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The standard nonperturbative approaches of renormalization group for tensor models are generally
focused on a purely local potential approximation (i.e., involving only generalized traces and products of
them) and are showed to strongly violate the modified Ward identities. This paper is a continuation of our
recent contribution [Phys. Rev. D 101, 106015 (2020), intended to investigate the approximation schemes
compatible with Ward identities and constraints between 2n-points observables in the large N limit. We
consider separately two different approximations: In the first one, we try to construct a local potential
approximation from a slight modification of the Litim regulator, so that it remains optimal in the usual
sense, and preserves the boundary conditions in deep UV and deep IR limits. In the second one, we
introduce derivative couplings in the truncations and show that the compatibility with Ward identities
implies strong relations between β functions, allowing one to close the infinite hierarchy of flow equations
in the nonbranching sector, up to a given order in the derivative expansion. Finally, using an exact relation
between correlations functions in large N limit, we show that strictly local truncations are insufficient to
reach the exact value for the critical exponent, highlighting the role played by these strong relations
between observables taking into account the behavior of the flow; and the role played by the multitrace
operators, discussed in the two different approximation schemes. In both cases, we compare our
conclusions to the results obtained in the literature and conclude that, at a given order, by taking into
account the exact functional relations between observables like Ward identities in a systematic way, we can
strongly improve the physical relevance of the approximation for an exact renormalization group equation.

DOI: 10.1103/PhysRevD.102.056002

I. INTRODUCTION

Random tensor models (RTMs) were initially introduced
in the quantum gravity context at the beginning of the
1990s [1–6], as a natural extension of random matrix
models (RMMs) used to quantize two-dimensional gravity
[7–12]. The strong revival of interest since the last decade
started in 2009 with the discovery of complex colored
RTMs [13–20]. In contrast with their formers, colored
RTMs admit a 1=N expansion controlled by the so-called
Gurau degree of the corresponding Feynman graphs, which
plays the same role as the genus for RMMs. The Gurau
degree is reduced to the genus in dimension two, and may
be defined as the sum of the genera of jackets, which are

ribbon subgraphs of tensor diagrams. Interestingly, the
Gurau degree is not a topological invariant but allows one
to properly construct the leading order graphs in the largeN
limit, called melons [18], in the same way as the planar
graphs for RMM. The melons, in dimension d > 2,
correspond to particular simplicial decomposition (that
we abusively call “triangulation”) of the d-dimensional
topological sphere Sd. Moreover, they admit a continuum
limit, with the entropy exponent corresponding to a
branched-polymer phase [21–23]. Another important step
in the development of RTMs was the discovery of the
relation between the existence of an internal index sym-
metry and the 1=N expansion. Indeed, the uncolored
version of the initial complex colored models was intro-
duced in [24], where the authors highlight the connection
between the existence of a 1=N expansion and the global
UðNÞ×d invariance of the classical action. This simple
observation leads to an extension of the colored formalism,
in the same universality class [25]. This connection
between symmetry and power counting has been extended
a lot, and some models based on OðNÞ×d invariance have
been successfully considered, providing triangulation for
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nonorientable manifolds [26,27]. Some other groups have
been considered in the last years as well; see [28–31] for
recent reviews.
Despite their recent connections with Sachdev-Ye-

Kitaev (SYK) models, and condensed matter physics
[32–41], RTMs remain essentially, at this day, a promising
road for a viable quantum gravity formalism. RTMs arise at
the intersection between many current strategies to quantize
gravity. Among their inspirations, one has RMMs [7–11],
group field theories (GFTs) [42], and loop quantum gravity
[43,44]. A recent consequence of GFTs and TMs was the
development of tensorial group field theories [45–48] see
also [49–52], which improve standard GFTs with the
tensorial recipe for the construction of their interactions.
This was at the origin of some promising renormalization
group investigations in the GFTs phase space [53–62],
revealing possible phase transitions compatible with a
current scenario about space-time emergence.
However, in themselves RTMs admit a rich phase struc-

ture. This has been revealed by some analytic investigations
conducted in the hope to go beyond the melonic university
class and to discover a new continuum limit, with spectral
dimension closer to the one of our four-dimensional space-
time. To this end, the next-to-leading order (NLO) of the
1=N expansion plays an essential role. As for matrix
models, the double scaling limit for tensor models is based
on the observations that NLO contributions become critical
at the same point as the melonic contribution. This suggests
that we investigate the large N limit and continuum limit in
a correlated manner such that we retain the graphs of an
arbitrary Gurau degree. In the case of matrix models, which
can be achieved by sending N → ∞ and g → gc, the theory
is such that the product Njg − gcjð2−γÞ=2 (where γ is the
so-called entropy exponent) remains constant. The same
behavior has been achieved for RTMs, in contrast with
matrix models such that the double scaling limit leads to a
summable series for dimensions less than six. Moreover,
the double scaling procedure can be iterated, a multicritical
scenario providing ultimately at the critical point a con-
tinuum limit so far from the branched polymer phase of the
melonic limit. This multiscaling scenario remains an
attractive and open perspective for RTM. To this end,
nonperturbative renormalization group theory has been
envisaged as a promising and alternative way of inves-
tigation of this critical behavior, easier than the heavy
mathematical machinery used to formally construct the
multiscaling investigations.
Using renormalization group theory to understand criti-

cal properties of such a discrete model has been firstly
considered in the past for matrix models [9,10]; see also
[63–73] for recent results. This comes from the original
idea that the double scaling limit may be understood as a
special parametrization invariance from the long-distance
physics along a relevant direction, in complete analogy
with what happens for standard critical phenomena. In
Refs. [9,10], the authors constructed such a renormalization

group using perturbation theory and showed the existence
of a non-Gaussian fixed point with a relevant direction
and a critical exponent in qualitative agreement with the
analytic calculations of the double scaling limit. The
nonperturbative investigations started in [74,75] and using
Wetterich-Morris formalism [76,77], showed significant
improvements concerning the perturbative analysis and
provided a tractable formalism to explore discrete gravity,
in particular RTMs.
The success of this formalism, for matrix models, is

because the critical exponent for the relevant direction
seems to converge toward the exact (analytic) value
provided by the double scaling limit when the truncation
is enlarged. This observation, however, depends crudely
on the specific scheme used to compute the critical
exponents. This dependence, as pointed out in Ref. [75],
could reflect a pathology of the local truncations used to
solve the exact renormalization group equations. Indeed, all
the considered versions of the nonperturbative renormal-
ization group used a suitable version of the local potential
approximation; which of course completely discards
the effects arising from the symmetry breaking due to the
regulation. This observation is supported by the fact that the
heuristic strategy consisting of keeping only tadpole dia-
grams provides the most spectacular convergence toward
the exact result, and such a scheme discards strong
disagreements with modified Ward identities. The reliabil-
ity of the method may be checked only because we have the
exact result; thus, the question is, can we be confident with
the ability of a purely local approximation in the discov-
ering of new multicritical points for tensor models?
Formally, there is no additional difficulty to pass from
random matrices to random tensors. The main difference
between RMM and RTM in practice is the proliferation of
the interactions, and therefore of the beta functions with the
rank of the truncation. Dealing with this difficulty remains
tractable for not so large truncations, and the first inves-
tigations, as for matrix models, provided encouraging
results, (re)discovering the critical fixed point correspond-
ing to the double-scaling limit; having a single relevant
direction with a critical exponent is in qualitative agreement
with the exact analytic value θexact ¼ d − 2.
However, as for matrix models, the quantitative agree-

