D̄0, D+ D̄−, D0 D̄∗0, D∗0 D̄0, D∗+ D̄−, D+ D̄∗−,
D∗0 D̄∗0, D∗+ D̄∗−, D+

s D̄−
s , D+

s D̄∗−
s , D∗+

s D̄−
s , D∗+

s D̄∗−
s ).

We can take the spatial component of εμ contracted in |t |2 as∑
εiε j → δi j with i, j = 1, 2, 3, so we have

|t |2 ∼ e2

2m2m
M2

inv| fR DR ARi p
′|2

(
1

p2
γ

)2

. (12)

ψ(p) ψ(p)

i (q)

i(p − q)

Fig. 3 The ψ propagator dressed with a i i ′ loop

Once we get |t |2, we can calculate the cross section as follows

σ = 4π
dσ

d�
∼ 1

16 π

1

s
e2M2

inv

(
1

p2
γ

)2
p′

p
| fR DR ARi p

′|2.
(13)

Using Minv = √
s, then the cross section read as

σ = 1

8 π

1

s2

1√
s
e2(p′)3| fR DR ARi |2, (14)

where p′ is the meson momentum in the MiM ′
i rest frame

p′ = λ1/2(s, M2
i , M ′2

i )

2
√
s

, (15)

with Mi and M ′
i the masses of the i, i ′ mesons and DR the

propagator of the R vector,

DR = 1

p2 − M2
R + iMR�R

, (16)

with p = p1 + p2, in the case of a free vector.
Next, we include the meson–meson self energy in the vec-

tor propagator

DR = 1

p2 − M2
R − �(p)

. (17)

The ψ selfenergy diagrams are depicted in Fig. 3. In order
to evaluate �(p2) we indicate the dressing of ψ by meson–
meson components and we include PP , V P , PV , and VV .
There is only one unknown global parameter ARi since all the
different D(∗) D̄(∗), D(∗)

s D̄∗
s channels can be connected via

Eqs. (5–8) and the 3P0 model, for which the details are given
in [15]. In that work a detailed derivation was done for the
case where the cc̄ quarks in the ψ state are in D-wave, which
is case for the ψ(4160) according to Ref. [5] (23D1). For
S-wave, where the ψ(4040) is classified according to Ref.
[5] (33S1), the calculations are done in a similar way and we
provide here the new coefficients in analogy to those obtained
for D-wave in [15], where the ψ(3770) (13D1 according to
Ref. [5]) was studied.

The self energy contributions �(p) are shown in Fig. 3,
and detailing the channels in Fig. 4, and is written as follows
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Fig. 4 Contribution to the ψ selfenergy for the vector ψ propagator dressed with a meson–meson loop with cc

− i�i (p) =
∫

d4q

(2π)4 (−i)V1(−i)V2
i

q2 − m2
Di

+ iε

× i

(p − q)2 − m2
Di ′ + iε

F(q)2, (18)

where p is the total four momentum of the system, and mDi

and mDi ′ are the masses of the mesons in the i, i ′-channel.
F(q) is a form factor and the subindex of the D mesons indi-
cates all twelve channels which means i, i ′ = 1, 2, . . . , 12.
We use the couplings of ψ(4040) or ψ(4160) → PP , PV ,
V P , VV which have the effective form evaluated in the 3P0

model, such that the sum over polarizations on the vector
states in �, Fig. 3, and in the final states, Fig. 1, are already
done,

Vψ,(Di Di ′ ) = ARi |q| = A gR,i |q|, (19)

where we separate the coupling ARi of R → meson–meson
channel into a global constant A and the coefficient gR,i

which stems from the 3P0 model calculation. Then �(p)
is rewritten as

�i (p) = i g2
R,i A

2
∫

d4q

(2π)4 q
2 1

q2 − m2
Di

+ iε

× 1

(p − q)2 − m2
Di ′ + iε

F(q)2. (20)

