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1. Introduction

In the standard model, the strong CP phase θeff = θQCD + Arg{Det(yu yd)} is severely constrained by experiments to be smaller than 
10−10 [1–3], but the CP violating CKM phase is of O(1). This strong CP problem indicates a new mechanism to solve not accommodated 
in the standard model. The most promising scenario solving the strong CP problem is to introduce the QCD axion which is a pseudo 
Nambu-Goldstone boson associated with the Peccei-Quinn (PQ) symmetry [4]. The strong CP phase θeff can be determined by a dynamics 
of the axion field.

When we consider the string theory as well as higher-dimensional theory as an ultraviolet completion of the standard model, promot-
ing the CP phase to the axion is naturally realized. Indeed, in the string theory, all the couplings are functions of moduli fields whose 
vacuum expectation values determine the size of the couplings in the standard model. In particular, both the QCD phase θQCD as well as 
Arg{Det(yu yd)} are functions of axion fields in general. It is then interesting to ask whether the QCD and CKM phases have a common 
origin in string compactifications and at the same time the tiny strong CP phase θeff � 1 is compatible with the O(1) CKM phase.
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In the low-energy effective action of string theory, the gauge kinetic function determining the QCD phase is linearly dependent of the 
moduli fields, whereas the axion dependence of the Yukawa couplings is model dependent in general. If the Yukawa couplings have the 
Froggatt-Nielsen (FN) type structure [5] to realize the hierarchical structure of the fermion masses, yu ∝ e

2π i(kQ i +kU j )a yd ∝ e
2π i(kQ i +kD j )a

with kQ i , kU j , kD j being the FN charges of the quarks and a the axion, the CKM phase is induced by the nonvanishing field value of the 
axion a. Furthermore, Arg{Det(yu yd)} is also linearly dependent of the axion, namely Arg{Det(yu yd)} ∝ a. It indicates that when the axion 
has a common origin of the QCD and CKM phases, θeff = 0 requires 〈a〉 = 0. Then, the CKM phase cannot be generated. In this way, a 
certain non-trivial axion dependence to the Yukawa couplings is required to realize θeff � 1 compatible with the O(1) CKM phase. In this 
paper, we resolve this issue in a specific string compactification and explore the parameter region in the moduli space of the axion field 
to realize such a scenario. It gives a new insight in the strong CP problem from the view point of string theory.

This paper is organized as follows. In section 2, we show the origin of the QCD and CKM phases in Type IIB string on toroidal orientifold 
with D3/D7-branes. In particular, in Type IIB flux vacua, it is possible to have a relation between the QCD and CKM phases. In section 3, we 
explicitly evaluate both phases in a specific three-generation model realized in magnetized D7-branes and explore the parameter region 
leading to the observed CKM phase consistent with the tiny strong CP phase. It turns out that the axion controlling the magnitude of 
both phases provides semi-realistic observed values, namely mass ratios for the quarks, the elements of the CKM matrix and the Jarlskog 
invariant, thanks to the non-trivial axion-dependent Yukawa couplings. Section 4 is devoted to the conclusions.

2. The model

In this section, we show how to relate the QCD phase with the CKM phase in the effective action of superstring theory with an 
emphasis on Type IIB string theory on toroidal orientifold �3

i=1(T 2)i/(Z2 ×Z2) with D3/D7-branes.

2.1. Origin of the QCD and CKM phases

Let us first consider the origin of the QCD phase on the magnetized D7a-brane wrapping the 4-cycle (T 2) j × (T 2)k with j �= k, where 
the U(1) magnetic fluxes Fa are introduced as

m j
a

l2s

∫
(T 2) j

F j
a = n j

a, (1)

with ls = 2π
√

α′ being the string length. Here, m j
a and n j

a are the wrapping number of D7a-brane and the quantized flux, respectively. 
The gauge kinetic function on the magnetized D7a-brane is given by [6–8]

fD7a = |mk
am j

a|
(

T i − nk
a

mk
a

n j
a

m j
a

τ

)
, (i �= j �= k) (2)

from which the CP phase is determined by two axions, originating from the Ramond-Ramond 4-form Re(T i) = ∫
(T 2) j×(T 2)k

C4 and Ramond-

Ramond 0-form Re(τ ) = C0, respectively. The imaginary part of the Kähler moduli Ti now denotes the volume of four-cycle wrapped by 
the D7-brane, following [8].