ment depends on the prescription used to compute the
critical exponents or the flow equations, and once again is
assumed to be a consequence of local truncations. To be
used with confidence for discovering multicritical points
beyond the double scaling limit, the formalism must allow
having control of the approximations, and this is the more
important property if we do not have the support of exact
analytic calculations to estimate how much the approxi-
mation remains physically relevant, or if the discovered
critical points are not an artifact of a bad parametrization of
the full phase space. Fortunately, some physical guides are
allowing one to test the reliability of the results obtained in
a given prescription without knowledge of the exact
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solution. The compatibility with constraints arising from
symmetries is one of these guides. For random tensor
models, the constraints arise essentially from the symmetry
breaking due to the regulator, which modifies the Ward
identities. Purely local potential approximations strongly
violate these identities. This fact was first pointed out in
[78,79], but the proposed heuristic recipe, taking into
account tadpole diagrams to accommodate with Ward
identities, cannot be used confidently to investigate larger
regions of the phase space than the small vicinity of the
Gaussian fixed point containing the double-scaling criti-
cal point.
A systematic analysis of the influence of Ward identities

on the behavior of the renormalization group flow was
started for matrix models in [80]. The authors observed that
an approximation scheme solving simultaneously Ward
identities and flow equations strongly improves the value
of the critical exponent related to the relevant direction,
without additional prescription. This is based on the
elementary observation that Ward identities and flow
equations play a very symmetric role for discrete gravity
models [78,79,81–84] see also [85,86] in the case of sextic
interactions and an Ising-like model. Indeed, the modified
Ward identities arise from the symmetry breaking due to the
regulator, but this breaking is itself required to construct the
renormalization group (RG) flow. This is radically different
from the situation for ordinary gauge theories, where the
RG flow exists independently, due to the nontrivial propa-
gator of the gauge fields, without relation to the symmetry
breaking which may arise by introducing the regulator
function [87–90]. For RMMs and RTMs, however, the
propagator is trivial, and the symmetry breaking is required
to distinguish between UVand IR degrees of freedom. The
modification of Ward identities, therefore, is more than a
nontrivial aspect of the theory; it is a consequence of the
existence of the RG flow itself. With this respect, a
violation of Ward identities has to be considered as a
serious problem then for ordinary gauge theory. For gauge
theory, Ward identities reflect the gauge symmetry, which is
unrelated to the scale hierarchy, but it is the case for RMMs
and RTMs. In a recent result, we analyze the flow equations
which dictate how to move though scales and also the Ward
identities which dictate how to move through momentum
space [81], and they have been understood as two com-
plementary relations of the same thing.
In [80], we proposed two different ways to deal with

Ward identities violations and constructed two approximate
solutions compatible with them. The first one was to
enlarge the truncation with momentum-dependent interac-
tion, reflecting the symmetry breaking. This procedure, as
expected, strongly improves the value of the computed
critical exponent for the relevant eigendirection at the
critical point. However, the presence of derivative cou-
plings, which have nonvanishing value at the fixed point,
seems to introduce a spurious dependence on the regulator.

Such a dependence is, in fact, inevitable in any approxi-
mation scheme, and we expect that the sensibility for
small deformation of the regulating function may be a good
test for the quality of the approximation. From a simple
deformation, we showed that the critical exponent does not
change significantly around the Litim regulator, in agree-
ment with the familiar claim about its efficiency. The
second strategy was to consider a modified regulator,
including fine-tuned counterterms. These counterterms
do not change the UV and IR boundary conditions and
are chosen to cancel the momentum-dependent terms in
Ward identities using local potential approximation, such
that the violation remains as small as possible in the
considered range of couplings investigated by the RG flow
(expecting that we remain not so far from the Gaussian
fixed point, which is essentially the same assumption
ensuring the validity of the truncation method). With this
method, we found a fixed point, and a critical exponent in
very strong agreement with the exact value, ensuring that,
up to this fine adjustment of the regulator, the local
approximation may be used in practice to solve both flow
equations and Ward identities.
In this paper, we continue the same analysis for tensor

models. We start with complex and real RTMs, having
UðNÞ invariance, and in both cases, we construct two kinds
of approximations, compatible with Ward identities, and
investigate the continuum limit through the properties of
the resulting fixed points. In detail, the outline is the
following: In Sec. II, we recall some basics about RTMs,
nonperturbative RG formalism, and Ward identities. We
provide useful definitions and present the notations, as well
as the elementary notions, as the proper notion of canonical
dimension for RTMs. In Sec. III we build a local truncation
scheme based on a progressive modification of the (Litim)
regulator [91–94], constructed to cancel the derivative
couplings arising from Ward identity, at the order fixed
by the truncation. We consider generic melonic truncations
up to order eight, and higher truncation in the nonbranching
sector, and show that the result is systematically better than
those obtained from local truncations without a modified
regulator. We showmoreover that the connected invariant is
insufficient to reach the exact value for the critical exponent
and only a local truncation involving the product of local
invariants and in agreement with Ward identities allows one
to converge toward the exact result. In the last subsection,
we use the recent effective vertex expansion (EVE) [79,81]
to obtain the inductive bound θop ¼ d − 1 toward which
converges the critical exponent for a local truncation of
arbitrary order, involving only melonic connected pieces.
This shows that, independently of the regularization
scheme and in agreement with the previous observation,
the ultralocal approximations do not allow one to reach the
exact value (θexact ¼ d − 2). In Sec. IV we propose an
optimization criterion based on the sensibility of the results
under small variations of the regulator and show that
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physical solutions are systematically stable. In Sec. V, we
compare our results with another approximation scheme,
including derivative couplings in the truncation, and show
that, order by order in the derivative expansion. Including
these operators allows one to close the (local) infinite
hierarchical system of our equation provided by the exact
RG equation.

II. RG FLOW FOR U(N) RTMS AND
LOCAL TRUNCATIONS

In this section we provide some basic material for tensor
models and nonperturbative RG formalism. Moreover, we
introduce some useful definitions and properties that will
be used to construct approximate solutions of the RG
equation in the next sections.

