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Abstract We study thin accretion disks in the gravitational
field of a class of rotating regular black holes. Our objective
is to determine the key parameters governing these accre-
tion disks: the radius of the innermost stable circular orbit
(rISCO) and the efficiency (η) of the accretion disk in convert-
ing matter into radiation. We employ a simplified model to
describe the disk’s radiative flux, and differential and spectral
luminosity. Subsequently, we compare our findings with the
expectations from accretion disks around Kerr black holes.
Notably, our calculations reveal that both the luminosity of
the accretion disk and its efficiency are greater when consid-
ering the geometry of rotating regular black holes, particu-
larly for fixed and small values of the spin parameter ( j), in
contrast to the predictions obtained using the Kerr metric for
a black hole of the same mass. These results offer intriguing
insights into the behavior of astrophysical black holes.

1 Introduction

The existence of black holes (BHs) is a direct consequence of
the equations of general relativity and plays a pivotal role in
astrophysics today. The presence of astrophysical BH candi-
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dates1 is strongly supported by various factors. This support
includes the discovery of gravitational waves generated by
binary mergers [4–9] and the recent imaging of the “shadow”
cast by the compact objects located at the centers of the M87
and Milky Way galaxies [10–15].

However, it is important to note that the imaging of a BH
shadow alone cannot definitively rule out alternative models
[16–18], including BH mimickers [19–22], and naked sin-
gularities [23–31]. This is due to the presence of degeneracy
among competing models that fall within the range of obser-
vational error bars.

In addition, as spacetime curvature approaches and sur-
passes the Planck value, the concept of classical spacetime
can become deceptive. The prevailing consensus is that sin-
gularities should be addressed within the framework of quan-
tum gravity. This prompts the question of whether astrophys-
ical BHs can be adequately characterized by the BH solutions
established in general relativity, or if alternative models such
as BH mimickers and non-singular BHs might offer better
descriptions.

In this context, regular black holes (RBHs) emerge as
exceptionally intriguing entities that defy the conditions laid
out by singularity theorems while potentially embodying the
characteristics of astrophysical black hole candidates. These
RBHs, in both static and rotating forms, have been explored
within a diverse range of scenarios [32–57], with some mod-
els dynamically arising from gravitational collapse [58,59].
As a result, it comes as no surprise that the investigation

1 While BH candidates are widely accepted as established astrophys-
ical objects, certain unresolved questions regarding their nature and
observational constraints remain open [1–3].
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of their observable properties represents a thriving area of
research [60–68]. Notably, recent studies have shed light
on the effects of Bardeen [69] and Hayward [70] RBHs on
the spectral luminosity of accretion disks, revealing devia-
tions from the expected behavior observed with Kerr and
Schwarzschild black holes [71].

Motivated by the considerations outlined above regarding
RBHs, we envisage the possibility of distinguishing rotating
RBHs from Kerr BHs through observations of the emission
spectrum of accretion disks. To achieve this, we employ the
approach pioneered by Novikov, Page, and Thorne [72,73],
to scrutinize the behavior of RBHs when surrounded by an
accretion disk.

In this analysis, we build upon a fundamental conceptual
model of the accretion disk. This model incorporates certain
simplifications that allow us to efficiently predict various
spectral and thermodynamic variables. Within this frame-
work, we consider a thin accretion disk, characterized by
a delta-like distribution of matter situated in the equatorial
plane. We follow the assumption, as described in Ref. [74],
that the mass of the disk is negligible compared to that of
the central object. This assumption permits us to examine
geodesic motion in the background geometry of the cen-
tral object. We also assume that the particles within the disk
lack charge and follow circular orbits. Consequently, we omit
the consideration of the effects of dynamical friction, which
would otherwise cause the particles to spiral inward.

Nevertheless, given a sufficiently short timescale, this
effect can be neglected. We proceed to adopt a straightfor-
ward emission model for the disk particles, resulting in a
black-body spectrum.

Based on the aforementioned assumptions, we conduct
calculations involving the innermost stable circular orbit
(ISCO), flux, differential luminosity, spectral luminosity, and
the efficiency of mass-to-energy conversion within the accre-
tion disk. Subsequently, we compare our results with their
counterparts in the Kerr geometry.

The remainder of the paper is structured as follows: In
Sect. 2, we provide a description of the key features per-
taining to the class of rotating RBHs under consideration.
We also provide a brief review of the formalism for test
particle motion within accretion disks. Moving to Sect. 3,
we review the thin accretion disk formalism, drawing from
the Novikov–Thorne and Page–Thorne models, and apply-
ing it to the rotating RBH solution currently in focus. We
then proceed to discuss and compare our findings with the
corresponding results within the Kerr spacetime. Lastly, in
Sect. 4, we explore the potential implications of our results
for the observation of astrophysical black holes. Throughout
this paper, we employ natural units, setting G = c = 1.

2 Test particle motion around regular black holes

In this section, we examine a group of RBH solutions in a
general form, which incorporates the cosmological constant
[75], and derive the orbital parameters of neutral test particles
on circular orbits in the equatorial plane.