Next, we discuss the origin of the CKM phase in Yukawa couplings of matter fields living on magnetized D7-branes. Let us consider 
U (N) magnetic flux on N stacks of D7-branes such that U (N) gauge symmetry on D7-branes is broken to U (Na) × U (Nb) × U (Nc) with 
N = Na + Nb + Nc . Thanks to the magnetic fluxes, bifundamental zero-modes for (Nα, N̄β), α, β = a, b, c have the net number of index 
labeled by p = 0, 1, · · · , |I j

αβ | − 1 with I j
αβ = n j

α/m j
α − n j

β/m j
β on each 2-torus (T 2) j wrapped by D7-branes and these degenerate chiral 

zero-modes can be identified with the quarks and/or leptons. From the analysis in the low-energy effective action of magnetized D7-
branes, Yukawa couplings of such chiral zero-modes are found by calculating the overlap integral of zero-mode wavefunctions. On each 
2-torus (T 2) j inside the 4-cycle wrapped by magnetized D7-branes, holomorphic Yukawa couplings are provided by [9]

Y pqs = ϑ

⎡
⎣− 1

I j
ab

(
q

I j
ca

+ s

I j
bc

)
0

⎤
⎦(

0, τ j

∣∣∣I j
ab I j

bc I j
ca

∣∣∣) , (3)

up to the normalization factor, where q = 0, 1, · · · , |I j
ca| − 1, s = 0, 1, · · · , |I j

bc| − 11 and ϑ denotes the Jacobi theta function as a function 
of the complex structure modulus τ j

ϑ

[
c
0

]
(0, τ j) ≡

∑
l∈Z

eπ i(c+l)2τ j . (4)

Note that a higher-dimensional gauge coupling as well as the Kähler metric of the matter field are involved in the physical Yukawa 
couplings, but they are real. In this way, the CKM phase is determined by the real part of complex structure moduli and the dependence 
of the axion field is not a Froggatt-Nielsen type as explicitly analyzed in a concrete model in section 3. The above calculation can be 
extended to the T 2/ZN orbifold, where the Yukawa couplings are provided by the linear combination of Yukawa couplings. (For more 
details, see Ref. [10].) In the next section, we propose the mechanism to correlate the QCD phase to the CKM phase.

1 Here, we employ p = s − q mod Iab . (For more details, see, Ref. [9].)
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2.2. Relation between the QCD and CKM phases

From now on, we show one of the mechanisms to relate the QCD phase with the CKM phase in Type IIB flux compactification on 
T 6/(Z2 × Z2) with hodge numbers (h1,1, h2,1) = (3, 51). The closed string moduli in this setup are the axio-dilaton τ , three Kähler 
moduli Ti and untwisted complex structure moduli τ j with i, j = 1, 2, 3. The Kähler potential of moduli fields is described by2

K = − ln(−i(τ − τ̄ )) −
∑

i

ln(−i(Ti − T̄ i)) −
∑

j

ln(−i(τ j − τ̄ j)). (5)

The superpotential of complex structure moduli and axio-dilaton can be generated by an existence of three-form fluxes [11],

W = (τ − f τ3)g(τ1, τ2), (6)

where we consider a particular form of the three-form fluxes including f and g(τ1, τ2) is the proper function stabilizing τ1,2. The reason 
why we choose the above specific superpotential is that it leads to the massless direction in the (τ , τ3) moduli space at the supersym-
metric Minkowski minimum [12,13],

∂τ W = ∂τ1 W = ∂τ2 W = ∂τ3 W = W = 0, (7)

where g(τ1, τ2) is supposed to satisfy the above stabilization conditions, for instance, g(τ1, τ2) = (a1τ1 + a2τ2) with a1,2 being three-form 
flux quanta. As discussed later, the flat direction in the (τ , τ3) moduli space plays a crucial role of relating the QCD phase with the CKM 
phase. From the minimum τ = f τ3, we define the flat direction (τ f ) and the stabilized direction (τh):

τ f ≡ N−1/2 ( f τ + τ3) ,

τh ≡ N−1/2 (τ − f τ3) , (8)

with N = 1 + f 2. Below the mass scale of stabilized τh with 〈τh〉 = 0, the axio-dilaton and the complex structure moduli are described 
by the same modulus τ f

τ = N−1/2 f τ f ,

τ3 = N−1/2τ f . (9)