A. Wetterich-Morris formalism

In the Wetterich-Morris formalism, the central object is
the effective averaged action Γk, which follows the first
order flow equation [76,77]:

∂
∂kΓk ¼ Tr

�
1

Γð2Þ
k þ Rk

� ∂
∂kRk; ð1Þ

where Γð2Þ
k þ Rk is the inverse of the effective 2-point

function. The formal trace “Tr” depends on the nature of the
fields involved in the equation and, the regulator function
Rk is a scale-dependent mass, chosen such that the degrees
of freedom with momentum (smaller than k) are frozen
out and discarded from the path integral defining the
partition function. For the complex tensor models, this
k-dependence partition function is given by

Zk½J; J̄� ¼
Z

dTdT̄e−SðT;T̄Þ−T̄RkTþJ̄TþT̄J; ð2Þ

where
(i) T, T̄ are respectively the complex tensor and its

conjugate, which rank is d and size N, T ¼
fTn1;…;ndg, Tn1;…;nd ∈ C;

(ii) the regulator Rk is a diagonal Nd × Nd matrix, i.e.,
ðRkÞn⃗n⃗0 ¼ rkðn⃗Þδn⃗n⃗0 ; with n⃗ ≔ ðn1;…; ndÞ;

(iii) the shorthand notations T̄RkT and J̄T are res-
pectively T̄RkT ≔

P
n⃗n⃗0 T̄n⃗ðRkÞn⃗n⃗0Tn⃗0 and J̄T ≔P

n⃗ J̄n⃗Tn⃗, and
(iv) the classical action SðT; T̄Þ is a sum of the connected

invariant with respect to UðNÞ×d transformations.
Let us set Rk ¼ 0. In the viewpoint where the degrees of

freedom could be integrated out to build the RG flow, a
global unitary invariant theory strongly provides some
difficulties, particularly on the degrees of freedom of the
initial condition. In standard field theory, we start with UV
degrees of freedom, i.e. degrees of freedom having high
momenta. This is suitable due to the existence of a

nontrivial propagator, which provides a different size for
quantum fluctuations. For the tensor models with a trivial
propagator, all the fluctuations have the same size and we
have a canonical notion of UVand IR. The UV is described
by the classical action SðT; T̄Þ and the IR, when all the
fluctuations are integrated out, by the effective action Γ:

Γ½M; M̄� þ lnZk¼0½J; J̄� ¼ J̄M þ M̄J; ð3Þ

the classical field M being defined as

M ¼ ∂
∂J̄ lnZk½J; J̄�: ð4Þ

Breaking the unitary invariance, the regulator defines a
preferred order to make the partial integrations of the
degrees of freedom, and provides a path to link UVand IR
limits. At the same time, breaking the unitary invariance
modifies the Ward identities; see [95–97] and references
therein. From the global translation invariance of the
partition function (2) and considering an infinitesimal
unitary transformation acting on the first index only, we get

Tn1;…;nd → Tn1;…;nd þ
X
m

ϵn1mTm;…;nd ; ð5Þ

with ϵ ¼ −ϵ†, leading to the functional equation called the
Ward identity given by

X
n⃗⊥;n⃗0⊥

�
ðrkðn⃗Þ − rkðn⃗0ÞÞ

� ∂2Wk

∂Jn⃗∂J̄n⃗0 þ M̄n⃗Mn⃗0

�

− J̄n⃗Mn⃗0 þ M̄n⃗Jn⃗0
�

¼ 0; ð6Þ

where n⃗⊥ ¼ ðn2;…; ndÞ. In the limit where the regulator
goes to zero, the Ward identity is reduced to

X
n⃗⊥;n⃗0⊥

ðJ̄n⃗Mn⃗0 − M̄n⃗Jn⃗0 Þ ¼ 0: ð7Þ

The meaning of this equation can be easily checked taking
successive derivative with respect to the external sources.
For instance, deriving with respect to ∂2=∂Jp⃗∂J̄p⃗0 , we get

δn1p0
1

X
n⃗0⊥

Γð2Þ
n⃗0p⃗ ¼ δp1n01

X
n⃗⊥

Γð2Þ
p⃗0n⃗; ð8Þ

which is solved by
P

n⃗0⊥ Γ
ð2Þ
n⃗0p⃗ ∝ δp1n01

, where the coefficient
is momentum independent. The same behavior remains true

for all colors and we must have Γð2Þ
n⃗ p⃗ ¼ Kδn⃗ p⃗ where K is an

arbitrary constant. To be more precise let us notify the
reader that the Ward identity arises from the UðNÞ×d
symmetry and ensures that the effective vertices inherit
this invariance as well. The rk-dependent term in (6)
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introduces a momentum dependence, providing a nonzero
value for the momentum derivative of effective vertex
functions. Moreover, this derivative may be expressed, at
the leading order, in terms of a generalized trace invariant
function, and meaning that such a truncation strongly
violates the Ward identity. Obviously, let us consider once
again the derivative with respect to ∂2=∂Jp⃗∂J̄p⃗0 . We get,
after some straightforward manipulations,

X
n⃗⊥;n⃗0⊥

fðrkðn⃗Þ − rkðn⃗0ÞÞ½Gð2Þ
n⃗ q⃗Γ

ð4Þ
q⃗q⃗0p⃗p⃗0G

ð2Þ
q⃗0n⃗0 �

þ δn⃗ p⃗Γ
ð2Þ
k;p⃗0n⃗0 − δn⃗0p⃗0Γð2Þ

k;n⃗ p⃗g ¼ 0:

Let us then simplify this expression. First, due to the
momentum conservation along internal faces, we must

have Γð2Þ
n⃗ p⃗ ¼ γð2Þk ðp⃗Þδn⃗ p⃗. In the same way Gð2Þ

n⃗ p⃗ ¼
gð2Þðp⃗Þδn⃗ p⃗. Moreover, at the leading order in the large N
limit, only the melonic diagram has to be retained for
computing the effective loop in the right-hand side
[78,79,81]. Note with this respect that disconnected pieces
do not contribute, as pointed out in [81]. The melonic

contribution Γð4Þ
q⃗q⃗0p⃗p⃗0 must have the following structure:

Γð4Þ
q⃗q⃗0p⃗p⃗0 ¼

Xd
i¼1

Γð4;iÞ
q⃗q⃗0p⃗p⃗0 ; ð9Þ

with

Γð4;iÞ
q⃗q⃗0p⃗p⃗0 ¼ 2πð2Þk ðpi; qiÞSymWðiÞ

q⃗q⃗0p⃗p⃗0 ; ð10Þ

and SymWðiÞ
q⃗q⃗0p⃗p⃗0 ≔ WðiÞ

q⃗q⃗0p⃗p⃗0 þWðiÞ
q⃗p⃗0p⃗q⃗0 , where

WðiÞ
q⃗q⃗0p⃗p⃗0 ¼ δqip0

i
δpiq0i

Y
j≠i

δqjq0jδpjp0
j
: ð11Þ

Taking n⃗⊥ ¼ n⃗0⊥, we get, for n1 ¼ n01 þ 1,

rkðn⃗Þ − rkðn⃗0Þ ¼
1

k
d
dx1

rkðn⃗Þ
����
n1¼kx1

þOð1=kÞ; ð12Þ

where, for large k, we have introduced the continuous
variable x1 ¼ n1=k. Note that rkðn⃗Þ is assumed to be a
function of n⃗=k. Therefore, keeping only the leading-order
terms in the large k limit, and setting p⃗⊥ ¼ p⃗0⊥ ¼ 0⃗⊥,
p1 ¼ n1, p0

1 ¼ n01 and finally n1 ¼ 1, n01 ¼ 0, we obtain

2πð2Þk ð0; 0ÞL2 ¼ −
d
dx1

γð2Þk ð0⃗Þ; ð13Þ

with

Lp ≔
X
n⃗⊥

drk
dx1

ðn⃗⊥Þðgð2ÞÞpðn⃗⊥Þ; ð14Þ

where we used the notation fðn⃗⊥Þ≡ fð0; n2;…; ndÞ. The
first derivative of the 2-point function, therefore, may be
expressed only in terms of trace invariant functions, up to
1=k correction. Interestingly we have the formal relation
between this equation and the flow equation (1). As the
flow equation dictates how the coupling changes when
the scale changes, the Ward identity dictates how the
coupling changes in momentum space. The existence of
the momentum-dependent flow equation dictated by the
Ward identity has the same origin as the scale-dependent
flow equation which is dictated by the Wetterich equation
such that the unitary symmetry breaking is provided by the
regulator. In the next subsection, we will briefly recall what
we call the local potential and dimension for RTM, and in
the next section we will show that the Ward identities are
strongly violated for such a local potential, except for a
finely adjusted regulator, keeping the rk-dependent term on
the Ward identities as small as possible.
To conclude this section, note that we focus on regulators

of the form

rkðn⃗Þ ¼ Zf

�P
ini
k

�
; ð15Þ

where Z is the wave function renormalization and fðxÞ is
assumed to be derivable and continuous, and satisfies the
following criteria:
(1) fðxÞ → 0 for x → ∞,
(2) fðxÞ → ∞ for x → 0.