The q0 integration can be evaluated analytically and then
we get in the rest frame of the ψ(4040) and ψ(4160) (p0 =√
s)

�(p0) = A2
∑

g2
R,i G̃i (p

0), (21)

where A is a global constant to be determined from the data,
and G̃i (p0) is

G̃i (p
0) =

∫
dq

(2π)2

ω1(q) + ω2(q)

ω1(q)ω2(q)

× q4

(p0)2 − (ω1(q) + ω2(q))2 + iε
F(q)2, (22)

where ω1(q) =
√
q2 + m2

Di
, ω2(q) =

√
q2 + m2

Di ′ . Then

the g2
R,i values in Eq. (21) are calculated for the ψ(4040)

Table 1 g2
R,i values for ψ(4040) and ψ(4160) vector mesons

Channels g2
R,i for ψ(4040) g2

R,i for ψ(4160)

D0 D̄0 1/12 1/12

D+ D̄− 1/12 1/12

D0 D̄∗0 1/6 1/24

D∗0 D̄0 1/6 1/24

D+ D̄∗− 1/6 1/24

D∗+ D̄− 1/6 1/24

D∗0 D̄∗0 7/12 77/120

D∗+ D̄∗− 7/12 77/120

D+
s D̄−

s 1/12 1/12

D+
s D̄∗−

s 1/6 1/24

D∗+
s D̄−

s 1/6 1/24

D∗+
s D̄∗−

s 7/12 77/120

(ψ(4160)) like in Ref. [15] and the values are presented in
Table 1.

As in Ref. [15], we take the form factor as follows

F(q)2 = 1 + (R qon)
2

1 + (R q)2 , q ≡ |q|,

qon =
λ1/2(s,m2

Di
,m2

Di ′ )

2
√
s

(23)

where R is a parameter. This factor is motivated by the Blatt–
Weisskopf barrier penetration factor [16] which is often used
in the parametrization of the width of resonances. If the chan-
nel is closed, we take qon = 0. Since G̃i (p0) in Eq. (22) is
logarithmically divergent, we have to make a subtraction and
we do it such that the propagator has the pole at MR . Hence
the DR propagator rewritten as

DR(p) = 1

p2 − M2
R − �′(p)

(24)

with �′(p) = �(p) − Re �(MR).
Next step we have to take into account the two resonances.

We use σ of Eq. (14) to obtain the cross section for production
of the channel i i ′, any of the D0 D̄0, D+ D̄−, D0 D̄∗0, D∗0 D̄0,
D∗+ D̄−, D+ D̄∗−, D∗0 D̄∗0, D∗+ D̄∗−, D+

s D̄−
s , D+

s D̄∗−
s ,

D∗+
s D̄−

s , D∗+
s D̄∗−

s channels. Then we must sum coher-
ently the contribution of the two resonances ψ(4040) and
ψ(4160). Hence, fR DR ARi of Eq. (14) gets substituted by
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Table 2 Three sets of fit data for nine parameters

Parameters Set I Set II Set III

MR1 [MeV] 4036.34 ± 3.04 4035.95 ± 2.97 4036.73 ± 3.21

fR1 37.38 ± 1.37 35.75 ± 1.97 36.92 ± 1.49

A2
1 149.99 ± 5.71 139.9 ± 3.15 153.9 ± 6.48

R1[MeV−1] (8.71 ± 4.36) × 10−3 (1.19 ± 0.59) × 10−2 (7.41 ± 3.71) × 10−3

MR2 [MeV] 4197.5 ± 7.95 4195.63 ± 4.56 4199.17 ± 11.21

fR2 30.92 ± 3.31 27.94 ± 11.76 25.47 ± 8.19

A2
2 53.91 ± 7.35 56.12 ± 7.85 53.91 ± 14.56

R2[MeV−1] (2.68 ± 1.34) × 10−3 (2.23 ± 1.12) × 10−3 (1.71 ± 0.86) × 10−3

φ [radian] 3.408 ± 0.283 3.207 ± 0.683 3.133 ± 0.474

 12

 14

 16

 18

 20

 22

 24

 26

 3800  3900  4000  4100  4200  4300

σ 
[n

b]