When magnetized D7-branes wrap the third torus (T 2)3 and flavor structure of the quark sector is determined by the magnetic flux 
on (T 2)3, the CKM phase is determined by τ3, namely τ f below the mass scale of stabilized τh . In this way, τ f controls the magnitude 
of not only the QCD phase through Eq. (2), but also the CKM phase through Eq. (3). Note that Kähler axion Re(T ) contributes to the 
QCD phase as in Eq. (2), but in the following analysis, we assume that Re(T ) is stabilized at the origin 〈Re(T )〉 = 0 due to the non-
perturbative effects for the Kähler moduli which enjoys a certain discrete symmetry for the axion. Such a simplification is useful to study 
the contribution from τ f in the effective CP phase. Furthermore, we assume that the effective CP phase does not have the contributions 
from soft supersymmetry-breaking terms like gaugino masses and Bμ terms to simplify our analysis. For that reason, we focus on the 
QCD and CKM phases, namely

θeff = θQCD + Arg{Det(yu yd)}, (10)

and both are determined by the common axion τ f . In the following analysis, we explore the magnitudes of both CP phases on the basis 
of a concrete magnetized D-brane model.

Finally, we comment on another possible scenario to entangle the QCD phase with the CKM phase. When there exist one-loop threshold 
corrections to the gauge kinetic function of D7-branes, the gauge kinetic function has a modular invariant function with respect to the 
complex structure moduli [14–17]. Then, both CP phases are related with each other. In this paper, we concentrate on the three-form flux 
scenario leading to a common origin of the QCD and CKM phases.

3. Concrete magnetized D-brane model

To analyze the behavior of both the QCD and CKM phases in the moduli space of axion field τ f , we choose the specific magnetized 
D7-brane configuration wrapping the first and third torus and we assume that the flavor structure is only determined by the third torus 
(T 2)3 on which the U(1) magnetic fluxes are inserted. In particular, we consider the toroidal orbifold (T 2)3/Z2. Our purpose is to reveal 
whether there exists a moduli space of the axion field leading to the observed CKM phase consistent with the tiny strong CP phase or not. 
Therefore, we have not considered the global consistency conditions like tadpole cancellation conditions in this paper, since they depend 
on the existence of hidden sector as well as an amount of three-form fluxes.

As discussed in Ref. [18], we start from U(8) super Yang-Mills action which can be regarded as the low-energy effective action of 
stacks of D7-branes. The magnetic fluxes are introduced to break U(8) to the standard-model gauge groups plus extra U(1)s. As displayed 
in Table 1, we assign the magnetic flux n of quarks and Higgs fields and Z2 parity such that there exist three generations of quarks and 
five pairs of Higgs. Here, we choose the wrapping number of magnetized D7-branes m3 = 1.

The Yukawa couplings in the quark sector

Y I J K H K Q LI Q R J = (Y I J 0 H0 + Y I J 1 H1 + Y I J 2 H2 + Y I J 3 H3 + Y I J 4 H4)Q LI Q R J , (11)

2 Here and in what follows, we adopt the reduced Planck mass unit, unless we specify it.
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Table 1
Magnetic fluxes for three generations of left-handed quarks Q L , right-handed 
quarks Q R and five pairs of Higgs H .

Q L Q R H

n (Z2 parity) −5 (even) −7 (odd) 12 (odd)

are given by [18]

Y I J 0 = 1√
2

⎛
⎝ η5 − η65 η185 − η115

√
2(η55 + η125)

η173 − η103 − η187 + η163 η67 − η137 − η53 + η17 η113 − η43 − η127 + η197
η79 − η149 − η19 + η89 η101 − η31 − η199 + η151 η139 − η209 − η41 + η29

⎞
⎠ ,

Y I J 1 = 1√
2

⎛
⎝ η170 − η110 η10 − η130

√
2(η50 + η190)

η2 − η142 − η58 + η82 η178 − η38 − η122 + η158 η62 − η202 − η118 + η22
η166 − η26 − η194 + η94 η74 − η206 − η46 + η94 η106 − η34 − η134 + η146

⎞
⎠ ,

Y I J 2 = 1√
2

⎛
⎝ η75 − η135 η165 − η45 η15 − η195

η173 − η33 − η117 + η93 η3 − η207 − η123 + η87 η183 − η27 − η57 + η153
η9 − η201 − η51 + η81 η171 − η39 − η129 + η81 η69 − η141 − η111 + η99

⎞
⎠ ,

Y I J 3 = 1√
2

⎛
⎝ η100 − η140 η80 − η200 η160 − η20

η68 − η208 − η128 + η152 η172 − η32 − η52 + η88 η8 − η148 − η188 + η92
η184 − η44 − η124 + η164 η4 − η136 − η116 + η164 η176 − η104 − η64 + η76