Note that in order to make simple analytic calculations, we
focus on the Litim’s regulator [91]:

fðxÞ ¼
�
d
x
− 1

�
θ

�
1 −

x
d

�
; ð16Þ

where d is the rank of the tensor and θ the Heaviside step
function. Particularly, in the following paper, we con-
sider d ¼ 3.

B. Locality, dimensionality, and melonic diagrams

RTMs are nonlocal theories by construction. Tensorial
invariants, whose connected components are called bub-
bles, are obtained as the product of the same number of T
and T̄ fields, contracting their indices pairwise, the index ni
of a field T being contracted with the index ni of a field T̄,
ensuring unitary invariance by construction. Usually, these
tensorial invariants are pictured as d-colored bipartite
regular graphs (of rank d), where black and white nodes
are respectively T and T̄ tensors, and the d colored half
edges hooked to them represent their d indices. The
different following paths which the edges are linked
correspond to the invariant contractions. As an example,
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ð17Þ

where WðiÞ has been defined in (11). Some examples for
rank 3 are pictured in Fig. 1. The classical action SðT; T̄Þ is
assumed to be a local function, admitting an expansion
as a sum of bubbles or product of bubbles, weighted by
coupling constants gb, labeled by the d-colored graph b.
The connected 2N-points functions may be expanded in

powers of couplings, and Feynman amplitudes are indexed
by Feynman graphs obtained from Wick’s theorem. Such a
typical diagram is provided in Fig. 2. Note that conven-
tionally we associate the color 0 to the dotted edges. The
only change is that Feynman graphs are enriched structures
with respect to ordinary graphs, and correspond to the sets
of vertices, edges, and faces. Before giving details of the
calculation of the canonical dimension, let us recall the
definition of face:
Definition 1. A face is a bicolored cycle, indexed by a

couple ðijÞ. Such a cycle may be open (open face) or closed
(closed face).
The scale behavior is required in the FRG and the scaling

means a certain dependence on the number of size N of the
component—or equivalently on the dependence on k in
the RG flow viewpoint. For RTM, this terminology arises
from the existence of a power counting. Indeed, the 1=N
expansion ensures that, up to a certain rescaling of the
coupling constant,

gb ¼ ḡbNαðbÞ ð18Þ

then the Feynman amplitude AðGÞ for the vacuum

Feynman graph G scales as AðGÞ ∼ Nd− 2
ðd−1Þ!ϖðGÞ, where

ϖðGÞ is the Gurau degree given by the following
definition:
Definition 2. Let G be a k-colored bipartite regular

graph with jFj faces and p black nodes. The Gurau degree
ϖðGÞ is defined as

2

ðk − 2Þ!ϖðGÞ ¼ ðk − 1Þðk − 2Þ
2

pþ ðk − 1Þ − jFj: ð19Þ

The proper rescaling, for connected tensorial invariants,
is given by [18–20]

αðbÞ ¼ d − 1 −
2

ðd − 2Þ!ϖðbÞ: ð20Þ

The leading order diagrams, for which ϖðGÞ ¼ 0, are said
to be melonic. For a melonic vacuum diagram, all the
interaction bubbles have to be melonic as well. Melonic
diagrams may be defined recursively, and their continuum
limit corresponds to a branched polymer phase [21].
Melonic diagrams with external edges are defined in the
same way. They correspond to the leading order diagrams
in the 1=N expansion, and follows a similar recursive
definition. They can be obtained from vacuum diagrams by
deleting some dotted edges. Locality, in a RTM, as in tensor
field theories, is defined from tensor invariance.
Definition 3. The bubbles, or sums of bubbles, are said

to be ultralocals. Moreover, a sum of bubbles and product
of bubbles is said to be local.
From this definition, an effective action builds as the

sum of bubbles is said to be an ultralocal potential. By
extension, a local potential involves only bubbles or pro-
ducts of them, including therefore disconnected pieces. The
canonical dimension of the interaction arises from the
scaling (20). It is convenient for RG applications to fix to 1
the scaling of the kinetic term [74,75,80]. This can be
achieved by a rescaling of the fields T → N−d−1

2 T, modi-
fying the scaling (20) as

α0ðbÞ ¼ d − 1 −
d − 1

2
nðbÞ − 2

ðd − 2Þ!ϖðbÞ: ð21Þ

We call canonical dimension this quantity, where nðbÞ
denotes the number of fields involved in the connected
bubble b. The scaling for bubbles must be completed by the
scaling law for disconnected invariants. Let us consider
h ¼ b1 � b2, a disconnected tensorial invariant made with
two bubbles b1 and b2, and we define the difference:

δα0ðb1 � b2Þ ¼ α0ðb1 � b2Þ − α0ðb1Þ − α0ðb2Þ: ð22Þ
We fix δα0ðhÞ in accordance with the scaling dimension
of the kinetic operator, which is set to be zero. To this end,

FIG. 1. Some examples of tensorial invariant in rank 3. The
second and third (from left to right) are bubbles.

FIG. 2. A typical Feynman diagram for a three vertex amplitude
with four external edges. The dotted edges correspond to Wick
contractions.
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we expect that the scaling of the different operators have to
be such that, for any bubble b, there exists an optimal way
to build a 2-point diagram maxGðbÞ whose amplitude
AðmaxGÞ scales as N0. The same requirement must be true
for interactions made with disconnected pieces. Noting
that, with respect to a connected graph, we lose a bicolored
cycle merging the two connected components b1 and b2.
The resulting graph GðhÞ can be connected or not. For
GðhÞ being disconnected, we can factorize maxGðhÞ ¼
maxGðb1Þmax Ḡðb2Þ, where we assumed that it corre-
sponds to the optimal contraction, and denoted as Ḡðb2Þ the
vacuum graph obtained from b2. From the definition of the
amplitude of the graph, we must have

AðmaxGðhÞÞ ∼ AðmaxGðb1ÞÞ × AðḠðb2ÞÞ
¼ Oð1Þ × AðḠðb2ÞÞ ∼ Nd;

where we used the scaling theorem for vacuum diagrams.
In the case where ḠðhÞ is connected, the above factoriza-
tion is not held. However, it is not difficult to check that
such a contribution has to be less relevant, some internal
faces being discarded to ensure connectivity. The optimal
counting is therefore AðmaxGðhÞÞ ∼ Nd, enforcing one to
choose (optimally) δα0ðhÞ ¼ −dðk − 1Þ. In the same way,
for a disconnected interaction to build as k bubbles,
hk ¼ b1 � b2 � � � � � bk, we require δα0ðhkÞ ¼ −dðk − 1Þ,
and finally