√s [MeV]

Fig. 5 Total hadronic cross section of σ(e+e− → hadrons) fitted
to the experimental data from Fig. 1 in Ref. [13]. The solid red line
corresponds the parameters Set I, dashed green line Set II and dotted blue
line Set III. The most extreme thin lines provide the band of uncertainty
of the fit evaluated as explained in the tex

fR1 DR1 AR1g1i + fR2 eiφ DR2 AR2g2i , which includes a
relative phase factor between the two terms. Then, the cross
section is given by

σi = 1

8 π

1

s2

1√
s
e2(p′)3| fR1 DR1 A1g1i

+ fR2 e
iφ DR2 A2g2i |2, (25)

and vanishes for the channels which are closed at a given
energy.

3 Results

The cross sections with the two resonances are obtained by
means of Eq. (25). As we mention in the Sect. 2, both the
couplings e+e− → R1(2) and R1(2) → i i ′ are different
for particle 1 and 2, and then we have four parameters. The
masses MR1 and MR2 , enter into DR1(p) and DR2(p) in
Eq. (24), are also changed a bit with respect to the nominal

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 3800  3900  4000  4100  4200  4300

σ 
[n

b]

√s [MeV]

Fig. 6 The total hadronic cross section of σ(e+e− → hadrons)
without background. The solid red line corresponds the parameters Set
I, dashed green line Set II and dotted blue line Set III. The most extreme
thin lines provide the band of uncertainty of the fit evaluated as explained
in the tex

ones, such as to obtain the peak position as in the experiment.
We will allow a relative phase between the two contributions,
which means we will make the e+e− → R2 coupling com-
plex. Hence fR2 will be complex to take into account the
mixing of the two resonances as the experimental papers all
do, that is fR2 → fR2e

iφ , thus we have the extra fR1 , fR2

and φ (φ ε [0, 2π ]) parameters. We have also A1 and A2 real
positive parameters. We shall also use the parameter R in
the form factor to control the convergence of the selfenergy
integrals. So we have the R1 and R2 parameters for each res-
onance in Eq. (23). This means we have nine parameters in
total.

We determine the nine parameters by performing a fit to
the total hadronic cross section obtained as σ(e+e− →
hadrons) [13]. We get the experimental data from Fig. 1
of [13] and include the same background as in Eq. (3) of Ref.
[13] with the same parameterization. We obtained three sets
of values for the free parameters which are written in Table 2,
corresponding to different local minima of the χ2 in the mul-
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 0

 1
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 6

 3800  3900  4000  4100  4200  4300

σ  
[n

b]

√s [MeV]

Fig. 7 Different hadronic cross section of σ(e+e− → i i ′) without
background. The dashed green lines correspond to the σ(DD̄), the black
dotted lines the σ(DD̄∗), the purple dash-dotted lines the σ(D∗ D̄∗),
the orange two dot-dashed lines the σ(D+

s D̄−
s ) and the blue solid lines

the σ(Ds D̄∗
s ) for Set I, Set II and Set III. The most extreme thin lines

provide the band of uncertainty of the fit evaluated as explained in the
tex

tidimensional space. We also show there the errors in the
parameters obtained in the fit. The total hadronic cross sec-
tion including background for three different sets of parame-
ter are shown in Fig. 5. As we see from the figure, the results
of the total cross section of σ(e+e− → hadrons) are simi-
lar with the three sets of parameters and they provide a good
fit to the data, both above and below the peaks. In the fig-
ure, we also show the band of uncertainty in the fit, which is
obtained making runs with random values for all the param-
eters within their uncertainty range, and then calculating the
average and the dispersion. We also show the total hadronic
cross section without background in Fig. 6, including the
uncertainty band.