The general solution considered here is built from a mass
function of the type

m(r) = M
[
1 +

(r0

r

)q]− p
q

, (1)

which in the static case without cosmological constant guar-
antees an asymptotically flat spacetime for positive p and q.

It has been shown that RBH static solutions of this kind can be
obtained from gravity coupled to a theory of nonlinear elec-
trodynamics [76–78]. Here, M and r0 are the mass and length
parameters, respectively. The well-known Bardeen [69,79]
and Hayward [70] BHs correspond to the choices p = 3,

q = 2 and p = q = 3, respectively, and the choice p ≥ 3
ensures that the geometry is regular at the center for the static
RBHs.

The most general line element including rotation and the
cosmological constant obtained from the above mass func-
tion is written in Boyer–Lindquist coordinates as

ds2 = − 1

�

(
�r − �θa

2 sin2 θ
)

dt2 + �

�r
dr2 + �

�θ

dθ2

+ 1

�2�

[
(r2 + a2)2�θ − �r a

2 sin2 θ
]

sin2 θdφ2

− 2a

��

[
(r2 + a2)�θ − �r

]
sin2 θdtdφ, (2)

where

�θ = 1 + �

3
a2 cos2 θ, � = r2 + a2 cos2 θ, (3a)

�r =
(
r2 + a2

)(
1 − �

3
r2

)
− 2rm, � = 1 + �

3
a2,

(3b)

where a is the Kerr parameter related to the angular momen-
tum of the source. For vanishing � and r0, the metric Eq. (2)
reduces to the Kerr solution, which will be considered as a
reference model to compare our RBH expectations.

2.1 Conditions on the metric

In the following, for the sake of simplicity, we consider the
Hayward-like rotating RBH by setting p = q = 3, without
cosmological constant, i.e. � = 0. The RBH obtained for
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Fig. 1 Contour plots depicting the locations of the inner (left panel)
and outer (right panel) horizons. These locations are presented as func-
tions of the deformation parameter r∗

0 = r0/M and the spin parameter
j = a/M for the rotating Hayward black hole. It is important to note
that the shaded region represents the parameter values for which the

horizons exist. The numerical values displayed on the contours indicate
the corresponding horizon radius rH /M. It should be observed that
when r∗

0 �= 0, the values of the horizon radii satisfying the extremality
condition may exceed 1

p = q = 3 is also preferable because in the non-rotating
case, it describes a simple model of a BH in general relativ-
ity coupled to a simple theory of nonlinear electrodynamics
which can be obtained dynamically from a collapse scenario
similarly to the classical Oppenheimer–Snyder model [58].

Similar to the Kerr solution, the rotating solution under
consideration also has inner and an outer horizons, which
are useful for characterizing the accretion disk properties.
Specifically, the horizons of rotating Hayward BHs are cal-
culated using the standard condition 1/grr = 0. Its solu-
tion contains five roots, only two of which are physical. The
remaining three roots are complex and thus nonphysical. The
largest of the two physical roots corresponds to the outer hori-
zon and the smallest corresponds to the inner horizon, anal-
ogous to the Kerr metric. It should be noted that unlike the
static case, where r0 can be only positive, for a rotating case,
one can in principle allow for r0 to be negative. In the case
of an RBH obtained from the theory of nonlinear electrody-
namics, a negative r0 could then be interpreted as related to
the sign of the magnetic charge. The values of the inner and
outer horizons depending on the parameters r∗

0 = r0/M and
j = a/M are plotted in Fig. 1.

It should be noted that for every given value of r∗
0 , there

exists a range of j values within which both horizons exist.
However, there is a special extremal case where the two hori-
zons coincide, resulting in a boundary beyond which the
spacetime becomes horizonless. Furthermore, it is worth not-
ing that in the Kerr case, where r∗

0 = 0, both the inner and
outer horizons approach the limit rH/M → 1 in the extremal
scenario as j → 1.However, when r∗

0 �= 0, the limiting value

of rH/M at which the two horizons coincide is larger than
unity.

2.2 Circular orbits for the Kerr solution

As mentioned earlier, the line element for rotating RBHs,
given by Eq. (2) in the absence of both cosmological and
length parameters, reduces to the Kerr metric. Therefore, it
is expedient to consider the Kerr metric first and then analyze
circular geodesics in the gravitational field of rotating RBHs.

To facilitate a comparison of accretion disks surround-
ing rotating RBHs with the Kerr metric, we will now briefly
review the relevant quantities for particles on circular orbits
in the Kerr geometry, whose line element is [80]

ds2 = −
(

1 − 2Mr

�

)
dt2 + �

�
dr2 + �dθ2

+
(
r2 + a2 + 2Mra2

�
sin2 θ

)
sin2 θdφ2

−4Mra

�
sin2 θdφdt, (4)

where � = r2 + a2 cos2 θ and � = r2 − 2Mr + a2. The
total gravitational mass of the source is given by M,; its
dimensionless angular momentum, namely the spin param-
eter, is j = a/M , and so one can conclude that the Kerr
metric is fully characterized by only two parameters. The
Schwarzschild metric is recovered as a = 0.