α0ðb1 � � � � � bkÞ ¼
Xk
l¼1

α0ðblÞ − dðk − 1Þ; ð23Þ

which can be conveniently rewritten as

α0ðb1 � � � � � bkÞ ¼ ðd − 1Þ − d − 1

2

X
i

nðbiÞ

−
2

ðd − 2Þ!
X
i

ϖðbiÞ − ðk − 1Þ: ð24Þ

In the rest of this paper, we denote by dg the scaling
dimension for the coupling g. To conclude this part, let us
mention that this scaling holds only at zero order around the
Gaussian fixed point, as in ordinary quantum field theory;
and the first quantum deviations from this Gaussian
counting arise from the anomalous dimension. In the
present case, it is played by the kinetic prefactor, which
we denote by ZðkÞ (do not confuse this with the partition
function Zk), and plays the role as an effective mass. It is
suitable to set the normalization such that this coefficient
remains equal to 1 along the flow (this is, moreover, a
condition to get fixed points). We thus rescale T as
Z−1=2ðkÞT, and we finally define the renormalized cou-
plings as

ḡb ¼ gbZ−nðbÞ=2ðkÞN−α0ðbÞ: ð25Þ

C. Product of distributions and regularization

In this manuscript, we will consider the sharp regulators
of the form

fðxÞ ¼ gðxÞθð1 − xÞ; ð26Þ
on which we intend to give the meaning of the integrals of
the form

In;p ¼ lim
Λ→∞

Z
Λ

0

xnf0ðxÞ
ð1þ fðxÞÞp : ð27Þ

Note that this integral appears throughout this paper in the
computation of theWetterich flow equation as well as in the
explicit relation of the Ward identities. The regulator (26)
introduces a sudden cut in the space of the indices and this
is suitable for field theories without background. The Litim
regulator (16), commonly used in the functional renorm-
alization group (FRG) literature is an example, with
gðxÞ ¼ 1=x − 1. However, for more general choices of
gðxÞ, the exact flow equation (1) cannot be used without a
prescription for the product δðxÞθðxÞ; and the integral (27)
does not make sense.
There are essentially two ways to solve this ambiguity,

and we refer respectively to them as scheme 1” (S1) and
scheme 2” (S2):
In the first scheme, S1, which is the most used in the

literature [98–100], we solve formally the ambiguity
arising in the ill-defined integral (26) by considering the
Heaviside distribution as the limit of regular functions
θðxÞ ¼ lima→0 θaðxÞ, for which the integral makes sense.
A basic example is

θaðxÞ ¼
1

a
ffiffiffi
π

p
Z

x

−∞
e−y

2=a2dy: ð28Þ

This can also be achieved by a series of functions which
converge weakly towards the Heaviside distribution:

ΘnðxÞ ≔
xn

ex
n − 1

; lim
n→∞

ΘnðxÞ ¼ θðxÞ: ð29Þ

This allows one to, formally, remove the ambiguity which
appears by rewriting the products like δðxÞθðxÞ. This can be
achieved formally from a simple partial integration of (26).
Assuming that fðxÞ is an ordinary regular function rather
than a distribution, we have trivially

In;p ¼ lim
Λ→∞

�
n

p − 1

Z
Λ

0

xn−1dx
ð1þ fðxÞÞp −

1

p − 1
Λn

�
; ð30Þ

where we assumed that fðxÞ vanishes for large x, which is
satisfied for a regulator. The two expressions (27) and (30)
are equivalent when f is considered as a function. However,
only the last one is well defined when f is a distribution
as (26). Then, we can use this form as a definition of the
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ill-defined product f0ðxÞfðxÞ for the computation of the
integral. We get explicitly

In;p ¼ n
p − 1

Z
α

0

xn−1dx
ð1þ gðxÞÞp −

1

p − 1
αn: ð31Þ

In the second scheme, S2, we remember that the
derivative _rk is a formal operation. Indeed, k must be an
integer and _rk becomes a formal derivative only in the large
k limit. For finite k, it must be a finite difference:

_rkðxÞ≡ rkþ1ðxÞ − rkðxÞ; ð32Þ

and there is no ambiguity with the sums like

Sn;p ¼
X∞
n⃗¼0⃗

�X
i

ni

�
n f


P
i
ni

kþ1

�
− f


P
i
ni

k

�


1þ f


P
i
ni

k

��p : ð33Þ

Introducing the parameter ϵ ≔ 1=k, the ambiguity in the
formal expression of the product f0ðxÞfðxÞ in the integral
(27) then reads as

Z
xn

θð1þ ϵ − xÞ − θð1 − xÞ
ð1þ gðxÞθð1 − xÞÞp dx: ð34Þ

In the interval x ∈ ½1; 1þ ϵ�, we must have θð1 − xÞ ¼ 0;
and in the continuum limit ϵ ¼ 0, we may set

Z
xn

θð1þ ϵ − xÞ − θð1 − xÞ
ð1þ gðxÞθð1 − xÞÞp dx → ϵ

Z
xn

δð1 − xÞ
ð1þ 0”Þp dx:

ð35Þ

Note, however, that we can make another choice for the
finite difference (32). The following example holds:

_rkðxÞ≡ rkðxÞ − rk−1ðxÞ; ð36Þ

so that the integral (37) becomes

Z
xn

θð1 − xÞ − θð1 − ϵ − xÞ
ð1þ gðxÞθð1 − xÞÞp dx: ð37Þ

For the ordinary regular functions, there is no difference
between left and right derivatives; however, in this case, the
two definitions are not equivalent at all. In the interval
x ∈ ½1 − ϵ; 1�, we must have θð1 − xÞ ¼ 1, so that with this
definition the integral becomes

Z
xn

θð1 − xÞ − θð1 − ϵ − xÞ
ð1þ gðxÞθð1 − xÞÞp dx → ϵ

Z
xn

δð1 − xÞ
ð1þ gðxÞÞp dx:

ð38Þ

The convention (38) has been used in the case of matrix
models in [80]. The convention (38) holds for the matrices

theories, but becomes pathological for tensors models, with
respect to the operations that we will consider for our
regulator.1 Therefore, we keep the second convention given
by Eq. (38) i.e., the scheme 2.
Note that except for the case where gð1Þ ¼ 0, which

corresponds to the Litim regulator, the two definitions
are nonequivalents. Moreover let us notify the reader
that there is another way to consider the scheme S1 i.e.,
we can make the restriction on S1 which we will denote
by S01, by starting directly with a regularized expression
for the regulator. Indeed, we can use a regularized expres-
sion for the Heaviside distribution, θaðxÞ, such that
lima→0 θaðxÞ ¼ θðxÞ, to compute the integral (27) [98].
Indeed, to solve the ambiguity, we have to provide a sense
to the limit lima→0 θ

0
að1 − xÞGðθað1 − xÞÞ, for some regular

function G. This can be achieved, for instance, using the
identity

θ0að1 − xÞGðθað1 − xÞÞ ¼ d
dx

Z
A

θað1−xÞ
GðyÞdy; ð39Þ

where we consider the upper bound A, such that the integral
exists in the limit a → 0. Taking the limit, it is not difficult
to show that

θ0að1 − xÞGðθað1 − xÞÞ → δð1 − xÞ
Z

1

0

GðyÞdy: ð40Þ

From some elementary algebraic manipulations, it is easy
to check that this regularization scheme provides exactly
the same expression as (35); therefore S1 ∼ S01.
In the next sections, we will use these two regularization

schemes, and show explicitly that the corresponding results
are strongly dependent on them. This is, once again, an
artifact of the symmetry breaking required to construct the
RG flow.