We also show the different contributions of the hadronic
cross section in Fig. 7. The σ(DD̄) includes two contribu-
tions, as the sum of D0 D̄0+D+ D̄−, the σ(DD̄∗) four contri-
butions, as the sum of D0 D̄∗0+D∗0 D̄0+D∗+ D̄−+D+ D̄∗−,
the σ(D∗ D̄∗) two contributions D∗0 D̄∗0 + D∗+ D̄∗−, the
σ(Ds D̄∗

s ) two contributions, as the sum of D+
s D̄∗−

s +
D∗+
s D̄−

s meson–meson states. The σ(D+
s D̄−

s ) includes only
the D+

s D̄−
s meson–meson state. As we see in Fig. 7, the

results for different sets of parameters do not change much.
Now let us look in detail at the figure. The biggest con-
tributions come from the σ(DD̄∗) and the σ(DD̄) for the
ψ(4040). Conversely, the σ(D∗ D̄∗) gives the biggest contri-
bution in the region of the ψ(4160), while the contribution
from the other channels is small in the whole region. We have
not considered the D∗

s D̄
∗
s production which only contributes

a small quantity at the very end of the ψ(4160) resonance
tail.

We refrain from a detailed comparison with experimental
data which are somewhat conflicting in the different exper-

iments. Yet, it is instructive to look at the most recent mea-
surements in Ref. [10]. By looking at Fig. 16 of Ref. [10] we
can see that the D+D∗− channel peaks around 4040 MeV as
in our Fig. 7 and has a shoulder around 4160 MeV, as we also
find in Fig. 7. These features are also observed in Fig. 4 of
Ref. [4]. On the other hand, the D∗+D∗− channel in Fig. 16
of Ref. [10] peaks around 4150–4200 MeV, as is also the case
of our contribution of that channel in Fig. 7. The strength at
the peaks of these two contributions filtering just the D+D∗−

and D∗+D∗− channels in Fig. 7 is ∼ 1

4
5.5/

1

2
3 = 0.92 versus

∼ 4/3 = 1.33 in Ref. [10]. The agreement is fair.
With the caveat on the problem of conflict in the experi-

ment, we nevertheless compare in Table 3 our results with the
experimental ones of Ref. [11] and the theoretical ones, also
using a 3P0 model, of Ref. [2]. Note that the comparison is
not all fair since we obtain the results of Fig. 7 from the inter-
ference of the two resonances. Our results in Table 3 refer
to values of Fig. 7 at the peak of the ψ(4040) and ψ(4160)

including the interference. The individual contributions in
the theory of Ref. [2] come from single particle states and in
the experiment from an analysis of data in Ref. [10], which
are also in conflict with those of Ref. [9]. Hence, caution
should be taken in the comparison to data in Table 3.

In addition to the caveat about comparing magnitudes
which are not exactly the same, as discussed above, we should
make some extra comments. The first one is that the theoreti-
cal errors quoted in Table 3 are only statistical. There should
be systematic errors tied to the assumptions done, but these
are more difficult to quantize. Our assumptions relying on the
3P0 model to hadronize the cc̄ state are rather standard and
we do not rely upon a theoretical quark model but take input
from experiment. Yet, there seems to be worse agreement
in the case of the ψ(4160) and part of it could be blamed
on an approximation made in this case. Indeed, as shown in
Eq. (A.8) of Ref. [15], for the case of d-wave resonances
there is the possibility to have internal angular momentum
l = 1 and l = 3. The l = 3 case involves quark matrix
elements of j3(q̂) versus j1(q̂) for l = 1, and also goes
with Y3μ(q̂) instead of Y1μ(q̂) implicit in Eq. (19). Mak-
ing general assumptions of dominance of the lowest pos-
sible orbital angular momentum, the l = 3 component is
neglected in [15] and here for the d-wave state. For the s-
wave state only l = 1 is possible and that approximation
is not done. In this latter case the weights g2