For circular orbits around the Kerr black hole in the equa-
torial plane we set θ = π/2, with ṙ = θ̇ = r̈ = 0. The
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expressions for the angular velocity, energy, and angular
momentum of a test particle are


2 = M

r3 ± 2ar2
√
M/r + a2M

, (5a)

E2 =
(√

r (r − 2M) ± a
√
M

)2

r2
(
r ± 2a

√
M/r − 3M

) , (5b)

L2 = M
(
r2 ∓ 2a

√
M/r + a2

)2

r2
(
r ± 2a

√
M/r − 3M

) , (5c)

where the ± signs correspond to co-rotating and counter-
rotating particles with respect to the direction of rotation of
the BH, respectively [81].

In order to find rISCO, we will simply use the dL/dr =
dE/dr = 0 condition, which is equivalent to d2Ueff/dr2 =
0, where Ueff is the effective potential of test particles in
circular orbits. Hence, the radius of the ISCO for the Kerr
metric is given by

r±
ISCO

M
= 3 + Z2 ± √

(3 − Z1)(3 + Z1 + 2Z2), (6)

with

Z1 ≡ 1 +
(

1 − j2
) 1

3
(
(1 + j)

1
3 + (1 − j)

1
3

)
, (7a)

Z2 ≡
(

3 j2 + Z2
1

) 1
2
. (7b)

At this point, it is practical to introduce the BH efficiency,
η, in converting matter into radiation. Unlike the location of
the ISCO, this quantity is coordinate-independent and can
be measured, at least in principle. It is given by

η = [1 − E(rISCO)] × 100%, (8)

playing a prominent role in the physics of accretion disks.

2.3 Circular orbits for rotating regular black holes

In analogy to the Kerr spacetime, we consider the orbital
parameters of test particles in the field of rotating RBHs. For
test particles moving in circular orbits in the equatorial plane,
the angular velocity is given by


 =
aM

(
r3 − 2r3

0

) −
√
M

(
r3 − 2r3

0

)
A

a2M
(
r3 − 2r3

0

) − A2
, (9)

where A = A(r) = r3 + r3
0 and a > 0 (a < 0) corresponds

to co-rotating (counter-rotating) particles with respect to the
direction of rotation of the BH, respectively.

The energy per unit mass E and the angular momentum
per unit mass L of test particles moving in circular orbits are
then given by

E = C− + aB
√
A

(
C− + 2aB
 − (

Ar2 + a2C+
)

2

) , (10a)

L =
(
Ar2 + a2C+

)

 − 2aB√

A
(
C− + 2aB
 − (

Ar2 + a2C+
)

2

) , (10b)

where

B = 2Mr2, C± = A ± B. (11)

Unfortunately, the expression for rISCO in the field of rotat-
ing RBHs cannot be found analytically. Therefore, the value
of rISCO has been calculated only numerically.

Thus, to carry out the numerical analysis and present
results more explicitly, it is useful to introduce dimensionless
quantities defined as2 
∗(r) = M
(r), L∗(r) = L(r)/M,

E∗(r) = E(r), and r∗
0 = r/M. For comparison, the depen-

dence of the angular velocity, angular momentum, and energy
of neutral test particles on the radial coordinate in the Kerr
and Hayward spacetimes is provided in the appendix.

In Fig. 2, we display the ISCO radius, rISCO (left panel),
and the efficiency, η (right panel), of accretion disks as func-
tions of the spin parameter j, selecting different values of
r∗

0 . In Fig. 3, we display the ISCO radius, rISCO (left panel),
and the efficiency, η (right panel), of accretion disks as func-
tions of the parameter r∗

0 for different values of j. As one
may notice, in order to obtain smaller rISCO and correspond-
ingly larger η, the spin parameter j must increase and the
parameter r∗

0 must decrease. Eventually, one can obtain the
smallest rISCO and largest η only when r∗

0 = 0, i.e. j = 1,

which corresponds to the extreme Kerr black hole. However,
for larger values of r∗

0 and smaller values of j, the rotating
RBHs can have smaller rISCO and correspondingly larger η

with respect to the Kerr black holes.
Recalling that the Kerr spacetime is obtained for r∗

0 = 0
and the static Hayward BH is obtained for j = 0, we note
that the curves end at the values of j and r∗

0 for which the
RBH becomes extreme, consistently with what is shown in
Fig. 1.

3 Spectra of thin accretion disks

To explore the luminosity and spectral properties of the
accretion disk surrounding RBHs, we involve the simplest
approach developed in [72,73], where the radiative flux,3

F , yields

2 The behavior of 
∗, L∗, and E∗ for Kerr and the static RBH is
illustrated in the appendix. As expected, departures from Schwarzschild
are more pronounced at small radii.
3 The radiative flux is commonly the energy emitted per unit area per
unit time from the accretion disk.
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Fig. 2 Left panel: The ISCO radii as a function of the angular momen-
tum j for the rotating RBH with different values of r∗

0 . Right panel:
The radiative efficiency η of rotating RBHs as a function of the angular

momentum j for different values of the parameter r∗
0 . The case r∗

0 = 0
corresponds to the Kerr BH. The curves end at the values of j where
the RBH horizon becomes extremal

Fig. 3 Left panel: The ISCO radii as a function of the parameter r∗
0

for the rotating RBH (blue, red, green, and purple curves) and Hayward
metric (black solid curve) for different values of the angular momentum
j. Right panel: Radiative efficiency η as a function of the parameter r∗

0

(blue, red, green, and purple curves) and Hayward metric (black solid
curve) for different values of the angular momentum j. The curves end
at the values of j , where the RBH horizon becomes extremal

F (r) = − K

4π
√−g


,r

(E − 
L)2

∫ r

rISCO

(E − 
L) L ,r̃dr̃ ,

(12)

for a constant mass accretion rate, defined by K ≡ ṁ, con-
sequently computing the flux per unit accretion rate F/ṁ in
lieu of the flux itself.