III. PROGRESSIVE LOCAL TRUNCATIONS
AND MODIFIED REGULATOR

In this section, we construct the approximate solutions of
RG equation (1) using local potential approximation. We
start with melonic approximation, keeping only connected
diagrams. We show that the Ward identity violation can be
improved at first order, from an appropriate modification of
the Litim regulator without losing its optimal character in
the sense of Litim [91,92]. We then discuss the essential
role played by the disconnected diagrams and show that a
melonic ultralocal truncation of arbitrary order cannot
reach the exact value of the critical exponent for the single
relevant direction of the non-Gaussian fixed point. Note
that we keep the notation d for the rank of the tensor,
without specifying the value of d, to highlight the origin of

1See the next section. Using the first convention, we do not
find any solution which makes α such that L2 vanishes.
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the contribution, but ultimately we only focus on d ¼ 3.
Moreover, we focus on the symmetric phase, and we
expand beta functions around vanish means fields M
and M̄ [78–86].

A. Quartic truncation

Let us start with a quartic local truncation:

ð41Þ

The flow equations can be obtained from the exact flow
equation (1) taking successive derivatives with respect toM
and M̄ fields. The flow equation for ηðkÞ ¼ ∂k lnðZðkÞÞ
can be deduced taking the derivative with respect to
∂2=∂Mp⃗∂M̄q⃗, and setting p⃗ ¼ q⃗ ¼ 0⃗. Graphically, at
leading order in k for large k, we get an equation of the form

ð42Þ

where the dotted edge corresponds to contraction with
respect to _rkðGð2ÞÞ2. Moreover, the dot is defined as
_X ¼ k∂X=∂k—the factor 2 counting the number of deriv-
atives relevant at the leading order in k. The flow equation
for gðkÞ may be easily deduced in the same way:

ð43Þ

where once again the dotted edges represent contractions
with propagators Gð2Þ and _rkðGð2ÞÞ2. In principle, we
identify the terms on both sides of the flow equations
weighting the same boundary graphs. Let us recall the
definition of a boundary graph:
Definition 4. Let G be a dþ 1-colored Feynman graph

(including edges of color 0) and F 0 the set of external faces
of type 0i for i ∈ ð1;…; dÞ.
Let f0i ∈ F 0. The boundary graph of f0i denoted by

∂f0i is the set of bicolored edges of type 0 and i building
the cycle f0i. i is called the color of the boundary /
partial f0i.
The boundary graph of G, ∂G is a d-colored graph

(connected or not) built as the set of nodes hooked to
external edges and of the boundaries of external faces, such
that each boundary ∂f0i is identified to a single edge of
color i.
Figure 3 provides an illustration of a such boundary

graph. Equations (42) and (43) can be easily solved using

the Litim’s regulator. However, the Ward identity (13) is
strongly violated using the Litim’s regulator (16) with
the truncation (41). Indeed, the left-hand side of Eq. (13)
reads as

−
2

d
gðkÞ

X
n⃗⊥

Θ
�
k −

P
d
i¼2 ni
d

�
∼ −

2

d
gðkÞðk · dÞd−1; ð44Þ

where we used the renormalization condition πð2Þk ¼ gðkÞ.
This term is therefore of order ḡðkÞ, which is in accordance
with the expected result. The problem is heuristically
pictured in Fig. 4 where the planeM represents the largest
theory space, including nonlocal (momentum-dependent)
couplings. The RG flow thus may be viewed as a map
R∶R → M, corresponding to the trajectory relaying differ-
ent points of the theory space at different times t1 ¼ lnðk1Þ,
t2 ¼ lnðk2Þ � � �. Starting with a purely local truncation,
involving only bubbles or products of bubbles, the flow
does not remain along the local trajectory (the red dotted
arrow) but is derived toward a nonlocal region. This is a
consequence of the Ward identity (13). The derivative
dγ=dx1 is nonzero even if the original truncation involves
only the local terms. To solve this difficulty, and following
[80], we try to modify the windows of allowed momenta,
such that

fðxÞ ¼
�
d
x
− 1

�
θ

�
α −

x
d

�
; ð45Þ

FIG. 3. On the left a Feynman graph G, and the corresponding
boundary graph ∂G on the right.

FIG. 4. Heuristic picture of the RG flow. Starting from a purely
local region (corresponding to local truncation), the RG flow (the
solid blue arrow) derives toward a nonlocal region instead of
remaining along the red trajectory corresponding to the local
flow, due to the Ward identities.
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and then fine-tune α in such a way that the boundary
conditions on f remain held, and that (44) vanishes. Indeed,
for α ≠ 1, the formal derivative of the Heaviside function
provides a nonvanishing contribution proportional to
δðα − x⊥

d Þ:

∂f
∂x1

����
x1¼0

¼ −
d
x2⊥

θ

�
α −

x⊥
d

�
−
1

d

�
1

α
− 1

�
δ

�
α −

x⊥
d

�
;

leading to an undefined product as δðα − xÞθnðα − xÞ. The
regularization schemes proposed in the previous section
aim to solve this ambiguity. Using the continuum limit, for
k ≫ 1 to replace sums by integrals, we have to compute
integrals of the form

J ¼
Z

dx1dx2θðα − x1 − x2Þfðx1 þ x2Þ; ð46Þ

which can be easily computed by elementary algebraic
manipulations, see the Appendix. We get

J ¼
Z

α

0

dxxfðxÞ: ð47Þ

Using integral approximation (valid for d ¼ 3),

X
n⃗⊥

�Pd
i¼2 ni
k

�
p

θ

�
k −

P
d
i¼2 ni
d

�
≈ k2

dpþ2

pþ 2
; ð48Þ

and the regularization scheme S1, the condition Lp ¼ 0

reads as

α −
1

p
αp ¼ 0; ð49Þ

and setting p ¼ 2, we get α ¼ 2. Using the scheme S2, and
the well-known identity ∂θðα − xÞ=∂α ¼ δðα − xÞ, we get
straightforwardly a unique solution α ¼ 3=22 α ¼ 3=2
coming from the equation

−
1

2
α2 − α2ð1 − αÞ ¼ 0: ð50Þ

In the hope of deriving another solution for this problem,
we can attempt to try the modification fðxÞ → fðxÞ þ
αxfðxÞ. However, all such solutions are in conflict with the
positivity requirement of the effective propagator in the
interval x ≤ d, which introduces some singularities and,
therefore, we discarded them. Finally, let us add an
important remark about this derivation. The reader may
have some doubts about the use of the truncation (41) to
compute the integral on the left-hand side of the Ward
identity. However, we have to keep in mind (and it is clear

for the regulator that we have chosen) that the windows of
momenta relevant for the computation of this integral,
provided by the distribution ∂f=∂x1, are exactly the same
(x⊥ ≤ αd) as the one provided by _rk into the flow equation
[see Eq. (51)]. Therefore, using the truncation to compute
the sum on the right-hand side of the Ward identity is not an
additional approximation. It is the same as using the
truncation to solve the flow equation.
Equations (42) and (43) can be explicitly computed

using the regulator (45):