R,i of Table 1
coincide with those of Refs. [19–21]. In any case, we think
that a better comparison with data, given the interference of
the two resonances, should be done with the distributions for
the different D(∗) D̄(∗),D(∗)

s D̄(∗)
s , channels as a function of

the energy, in the line discussed above comparing with data
of Refs. [4,10]. New and more precise data improving on
present ones and solving actual discrepancies would help to
clarify the issue.
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Table 3 Ratios of branching fractions for the ψ(4040) and ψ(4160) resonances

Ref. [4] Ref. [2] Our results

1. B(ψ(4040) → DD̄)/B(ψ(4040) → D∗ D̄) 0.24 ± 0.05 ± 0.12 0.003 0.54 ± 0.04

2. B(ψ(4040) → D∗ D̄∗)/B(ψ(4040) → D∗ D̄) 0.18 ± 0.14 ± 0.03 1.0 0.18 ± 0.02

3. B(ψ(4160) → DD̄)/B(ψ(4160) → D∗ D̄∗) 0.02 ± 0.03 ± 0.02 0.46 0.56 ± 0.06

4. B(ψ(4160) → D∗ D̄)/B(ψ(4160) → D∗ D̄∗) 0.34 ± 0.14 ± 0.05 0.011 0.60 ± 0.07

There are discrepancies of our results with the experi-
mental analysis, particularly in the DD̄/D∗ D̄∗ ratio of the
ψ(4160) where both the results of [2] and the present ones
strongly disagree with the experimental analysis. In the other
cases the present results are closer to the analysis than those
of Ref. [2].

The formalism used in the present work is similar to the
one used in [17] in the study of the ψ(4040) resonance, earlier
used also in the study of the lineshape of the ψ(3770) [18],
renormalizing the vector propagators by the meson–meson
selfenergy. Apart from some technical details, the major dif-
ference is that the couplings of the resonance to the D(∗) D̄(∗)

channels are taken from experiment (actually from the ratios
of Table 3), while we have determined them theoretically by
means of the 3P0 model. A second major difference is that
we have studied the ψ(4040) in connection with the ψ(4160)

due to the strong interference between the two, while only the
ψ(4040) is considered in [17], although it is mentioned that
for the purpose of their work, the investigation of a possible
associated resonance, the consideration of the ψ(4160) does
not change much the results.

We can also do the compositeness test. In order to calcu-
late the strength of the original vector when it is dressed by
the meson–meson components we use the following formula
(See detailed analysis in Ref. [15])

Z = 1

1 − ∂Re�(p2)

∂p2

∣∣∣
p2=M2

R

. (26)

On the other hand 1− Z provides the meson–meson strength

of the dressed vector.1 If ∂Re�(p2)

∂p2 is quite smaller than 1, we
can make the following expansion

1 − Z 	 −∂Re�

∂p2

∣∣∣
p2=M2

R

, (27)

where − ∂Re�
∂p2

∣∣∣
p2=M2

R

reads as the meson–meson strength

1 In Ref. [15] a thorough discussion is made of the meaning of the
strengths of the meson–meson channel, which measures the weight
of each channel in the wave function, but cannot be associated to a
probability, except if the channel is closed.

in the wave function and it can be written for each channel
as

P(MM)i 	 −∂Re�i (p2)

∂p2

∣∣∣
p2=M2

R

, (28)

where �i is the contribution of the i-th channel to �. We
calculate the meson–meson weight and show the results
using the results of Set I in Tables 4 and 5 for the ψ(4040)

and ψ(4160), respectively. The value of Z shown there is
obtained from Eq. (26) and includes the contributions from
all channels.

As we can see in Tables 4 and 5, we obtain some negative
results for the P(MM), which should not come as a big surprise
since the weights have not to be identified with a probabil-
ity, as discussed in detail in [15]. For the closed channels,
where the identification of weight with probability is fair, we
obtain positive numbers. The interesting result, however, is
that all these numbers are very small, which make these vec-
tor mesons to qualify as mostly cc̄ states with a very small
meson–meson cloud component.