Spacetime geometry is clearly involved through the deter-
minant of the metric of the three-dimensional subspace

(t, r, ϕ), i.e.
√−g =

√
−grr (gtt gϕϕ − g2

tϕ) [82], where

for the Kerr and rotating Hayward BH
√−g = r when

θ = π/2. Thus, invoking thermodynamic equilibrium, the
corresponding radiation appears emitted by virtue of a black
body. Hence, radiation is modeled as isotropic, providing the
Stefan–Boltzmann law for the emitted temperature

F (r) = σ T ∗4, (13)

where σ is the usual Stefan–Boltzmann constant and F (r)
the radiative flux, function of the radial distance, whereas T ∗
the intrinsic temperature.

3.1 Observable quantities from accretion disks

Remarkably, it appears crucial to emphasize that the radiative
flux F is not directly observable, as it is a quantity measured
in the rest frame of the accretion disk.

From an observational perspective, the differential lumi-
nosity L∞ appears more practical than radiative fluxes that,
conversely, cannot be measured. Following Refs. [72,73], we
write the differential luminosity as
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Fig. 4 Radiative flux F ∗ multiplied by 105 of the accretion disk versus normalized radial distance r/M. Left panel: for rotating RBHs with r∗
0 = 0

(Kerr). Right panel: for RBHs with j = 0 (Hayward)

dL∞
d ln r

= 4πr
√−gEF (r), (14)

which clearly describes the radiation emitted by the accretion
disk at a given distance.

From the differential luminosity, one can determine spec-
tra and frequencies, i.e., the direct measurable quantities.

Defining the spectral luminosity distribution involves
computing it as observed at infinity, following the procedure
for modeling it as a black body, namely [83]

νLν,∞ = 60

π3

∫ ∞

rISCO

√−gE

M2
T

(ut y)4

exp
[
ut y/F ∗1/4

] − 1
dr, (15)

where Lν,∞ points out that observations are provided far
from the source. In the above relation, y = hν/kT ∗, h is the
Planck constant, ν is the emitted radiation frequency, and k
is the Boltzmann constant.

Moreover, we have

ut (r) = 1√−gtt − 2
gtϕ − 
2gϕϕ

, (16)

where ut is the contra-variant zero (time) component of the
four-velocity.

The dimensionless argument implies normalized flux with
respect to the total mass M. For our computations, the quan-
tity F ∗(r) = M2F (r) yields a well-posed representation of
the flux that we will display in our numerical findings.

3.2 Theoretical analysis

In Fig. 4, we have plotted the radiative flux as a function
of the normalized radial coordinate r/M for rotating RBHs
with fixed r∗

0 = 0 and different values of j, corresponding to
the Kerr metric (left panel), and for static RBHs with fixed
j = 0 and different values of r∗

0 , corresponding to the Hay-
ward metric (right panel). In the left panel, positive values
of j result in a larger flux in all ranges of r compared to

the Schwarzschild spacetime. Conversely, negative values of
j lead to a smaller flux across all ranges of r compared to
the Schwarzschild solution. In the right panel, the radiative
flux in the Hayward spacetime with positive values of r∗

0
consistently surpasses that in the Schwarzschild spacetime
throughout the entire range of r.

In Fig. 5 we illustrate the radiative flux as a function of the
normalized radial coordinate for rotating RBHs in analogy
to Fig. 4, with one exception: we fixed r∗

0 = 0.6 and left j
to be arbitrary (left panel), while in the right panel, we fixed
j = 0.4 and allowed r∗

0 to vary. As can be seen in the left
panel, the rotating Hayward black holes with the same values
of j, as in Fig. 4, will have larger radiative flux with respect
to the Kerr black hole. In the right panel, the radiative flux
for rotating Hayward BHs with fixed value of j = 0.4 and
different values of r∗

0 is larger than static Hayward BHs (see
the right panel of Fig. 4).

In Fig. 6 we plot the dimensionless temperature T ∗ of
accretion disks around the rotating RBHs with r∗

0 = 0, which
as mentioned earlier correspond to the Kerr spacetime (left
panel), and RBHs with j = 0 (right panel), correspond
to the Hayward spacetime. In the left panel, the tempera-
ture for positive (negative) values of j is larger (smaller)
than in the Schwarzschild spacetime (black solid curve). In
the right panel, the temperature for all positive values r∗

0 is
always larger than in the Schwarzschild spacetime (black
solid curve).