_rkðkxÞ ¼ Z

�
η

�
d
x
− 1

�
þ d

x

�
θ

�
α −

x
d

�

þ Zð1 − αÞδ
�
α −

x
d

�
; ð51Þ

where we used gðxÞδðα − xÞ ¼ gðαÞδðα − xÞ. Using the
sum (48), we get

η ¼ −6gðkÞ k
d−1

Z2
½ηðι−1;2 − ι0;2Þ þ ι−1;2 þ ð1 − αÞ∂ιðSÞ0;2�;

and

_g ¼ 4g2ðkÞ k
d−1

Z2
½ηðι−1;3 − ι0;3Þ þ ι−1;3 þ ð1 − αÞ∂ιðSÞ0;3�;

where, in the large k limit,

ιp;q ≔
Z

∞

0

dd−1xjxjqþp θðdα − xÞ
dqþp ¼ ðαÞpþqþ2d2

pþ qþ 2
: ð52Þ

The explicit expression for ∂ιðSÞp;q, however, depends on the
regularization scheme S ¼ S1 or S ¼ S2. For S ¼ S1 we
have

∂ιðS2Þp;q ¼ d2
α2

p − 1

1

1 − α
ð53Þ

and for S ¼ S2,

∂ιðS2Þp;q ¼
Z

∞

0

dd−1xjxjqþp δðdα − xÞ
dqþp ¼ ðαÞpþqþ1d2; ð54Þ

where the norm j:j is defined as jxj ≔ P
i xi. In terms of the

renormalized couplings (25), defining βg ≔ _̄g the previous
equations read in the scheme S1 as

βðS1Þg ¼ 2ð1 − ηÞḡþ 12α4ḡ2
�
3η

5 − 4α

20
−
3

4
þ 3

2α2

�
; ð55Þ

where

ηðS1Þ ≔
36ð3 − 2αÞα2ḡ

9α3ð3α − 4Þḡ − 2
: ð56Þ

2In rank d, it may be easily checked that α ¼ d=ðd − 1Þ.
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Using the scheme S2,

βðS2Þg ¼ 2ð1 − ηÞḡþ 12α4ḡ2
�
3η

5 − 4α

20
þ 3

4
þ 3ð1 − αÞ

�
;

ð57Þ

where

ηðS2Þ ≔ −
8

9α3ð3α − 4Þḡ − 2
− 4: ð58Þ

Once again, note that the two schemes are equivalents for
α ¼ 1. Equation βg ¼ 0 can be exactly solved for arbitrary
α. In particular, note the following:
First, for α ¼ 1 (standard Litim regulator), we get two

fixed points, g1 ≈ −6.29 and g2 ≈ −0.037, with respective
anomalous dimension and critical exponents3:

η1 ≈ −4.14; θ1 ≈ 12.3; η2 ≈ 0.81; θ2 ≈ 2.39:

ð59Þ

The first fixed point has a very large critical exponent, and
the anomalous dimension violates the regulator bound.4

Therefore, at this stage, we do not have confidence with this
fixed point, which can be viewed as an artifact of the
approximation.
Second, in the scheme S2, for α ¼ 1.5 we get two fixed

points g�1 ≈ 1.74 and g�2 ≈ 0.017 with anomalous dimen-
sions and critical exponents respectively:

η�1 ≈ −4.33; θ�1 ≈ 17.0; η�2 ≈ 0.57; θ�2 ≈ 2.26:

ð60Þ

The two fixed points have essentially the same character-
istics as the fixed point g1 and g2 obtained using the Litim
regulator, enforcing the confidence in the local truncation
for the existence of this fixed point. The properties of the
fixed point g2 coincide with the ones of the relevant fixed
point discovered in [101] using the same purely local
truncation with the Litim’s regulator. We see that the
modified regulator with α ¼ 3=2 slightly improves the
result, the exact result being θ ¼ d − 2 for d is the rank of
the tensor [101].
Finally, in the scheme S1, for α ¼ 2, we get again

two fixed points, for g��1 ≈ −0.35 and g��2 ≈ 0.005, with
characteristics

η��1 ≈ −0.96; θ��1 ≈ 4.96; η��2 ≈ 0.65; θ��2 ≈ 3.35:

ð61Þ

The second fixed point g��2 is reminiscent of the two fixed
points g2 and g�2, especially concerning the value of their
anomalous dimensions, and may be interpreted as the fixed
point governing the continuum limit corresponding to the
double scaling. However, the first fixed point has the
interesting property i.e., the anomalous dimension remains
below the lower bound η ¼ −1. Therefore, there is no
reason before discarding it. The only reason may be that it
seems to be very dependent on the scheme used to do the
computation, but at this stage, there is no strong indication
to privilege scheme S1 regarding the scheme S2. Usually,
only the stability regarding higher truncations may provide
a solid argument to keep or discard such a fixed point.
Nevertheless, stability for small variations of the regu-

lator and the presence of singularities may provide a first
indication about the quality of the regularization scheme.
Figure 5 shows the dependence of the critical exponents for
the second fixed point with α, respectively for schemes S1
and S2. The blue curve (scheme S1) is stable in the region
α ¼ 1, a possible indication of why the Litim regulator
works well.5 It becomes stable also in the vicinity of α ¼ 2,
is a larger domain than for α ¼ 1, and has better stability
which is encouraging physically, despite the strong dis-
agreement with the exact result (θ ≈ 3.35 when the exact
value is θextact ¼ 1)—a conclusion which has to be con-
firmed for higher truncations. However, between these two
regions, the curve of θ has two singularities. In contrast, the
yellow curve in the scheme S2 does not has any singularity.
It is stable on a long-range of values around α ¼ 1; and
after a continuous transition, becomes stable once again in
the region α ≈ 3=2. Based on these elementary investiga-
tions, scheme S2 seems to behave better than scheme S1 (in

0.5 1.0 1.5 2.0

10

10

20

30

FIG. 5. Plot of θðαÞ for α ∈ ½0.2; 2�, using scheme S1 (blue
dashed curve) and scheme S2 (yellow solid curve).

3We recall that critical exponents are defined as the opposite
values of the stability matrix Aij ≔ ∂giβj evaluated at a given
fixed point.

4The regulator has to be very large in the large k limit. For the
Litim regulator, taking into account the definition of η, we must
have rk ∼ k1þη in the large k limit, ensuring η > −1.