⎞
⎠ ,

Y I J 4 = 1√
2

⎛
⎝ η145 − η205 η95 − η25 η85 − η155

η107 − η37 − η47 + η23 η73 − η143 − η193 + η157 η167 − η97 − η13 + η83
η61 − η131 − η121 + η11 η179 − η109 − η59 + η11 η1 − η71 − η181 + η169

⎞
⎠ ,

up to the normalization factor.3 Now, we define

ηN ≡ ϑ

[
N
M
0

]
(0,N−1/2τ f M) (12)

with M = 420 and τ3 =N−1/2τ f .
Before searching for the CKM phase compatible with the tiny strong CP phase, we discuss the axion-dependence of the Yukawa 

couplings in the next section.

3.1. CP phase from the Yukawa couplings

To reveal the functional behavior of the Yukawa couplings with respect to the axion τ f , we approximate the Jacobi-theta function 
with [19]

ηN = ϑ

[
N
M
0

]
(0,N−1/2τ f M) ∼ e

iτ f
420 N

−1/2 N2
(13)

which is valid in the large complex structure limit Im(τ3) =N−1/2Im(τ f ) 
 1. Under this approximation, Yukawa couplings are expanded 
as

Y I J 0 =
⎛
⎝

√
2η5 −√

2η115
√

2η55
−η103 η17 −η43
−η19 −η31 η29

⎞
⎠ ,

Y I J 1 =
⎛
⎝−√

2η110
√

2η10
√

2η50
η2 −η38 η22

−η26 −η46 −η34

⎞
⎠ ,

Y I J 2 =
⎛
⎝

√
2η75 −√

2η45 −√
2η15

−η33 −η3 −η27
η9 −η39 −η69

⎞
⎠ ,

Y I J 3 =
⎛
⎝

√
2η100

√
2η80 −√

2η20
η68 −η32 η8

−η44 η4 −η64

⎞
⎠ ,

Y I J 4 =
⎛
⎝

√
2η145 −√

2η25
√

2η85
η23 η73 −η13
η11 η11 η1

⎞
⎠ .

(14)

3 In the following analysis, we focus on the mass ratios of quarks, elements of the CKM matrix and the Jarlskog invariant. It is then enough to omit the overall factors in 
Yukawa couplings, because the flavor structure is governed by the holomorphic Yukawa couplings.



T. Kobayashi, H. Otsuka / Physics Letters B 807 (2020) 135554 5
Fig. 1. Plots of Arg{Det(Y I J K )} with K = 0,1,2,3,4 by setting f = 1 and Im(τ f ) = 2.

Recalling that Arg{Det(yu yd)} has the following property

Arg{Det(yu yd)} = Arg{Det(yu)} + Arg{Det(yd)}, (15)

for non-zero complex numbers Det(yu), Det(yd), the functional behavior of the CKM phase with respect to the axion can be understood 
by evaluating the Det(Y K ) with K = 0, 1, 2, 3, 4. In the large complex structure limit Im(τ3) =N−1/2Im(τ f ) 
 1, the approximate form of 
Det(Y K ) is given by

Det(Y I J 0) ∼ e11iπτ3/4
(

1 − e4iπτ3
)

, Det(Y I J 1) ∼ −e11iπτ3
(

1 + e24iπτ3
)

,

Det(Y I J 2) ∼ e3iπτ3/4
(
−1 + 2e6iπτ3

)
, Det(Y I J 3) ∼ e8iπτ3

(
1 − e4iπτ3

)
,

Det(Y I J 4) ∼ e61iπτ3/28
(

1 + e4iπτ3/7
)

, (16)

from which Arg{Det(Y I J K )} is a non-linear function of the axion Re(τ3), rather than the linear function.
Indeed, Fig. 1 shows that Arg{Det(Y I J K )} employing Eq. (14) is a complicated function of Re(τ f ), where we set Im(τ f ) = 2 and f = 1. 