In Fig. 7 we present the dimensionless T ∗ of accretion
disks around RBHs in analogy to Fig. 6, but with one excep-
tion: in the left panel, we fix r∗

0 = 0.6 and vary j, and in the
right panel we fix j = 0.4 and vary r∗

0 . Thus, the temperature
in the accretion disk around rotating Hayward BHs is higher
than that around Kerr BHs with identical j < 1 (left panel).
In the right panel, the temperature of the disk around rotating
Hayward BHs with fixed j = 0.4 and different r∗

0 is higher
than in the static Hayward metric with the same r∗

0 .
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Fig. 5 Radiative flux F ∗ multiplied by 105 of the accretion disk versus normalized radial distance r/M. Left panel: for rotating RBHs with
r∗

0 = 0.6. Right panel: for RBHs with j = 0.4

Fig. 6 The temperature T ∗ of accretion disks versus normalized radial distance r/M. Left panel: Around the rotating RBHs with r∗
0 = 0. Right

panel: Around the RBHs with j = 0

Fig. 7 The temperature T ∗ of accretion disks versus normalized radial distance r/M. Left panel: Around the rotating RBHs with r∗
0 = 0.6. Right

panel: Around the RBHs with j = 0.4
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Fig. 8 Differential luminosity multiplied by 102 of the accretion disk versus normalized radial distance r/M. Left panel: For rotating RBHs with
r∗

0 = 0. Right panel: For RBHs with j = 0

Fig. 9 Differential luminosity multiplied by 102 of the accretion disk versus normalized radial distance r/M. Left panel: For rotating RBHs with
r∗

0 = 0.6. Right panel: For RBHs with j = 0.4

In Fig. 8 we present the differential luminosity as a func-
tion of the normalized radial coordinate for rotating RBHs,
where we fix r∗

0 = 0 and vary j (left panel) and fix j = 0
and vary r∗

0 (right panel). Here, the behavior of the differen-
tial luminosity is similar to that of the radiative flux shown
in Fig. 4. This is because both quantities are related through
Eq. (14). Therefore, everything observed in the flux auto-
matically translates to the differential luminosity. The same
description is true for Fig. 9, which is directly related to Fig. 5.

In Fig. 10, we depict the spectral luminosityLν,∞,defined
by Eq. (15), as a function of the frequency of radiation emit-
ted by the accretion disk. The left panel shows rotating RBHs
with fixed r∗

0 = 0 and arbitrary j, corresponding to the
Kerr metric, while the right panel represents RBHs with
fixed j = 0 and arbitrary r∗

0 , corresponding to the Hayward
metric, as mentioned above. Thus, for co-rotating (counter-
rotating) orbits, the spectral luminosity of the accretion disk
is larger (smaller) around the Kerr black hole compared to
the Schwarzschild one (left panel). The spectral luminos-
ity of the disk around the static Hayward black hole with

r∗
0 > 0 is always larger than around the Schwarzschild black

hole. This fact is related to the value of rISCO. Unlike in the
Schwarzschild spacetime, in the Hayward black hole with
r∗

0 > 0, circular orbits can be closer to the central object.
Furthermore, in Fig. 11, we observe behavior of the spec-

tral luminosity similar to that presented in Fig. 10. However,
the inclusion of r∗

0 = 0.6 in the left panel and j = 0.4 in
the right panel increases the values of the spectral luminosity
in both panels. Thus, we confirm that in the field of rotating
Hayward black holes with j < 1 and r∗

0 > 0, accretion disks
can possess larger luminosity compared to the Kerr metric.

4 Final remarks

We have examined the spectral and thermodynamic proper-
ties of accretion disks surrounding rotating regular solutions.
Our exploration of these characteristics is rooted in the idea
that the luminosity of an accretion disk can serve as a dis-
criminating factor in identifying the type of spacetime that
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Fig. 10 Spectral luminosity versus frequency of the emitted radiation for blackbody emission of the accretion disk. Left panel: For rotating RBHs
with r∗

0 = 0. Right panel: For RBHs with j = 0

Fig. 11 Spectral luminosity versus frequency of emitted radiation for black-body emission of the accretion disk. Left panel: For rotating RBHs
with r∗

0 = 0.6. Right panel: For RBHs with j = 0.4

represents a given BH or, more broadly, compact objects, BH
mimickers, and the like.

As a result, we have delved into investigating the impact
of a generic RBH solution, in the absence of a cosmological
constant, on the physics of an accretion disk. In this endeavor,
we have compared our findings with the corresponding sin-
gular scenario associated with the Kerr solution.

In doing so, we have also underscored the potential to dif-
ferentiate between rotating RBHs and the expectations asso-
ciated with Kerr black holes. Our objective was to distinguish
the predicted outcomes of regular solutions from those of
singular solutions, thereby highlighting the key disparities in
both theoretical predictions and measurable effects.

Remarkably, we have extended our comparisons to include
non-rotating RBHs, revealing the discrepancies one would
anticipate when contrasting our solution with prior literature,
particularly the Hayward RBH model.