4 Summary and conclusions

We have made a fit to the e+e− → hadron data in the
region of the ψ(4040) and ψ(4160) resonances, consider-
ing the hadronic channels DD̄, DD̄∗, D∗ D̄, D∗ D̄∗, Ds D̄s ,
Ds D̄∗

s , D∗
s D̄s , D∗

s D̄
∗
s . We have taken into account the renor-

malization of the vector mesons by including the meson–
meson selfenergy, and the scheme provides automatically
the cross sections into the different channels. We had some
freedom fitting the data by means of a few parameters, but
the relative weight of the different channels was calculated
theoretically by means of the 3P0 model, hence the relative
ratios for production of the different channels is a predic-
tion of the theory. The sometimes conflicting experimental
results do not allow a quantitative comparison with experi-
ment, but the agreement with the most recent experimental
data is fair. We have also explored a side effect of the the-
ory by evaluating the weights of the different meson–meson
components in the wave function and determined that the
ψ(4040) and ψ(4160) have very small meson–meson com-
ponents and largely qualify as cc̄ states. Improved rates of
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Table 4 Meson–meson probabilities in the ψ(4040) wave function for Set I

Channels − ∂�
∂p2

∣∣
p2=M2

ψ(4040)
P(MM) Z

D0 D̄0 (−1.499 + 1.065i) × 10−2 −1.499 × 10−2

D+D− (−1.434 + 1.054i) × 10−2 −1.434 × 10−2

D0 D̄∗0 + c.c (−2.816 + 3.499i) × 10−2 −2.816 × 10−2

D+ D̄∗− + c.c (−2.654 + 3.437i) × 10−2 −2.654 × 10−2

D∗0 D̄∗0 (−1.572 × 10−3 + 3.267i × 10−2) −1.572 × 10−3

D∗+D∗− (2.108 × 10−3 + 2.968i × 10−2) 2.108 × 10−3

D+
s D−

s (−4.026 + 7.377i) × 10−3 −4.026 × 10−3

D+
s D∗−

s + c.c (1.591 × 10−3 + 2.366i × 10−5) 1.591 × 10−3

D∗+
s D∗−

s (8.467 × 10−4 + 4.427i × 10−6) 8.467 × 10−4

Total (−0.0851 − 0.0160i) −0.0851 0.91

Table 5 Meson–meson probabilities in the ψ(4160) wave function for Set I

Channels − ∂�
∂p2

∣∣
p2=M2

ψ(4160)
P(MM) Z

D0 D̄0 (−1.155 × 10−2 + 5.296i × 10−3) −1.155 × 10−2

D+D− (−1.107 × 10−2 + 5.339i × 10−2) −1.107 × 10−2

D0 D̄∗0 + c.c (−6.171 + 5.157i) × 10−2 −6.171 × 10−2

D+ D̄∗− + c.c (−5.934 + 5.141i) × 10−3 −5.934 × 10−3

D∗0 D̄∗0 (−2.057 + 3.648i) × 10−2 −2.057 × 10−2

D∗+D∗− (−1.939 + 3.624i) × 10−2 −1.939 × 10−2

D+
s D−

s (−4.471 + 5.007i) × 10−3 −4.471 × 10−3

D+
s D∗−

s + c.c (−1.127 + 4.361i) × 10−3 −1.127 × 10−3

D∗+
s D∗−

s (8.845 × 10−3 + 1.423i × 10−4) 8.845 × 10−3

Total (−7.145 × 10−2 + 0.103i) −7.145 × 10−2 0.93

production of these channels in the future should allow for
a more quantitative comparison, and agreement or disagree-
ment with data can shed light on possible mixing of the cc̄
charmonium states with other configurations, a topic of cur-
rent interest.
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