The functional behavior is the same even when we set the other Im(τ f ) and f . Such an axion dependence is a consequence of the 
definition of the argument Arg{Det(z)} with z being a complex number:

Arg{Det(z)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Arctan

(
Im(Det(z))

Re(Det(z))

)
(Re(Det(z)) > 0, Im(Det(z)) ≷ 0)

Arctan

(
Im(Det(z))

Re(Det(z))

)
+ π (Re(Det(z)) < 0, Im(Det(z)) > 0)

Arctan

(
Im(Det(z))

Re(Det(z))

)
− π (Re(Det(z)) < 0, Im(Det(z)) < 0)

. (17)

3.2. Suppressed CP phase

In this section, we take into account the QCD phase θQCD in addition to the CP phase from Yukawa couplings treated in the previous 
section and check whether there exists the axionic moduli space to realize the tiny strong CP phase and the O(1) CKM phase. The QCD 
phase is now determined by

θQCD = MQCDτ = MQCDN−1/2 f τ f , (18)

originating from Eq. (2) with Eq. (9) by assuming Re(T ) = 0 for the Kähler axion. Here, we denote the magnetic flux contributions by 
MQCD. To evaluate the magnitude of the CKM phase, we examine the Jarlskog invariant ( J )

J
3∑

m,n=1

εikmε jln = Im
[

V ij Vkl V
∗
il V ∗

kj

]
, (19)
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Fig. 2. The functional behavior of the Jarlskog invariant J in the left panel and the effective CP phase Log(|θeff|) in the right panel with respect to Re(τ f ) and Im(τ f ), 
where the parameters are set as in Eq. (23). In the left panel, black (red) dotted, dotdashed, dashed and solid curves correspond to J = 10−7, 10−6, 10−5, 3 × 10−5 ( J =
−10−7, −10−6, −10−5, −3 × 10−5), respectively. In the right panel, black dotted, dashed and solid curves correspond to Log(|θeff|) = 1, −1, −3, respectively.

Fig. 3. The functional behavior of the Jarlskog invariant J versus the effective CP phase Log(|θeff|) within −1/2 ≤ Re(τ f ) ≤ 1/2 and 1 ≤ Im(τ f ) ≤ 2.5 with the step size 
5 × 10−4, where the parameters are the same with Fig. 2. When the step size is narrower and narrower, the effective CP phase θeff is close to 0 at the specific value of the 
Jarlskog invariant.

where V ij is the element of the CKM matrix and εikm is the Levi-Civita symbol.
For an illustrative purpose, we adopt the specific mass matrices for up- and down-type quarks:

Mu = Y I J 4〈Hu,4〉 + Y I J 3〈Hu,3〉 = 〈Hu,4〉
(
Y I J 4 + Y I J 3ρu

)
,

Md = Y I J 4〈Hd,4〉 + Y I J 3〈Hd,3〉 = 〈Hd,4〉
(
Y I J 4 + Y I J 3ρd

)
, (20)

meaning that up- and down-type Higgs Hu,d are linear combinations of H4 and H3. Here and in what follows, we assume that both 
Higgs fields are assumed to be nonvanishing real field values and for our purpose, the vacuum expectation values of Higgs fields are 
parametrized by

ρu = 〈Hu,3〉
〈Hu,4〉 , ρd = 〈Hd,3〉

〈Hd,4〉 . (21)

The overall factors 〈Hu(d),4〉 in Eq. (20) are assumed to realize the scale of quark masses. The reason why we adopt Y I J4 and Y I J3 for the 
quark mass matrices is that they have a hierarchical structure among three generations of quarks as analytically discussed in Ref. [19]. 
The above form of quark mass matrices leads to the following CP phase in the large complex structure limit τ3 
 1,

Arg{Det(yu yd)} �
∑

i=u,d

√
2e27iπτ3/14

(
eiπτ3/4 + e23iπτ3/28 − ρi − e4iπτ3/7ρi − e9iπτ3/28ρ2

i

)
, (22)

where ρu,d is assumed to be O(1).
Following the above setup, we numerically estimate the Jarlskog invariant J and the effective CP phase θeff as functions of Re(τ f ) and 

Im(τ f ) in Fig. 2, where we choose the following parameters

f = 1, MQCD = 1, ρu = 0.3, ρd = 0.4. (23)