To achieve this, we conducted a detailed analysis of the
characteristics of accretion disks in the vicinity of rotating
RBHs. Specifically, we investigated the behavior of neutral

test particles moving along circular geodesics, which allowed
us to determine crucial parameters such as the ISCO radius,
radiative flux, differential luminosity, and spectral luminos-
ity.

Furthermore, we quantified the efficiency of mass-to-
energy conversion within the accretion disks, emphasizing
the distinct deviations from the predictions of the Kerr solu-
tion.

For our accretion disk analysis, we employed the sim-
plest standard model of a thin accretion disk, following the
Novikov–Thorne–Page approach.

Remarkably, our results reveal a significant outcome: both
the luminosity of the accretion disk and its efficiency are
notably greater for rotating RBHs than the predictions of the
Kerr metric. This distinction becomes particularly apparent
when considering scenarios with fixed, small values of the
spin parameter ( j < 1). Similar disparities are observed
in the spectra and thermodynamic properties, setting RBHs
apart from the Kerr metric and non-rotating RBH solutions.
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In view of our findings, future developments will explore
alternative RBH configurations, incorporating additional
components, such as the dark matter distribution (see, e.g.,
[84,85]). Additionally, we will investigate alternatives to the
Novikov–Thorne–Page scenario, including extra parameters
that describe the accretion disk.
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Appendix A: Kinematic properties of our solution

For completeness, we present the angular velocity (
), angu-
lar momentum (L), and energy (E) per unit mass of test parti-
cles on circular orbits in the RBH spacetime. These quantities
depend on the dimensionless angular momentum ( j) and the
parameter (r∗

0 ).

In Fig. 12, we depict the orbital angular velocity (
∗(r))
of test particles as a function of the normalized radial coor-
dinate (r/M) for Kerr black holes. The left panel showcases
different values of j = [−0.4,−0.2, 0, 0.2, 0.4], while the
right panel represents static regular black holes (Hayward)
with different values of r∗

0 = [0, 0.6, 0.8, 0.9, 1].
Figure 13 illustrates the dimensionless orbital angular

momentum (L∗(r)) of test particles as a function of the nor-
malized radial coordinate (r/M). The left panel showcases
Kerr black holes (i.e., r∗

0 = 0) with different values of j,
while the right panel displays static RBHs with varying val-
ues of r∗

0 .

Similarly, Fig. 14 depicts the energy per unit mass (E∗) of
test particles as a function of the normalized radial coordinate
(r/M). The left panel features Kerr black holes, and the right
panel displays Hayward black holes.

Fig. 12 Angular velocity of test particles as a function of normalized radial distance r/M. Left Panel: For rotating regular black holes with r∗
0 = 0

(Kerr). Right Panel: For regular black holes with j = 0 (Hayward)
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Fig. 13 Angular momentum L∗ of test particles versus normalized radial distance r/M. Left panel: For rotating regular black holes with r∗
0 = 0.

Right panel: For regular black holes with j = 0

Fig. 14 Energy E∗ of test particles versus normalized radial distance r/M. Left panel: For rotating regular black holes with r∗
0 = 0. Right panel:

For regular black holes with j = 0
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46. A. Bogojević, D. Stojković, Phys. Rev. D 61(8), 084011 (2000).
https://doi.org/10.1103/PhysRevD.61.084011. https://doi.org/10.
48550/arXiv.gr-qc/9804070

47. A. Cabo, E. Ayón, Int. J. Mod. Phys. A 14(13), 2013 (1999). https://
doi.org/10.1142/S0217751X99001019

48. S.A. Hayward, in Twelfth Marcel Grossmann Meeting on Gen-
eral Relativity, ed. by A.H. Chamseddine (2012), pp. 1181–1183.
https://doi.org/10.1142/9789814374552_0165

49. K. Jusufi, M. Jamil, H. Chakrabarty, Q. Wu, C. Bambi, A. Wang,
Phys. Rev. D 101(4), 044035 (2020). https://doi.org/10.1103/
PhysRevD.101.044035

50. S.G. Ghosh, S.D. Maharaj, Eur. Phys. J. C 75, 7 (2015). https://doi.
org/10.1140/epjc/s10052-014-3222-7

51. B. Toshmatov, B. Ahmedov, A. Abdujabbarov, Z. Stuchlík, Phys.
Rev. D 89, 104017 (2014). https://doi.org/10.1103/PhysRevD.89.
104017

52. M. Azreg-Aïnou, Phys. Rev. D 90(6), 064041 (2014). https://doi.
org/10.1103/PhysRevD.90.064041

53. M. Heydari-Fard, S. Ghassemi Honarvar, M. Heydari-Fard, Mon.
Not. R. Astron. Soc. 521(1), 708 (2023). https://doi.org/10.1093/
mnras/stad558

54. J.L. Rosa, Phys. Rev. D 107(8), 084048 (2023). https://doi.org/10.
1103/PhysRevD.107.084048

55. J.L. Rosa, P. Garcia, F.H. Vincent, V. Cardoso, Phys. Rev. D 106(4),
044031 (2022). https://doi.org/10.1103/PhysRevD.106.044031