From Fig. 2, the effective CP phase vanishes periodically in the axionic direction due to the property of the arctangent function in Eq. (17)
and at the same time, a small but finite Jarlskog invariant J can be realized at the minimum with θeff = 0 as shown in Fig. 3. Indeed, semi-
realistic values of the mass ratios for quarks, elements of the CKM matrix and the Jarlskog invariant J are obtained at the benchmark 
point in Table 2. This result is a consequence of the non-trivial axion-dependent function of Arg{Det(yu yd)}. For instance, when the 
Yukawa couplings have a FN-type, θeff is a linear function of the axion, indicating that vanishing θeff is occurred at Re(τ f ) = 0. Since the 
nonvanishing CKM phase is induced by a nonzero value of Re(τ f ), we cannot obtain a nonzero Jarlskog invariant in a FN-type scenario. As 
a result, the important point to realize a small but finite J at θeff = 0 is the non-trivial axion dependent function of the Yukawa couplings. 
In this paper, we assume a proper mechanism to realize θeff = 0 by non-perturbative effects in a hidden sector at a scale larger than the 
electroweak scale. If the hidden sector also involves the axion-dependent CP phase from the Yukawa couplings in addition to the CP phase 
from the gauge kinetic function, it would lead to the observed value of the Jarlskog invariant at θeff = 0. We hope to report on this in a 
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Table 2
The mass ratios for quarks, elements of the CKM matrix and the Jarlskog invariant J at the bench-
mark point, where we set Re(τ f ) � −0.2188 and Im(τ f ) = 2 leading to θeff � 0 and parameters are 
chosen as in Eq. (23). Here, we use the GUT scale running masses for the observed values [20] and 
the value of the Jarlskog invariant in Ref. [21].

Benchmark values Observed values

(mu ,mc ,mt )/mt (5.7 × 10−4,1.2 × 10−2,1) (6.5 × 10−6,3.2 × 10−3,1)

(md,ms,mb)/mb (9.8 × 10−4,2.0 × 10−2,1) (1.1 × 10−3,2.2 × 10−2,1)

|V C K M |
⎛
⎝ 0.98 0.19 0.0054

0.19 0.98 0.035
0.0038 0.036 1.0

⎞
⎠

⎛
⎝ 0.97 0.22 0.0037

0.22 0.97 0.042
0.0090 0.041 1.0

⎞
⎠

J 1.98 × 10−5 3.18 × 10−5

future work. Furthermore, we focus on the Yukawa couplings of quarks living on magnetized D-branes wrapping tori for technical reason, 
but it is interesting to explore more general background like Calabi-Yau orientifolds.

4. Conclusions

From the view point of string theory, the strong CP and CKM phases are not constants, but they are determined by the axion fields 
originated from the higher-dimensional gauge fields. It is then natural to ask whether both phases have a common origin and at the same 
time, the observed value of the CKM phase is compatible with almost vanishing strong CP phase or not.

In this paper, we first proposed the mechanism to relate the strong CP phase with the CKM phase in Type IIB flux vacua with 
magnetized D7-branes. We demonstrated that the axio-dilaton appearing in the gauge kinetic function and the complex structure moduli 
in Yukawa couplings on magnetized D7-branes are entangled by certain three-form fluxes which lead to the massless direction in the 
moduli spaces of the axion-dilaton and one of the complex structure moduli. Note that it is possible to have a common axion field 
associated with the complex structure moduli in the gauge kinetic function and Yukawa couplings through one-loop threshold corrections 
to the gauge kinetic function [14–17].

To estimate the value of the CKM phase, we examine the Yukawa couplings on magnetized D-branes wrapping tori on which analytical 
calculation has been performed in Ref. [9]. It is known that the CP phase is induced by the nonvanishing axion field. If the CP phase 
Arg{Det(yu yd)} is linearly dependent of the axion as in the Froggatt-Nielsen model [5], the strong CP phase θeff becomes zero at the origin 
of the axion field. However, thanks to the non-trivial axion-dependent function of the CP phase Arg{Det(yu yd)} on toroidal background 
with magnetic fluxes, we find that observed value of the Jarlskog invariant is consistent with the vanishing strong CP phase. In this paper, 
we focus on the bare CP phases, but radiative corrections as well as the supersymmetry-breaking effects give rise to nonvanishing CP 
phases in general, which will be one of the important future work. Furthermore, we assume the stabilization of axion field by certain 
non-perturbative dynamics in a hidden sector. We will leave the detailed axion stabilization for a future work. The relation between the 
strong CP and CKM phases would be possible for not only the toroidal orientifold background in Type IIB string context, but also more 
general Calabi-Yau orientifolds in other superstring theory, for instance, Type IIA intersecting D6-brane system and heterotic line bundle 
models. This is because three-form fluxes give rise to the massless direction in the moduli spaces of the axio-dilaton and the complex 
structure moduli. Both play an important role of determining the gauge kinetic function as well as the Yukawa couplings. We will report 
on this interesting work in the future.
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