56. J. Luís Rosa, C.F.B. Macedo, D. Rubiera-Garcia (2023). arXiv e-
prints. arXiv:2303.17296

57. N. Tsukamoto, Phys. Rev. D 97(6), 064021 (2018). https://doi.org/
10.1103/PhysRevD.97.064021

58. D. Malafarina, B. Toshmatov, Phys. Rev. D 105(12), L121502
(2022). https://doi.org/10.1103/PhysRevD.105.L121502

59. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser (2023).
arXiv e-prints. arXiv:2302.00028

60. A. Flachi, J.P.S. Lemos, Phys. Rev. D 87(2), 024034 (2013). https://
doi.org/10.1103/PhysRevD.87.024034

61. Z. Stuchlík, J. Schee, Int. J. Mod. Phys. D 24(02), 1550020 (2014).
https://doi.org/10.1142/S0218271815500200

62. B. Toshmatov, A. Abdujabbarov, Z. Stuchlík, B. Ahmedov, Phys.
Rev. D 91(8), 083008 (2015). https://doi.org/10.1103/PhysRevD.
91.083008

63. B. Toshmatov, Z. Stuchlík, B. Ahmedov, D. Malafarina, Phys.
Rev. D 99(6), 064043 (2019). https://doi.org/10.1103/PhysRevD.
99.064043

64. B. Toshmatov, B. Ahmedov, D. Malafarina, Phys. Rev. D 103(2),
024026 (2021). https://doi.org/10.1103/PhysRevD.103.024026

65. Z. Stuchlík, J. Schee, Eur. Phys. J. C 79(1), 44 (2019). https://doi.
org/10.1140/epjc/s10052-019-6543-8

66. B. Pratap Singh, S. Ali (2022). arXiv e-prints. arXiv:2207.11907
67. J. Kumar, S. Ul Islam, S.G. Ghosh, Astrophys. J. 938(2), 104

(2022). https://doi.org/10.3847/1538-4357/ac912c
68. R. Ghosh, M. Rahman, A.K. Mishra (2022). arXiv e-prints.

arXiv:2209.12291
69. J.M. Bardeen, in Proc. Int. Conf. GR5, vol. 174(1) (1968), p. 174
70. S.A. Hayward, Phys. Rev. Lett. 96(3), 031103 (2006). https://doi.

org/10.1103/PhysRevLett.96.031103
71. A. Rezaei Akbarieh, M. Khoshragbaf, M. Atazadeh (2023). arXiv

e-prints. arXiv:2302.02784
72. I.D. Novikov, K.S. Thorne, in Black Holes (Les Astres Occlus)

(1973), p. 343
73. D.N. Page, K.S. Thorne, Astrophys. J. 191, 499 (1974). https://doi.

org/10.1086/152990
74. C. Bambi, D. Malafarina, N. Tsukamoto, Phys. Rev. D 89, 127302

(2014). https://doi.org/10.1103/PhysRevD.89.127302
75. J.C.S. Neves, A. Saa, Phys. Lett. B 734, 44 (2014). https://doi.org/

10.1016/j.physletb.2014.05.026
76. E. Ayon-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998). https://

doi.org/10.1103/PhysRevLett.80.5056
77. K.A. Bronnikov, Phys. Rev. Lett. 85, 4641 (2000). https://doi.org/

10.1103/PhysRevLett.85.4641
78. K.A. Bronnikov (2022). arXiv e-prints arXiv:2211.00743
79. S. Ansoldi (2008). arXiv e-prints. arXiv:0802.0330
80. R.P. Kerr, Phys. Rev. Lett. 11(5), 237 (1963). https://doi.org/10.

1103/PhysRevLett.11.237

123

https://doi.org/10.1103/PhysRevD.100.024014
https://doi.org/10.1093/mnras/staa1878
https://doi.org/10.1088/0264-9381/29/14/145003
https://doi.org/10.1088/0264-9381/29/14/145003
https://doi.org/10.1103/PhysRevD.86.064043
https://doi.org/10.1103/PhysRevD.93.024024
https://doi.org/10.1103/PhysRevD.93.024024
https://doi.org/10.1093/mnras/sty2624
https://doi.org/10.1093/mnras/sty2624
https://doi.org/10.1103/PhysRevD.103.084005
https://doi.org/10.1103/PhysRevD.103.084005
https://doi.org/10.1088/1361-6382/abce44
https://doi.org/10.1103/PhysRevD.103.024015
https://doi.org/10.1103/PhysRevD.102.024022
https://doi.org/10.1103/PhysRevD.104.084009
https://doi.org/10.1103/PhysRevD.104.084009
https://doi.org/10.1016/0003-4916(79)90235-5
https://doi.org/10.1016/0003-4916(79)90235-5
https://doi.org/10.1088/0264-9381/5/12/002
https://doi.org/10.1007/BF00760226
https://doi.org/10.1007/BF00760226
https://doi.org/10.1007/s10714-007-0430-6
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.98.028501
https://doi.org/10.1103/PhysRevD.95.084037
https://doi.org/10.1007/JHEP07(2018)023
https://doi.org/10.1016/S0003-4916(86)80012-4
https://doi.org/10.1016/S0003-4916(86)80012-4
https://doi.org/10.1016/j.physletb.2013.03.025
https://doi.org/10.1016/j.physletb.2013.03.025
https://doi.org/10.1103/PhysRevD.50.3692
https://doi.org/10.1103/PhysRevD.50.3692
https://doi.org/10.1103/PhysRevD.53.3215
https://doi.org/10.1103/PhysRevD.53.3215
https://doi.org/10.1103/PhysRevD.61.084011
https://doi.org/10.48550/arXiv.gr-qc/9804070
https://doi.org/10.48550/arXiv.gr-qc/9804070
https://doi.org/10.1142/S0217751X99001019
https://doi.org/10.1142/S0217751X99001019
https://doi.org/10.1142/9789814374552_0165
https://doi.org/10.1103/PhysRevD.101.044035
https://doi.org/10.1103/PhysRevD.101.044035
https://doi.org/10.1140/epjc/s10052-014-3222-7
https://doi.org/10.1140/epjc/s10052-014-3222-7
https://doi.org/10.1103/PhysRevD.89.104017
https://doi.org/10.1103/PhysRevD.89.104017
https://doi.org/10.1103/PhysRevD.90.064041
https://doi.org/10.1103/PhysRevD.90.064041
https://doi.org/10.1093/mnras/stad558
https://doi.org/10.1093/mnras/stad558
https://doi.org/10.1103/PhysRevD.107.084048
https://doi.org/10.1103/PhysRevD.107.084048
https://doi.org/10.1103/PhysRevD.106.044031
http://arxiv.org/abs/2303.17296
https://doi.org/10.1103/PhysRevD.97.064021
https://doi.org/10.1103/PhysRevD.97.064021
https://doi.org/10.1103/PhysRevD.105.L121502
http://arxiv.org/abs/2302.00028
https://doi.org/10.1103/PhysRevD.87.024034
https://doi.org/10.1103/PhysRevD.87.024034
https://doi.org/10.1142/S0218271815500200
https://doi.org/10.1103/PhysRevD.91.083008
https://doi.org/10.1103/PhysRevD.91.083008
https://doi.org/10.1103/PhysRevD.99.064043
https://doi.org/10.1103/PhysRevD.99.064043
https://doi.org/10.1103/PhysRevD.103.024026
https://doi.org/10.1140/epjc/s10052-019-6543-8
https://doi.org/10.1140/epjc/s10052-019-6543-8
http://arxiv.org/abs/2207.11907
https://doi.org/10.3847/1538-4357/ac912c
http://arxiv.org/abs/2209.12291
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
http://arxiv.org/abs/2302.02784
https://doi.org/10.1086/152990
https://doi.org/10.1086/152990
https://doi.org/10.1103/PhysRevD.89.127302
https://doi.org/10.1016/j.physletb.2014.05.026
https://doi.org/10.1016/j.physletb.2014.05.026
https://doi.org/10.1103/PhysRevLett.80.5056
https://doi.org/10.1103/PhysRevLett.80.5056
https://doi.org/10.1103/PhysRevLett.85.4641
https://doi.org/10.1103/PhysRevLett.85.4641
http://arxiv.org/abs/2211.00743
http://arxiv.org/abs/0802.0330
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevLett.11.237


Eur. Phys. J. C (2024) 84 :230 Page 13 of 13 230

81. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347
(1972). https://doi.org/10.1086/151796

82. C. Bambi, Astrophys. J. 761(2), 174 (2012). https://doi.org/10.
1088/0004-637X/761/2/174

83. K. Boshkayev, A. Idrissov, O. Luongo, D. Malafarina, Mon. Not. R.
Astron. Soc. 496(2), 1115 (2020). https://doi.org/10.1093/mnras/
staa1564

84. E. Kurmanov, K. Boshkayev, R. Giambò, T. Konysbayev, O.
Luongo, D. Malafarina, H. Quevedo, Astrophys. J. 925(2), 210
(2022). https://doi.org/10.3847/1538-4357/ac41d4

85. K. Boshkayev, T. Konysbayev, Y. Kurmanov, O. Luongo, D. Mala-
farina, Astrophys. J. 936(2), 96 (2022). https://doi.org/10.3847/
1538-4357/ac8804

123

https://doi.org/10.1086/151796
https://doi.org/10.1088/0004-637X/761/2/174
https://doi.org/10.1088/0004-637X/761/2/174
https://doi.org/10.1093/mnras/staa1564
https://doi.org/10.1093/mnras/staa1564
https://doi.org/10.3847/1538-4357/ac41d4
https://doi.org/10.3847/1538-4357/ac8804
https://doi.org/10.3847/1538-4357/ac8804

	Luminosity of accretion disks around rotating regular black holes
	Abstract 
	1 Introduction
	2 Test particle motion around regular black holes
	2.1 Conditions on the metric
	2.2 Circular orbits for the Kerr solution
	2.3 Circular orbits for rotating regular black holes

	3 Spectra of thin accretion disks
	3.1 Observable quantities from accretion disks
	3.2 Theoretical analysis

	4 Final remarks
	Acknowledgements
	Appendix A: Kinematic properties of our solution
	References