5Note, however, that the critical exponent is θ ≈ 12 for α ¼ 1, a
characteristic reminiscent of the fixed point g1.
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the relevant range of values of α that we investigated); it is
encouraging to take results arising from S2 as reference. We
will complete these conclusions in the next sections.
Figures 6 and 7 show respectively the anomalous

dimensions and the β functions for α ¼ 1, α ¼ 2, and
α ¼ 3=2, respectively using schemes S1 and S2. All the
solutions are in quantitative accordance in the vicinity of
the Gaussian fixed point, but differ quantitatively and
qualitatively in a relatively large range of couplings, before
finding a qualitative agreement for couplings of very large
magnitude (see the second curve of Fig. 6). Note that all of
the regularization schemes have a singularity in the vicinity
of their zeros, in the negative region for α ¼ 1 and in the
positive region for α ¼ 2 (S1) and α ¼ 3=2 (S2). Note that
the quality of the regularization scheme could be very
dependent on the region that we consider. Indeed, we have
seen that, for small couplings, regularization S2 has a better
behavior than S1, which is also clear from the curves for η
and β, and have a singularity very closer to the Gaussian
fixed point. However, the curve for η shows that for the
Litim regulator and S2 approach with α ¼ 3=2, the anoma-
lous dimension becomes smaller than the lower bound
η ¼ −1 for couplings with large magnitude. In contrast, the
value for the anomalous dimension using S1 remains not so
far from the bound in the positive region, and just above
that in the negative region.

It is not easy to say more only from quartic truncations,
especially with the improvement coming from taking into
account Ward identities in the construction of the local
flow. This solution, however, takes into account only the
first-order effects, the first derivative for the first Ward
identity, involving only 4- and 2-point functions. A deeper
investigation obviously should take into account higher-
order effects. However, we will see in the next section that
taking into account first-order effects already shows a clear
improvement, mainly visible in the rapidity of the con-
vergence of the results in high truncations.

B. Octic truncations

In this section we investigate higher order melonic
truncations, taking into account sextic and octic couplings.
Taking into account all the melonic connected couplings up
to valence eight, we get, in the same notations as in the
previous section,

ð62Þ

The flow equations for the couplings can be easily derived
taking successive derivatives of the exact RG equation (1).
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FIG. 6. Plot of the anomalous dimension in a short range of
couplings around the Gaussian fixed point. For α ¼ 1 (solid green
curve), for α ¼ 2 using scheme S1 (blue dashed curve), and for
α ¼ 1.5 using scheme S2 (dotted yellow curve).
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FIG. 7. Plot of the β function for α ¼ 1 (solid green curve),
α ¼ 2 using scheme S1 (blue dashed curve), and α ¼ 1.5 using
scheme S2 (dotted yellow curve).
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Equation (42) remains unchanged. The equation for _g,
however, receives sextic contributions, and becomes
graphically

ð63Þ

The flow equations of h2 and h1 can be derived in the same
way, and we get

ð64Þ

and

ð65Þ

Finally, we get for octic couplings,

for u1,

for u2,

for u3,

for u4, and finally for u5,
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These graphical equations may be easily translated in
ordinary equations. Defining the scheme-dependent sym-

bols LðSÞ
n ðηÞ as

LðSÞ
n ðηðSÞÞ ≔ ηðSÞðι−1;n − ι0;nÞ þ ι−1;n þ ð1 − αÞ∂ιðSÞ0;n; ð66Þ

we get straightforwardly,

βðSÞg ¼ 2ð1 − ηðSÞÞḡþ 4ḡ2ðkÞLðSÞ
3 − ð3h̄1 þ 2h̄2ÞLðSÞ

2 ;

βðSÞh1
¼ ð4 − 3ηðSÞÞh̄1 − 8ḡ3LðSÞ

4 þ 12ḡh̄1L
ðSÞ
3

− ð4ū1 þ 2ū2ÞLðSÞ
2 ;

βðSÞh2
¼ ð4 − 3ηðSÞÞh̄2 þ 8ḡh̄2L

ðSÞ
3

− ð2ū2 þ ū5 þ 2ū4 þ 4ū3ÞLðSÞ
2 ;

βðSÞu1 ¼ ð6 − 4ηðSÞÞū1 þ 16ḡ4LðSÞ
5 − 36h̄1ḡ2L

ðSÞ
4

þ ð16ū1gþ 9ū21ÞLðSÞ
3 ;

βðSÞu2 ¼ ð6 − 4ηðSÞÞū2 − 12h̄2ḡ2L
ðSÞ
4 þ 6h̄1h̄2L

ðSÞ
3

þ 12ḡū2L
ðSÞ
3 ;

βðSÞu3 ¼ ð6 − 4ηðSÞÞū3 þ 8ḡū3L
ðSÞ
3 þ h̄22L

ðSÞ
3 ;

βðSÞu4 ¼ ð6 − 4ηðSÞÞū4 þ 8ū4ḡL
ðSÞ
3 ; ð67Þ

βðSÞu5 ¼ ð6 − 4ηðSÞÞū5 þ 12ū5ḡL
ðSÞ
3 ; ð68Þ

the expression for ηðSÞ being unchanged:

ηðSÞ ≔ −6ḡ
ι−1;2 þ ð1 − αÞ∂ιðSÞ0;2

1þ 6ḡðι−1;2 − ι0;2Þ
: ð69Þ

Investigating numerically the fixed points, respectively
for sextic and octic truncations, we get a very large number
of solutions. Some of them are irrelevant, violating the
regulator bound η ¼ −1, which seems to be very unstable
passing from sextic to octic truncations. Some of them
moreover involve more than one relevant direction, and
may be interpreted as multicritical points, corresponding to
a triple scaling limit and so one [102,103]. Finally, only one
fixed point is physically relevant for the double scaling
limit, involving only one relevant direction, and has a small
dependence on the truncation level. The results for quartic,
sextic, and octic interactions are summarized in Table I.
Note that at this fixed point, only couplings g, h1, and u1

take a nonzero value. All other couplings vanish exactly,
and the results are essentially insensitive to their presence
on the truncation (as we can check explicitly, see the next
subsection). This may be viewed as an indication that only
a subfamily of melons contributes to the fixed point
structure, especially in regard to the understanding of the
double scaling limit using renormalization group. This
subfamily is known as a nonbranching melonic sector, and
nonbranching melons may be defined recursively as pic-
tured in Fig. 8. We will use this observation in the next
section to construct truncations up to order 20 in the
nonbranching sector. Another interesting observation can
be given by the following prescription: one can mention
that the range of values for the couplings at the fixed point
seems to follow an interesting hierarchy, h1 ∼ g=10n,
u1 ∼ h1=10n, n being of order 1 for a standard Litim
regulator, and between 1 and 2 for regulators with α ¼ 2
and α ¼ 3=2, in schemes S1 and S2 respectively. This
shows that no significant interacting structure appears up to
order g.
From the results summarized in [102,103] Table I, the

following essential observations can be made:
(1) First of all, the characteristics of the fixed point

are essentially the same between all the regulariza-
tion schemes. This concerns both the values of the
critical exponents and the values of the anomalous
dimension.

(2) The values of the relevant characteristics seem to
converge toward a finite limit. This is especially
the case for the critical exponent, which seems to

TABLE I. Characteristics of the non-Gaussian fixed point
relevant for the double-scaling limit for octic melonic truncations.

Truncations order α and scheme ḡ Relevant θ η

4 α ¼ 1 −0.04 2.39 0.80
4 α ¼ 2ðS1Þ 0.006 3.35 0.65
4 α ¼ 3

2
ðS2Þ 0.016 2.26 0.57

6 α ¼ 1 −0.035 2.34 0.71
6 α ¼ 2ðS1Þ 0.0046 3.04 0.50
6 α ¼ 3

2
ðS2Þ 0.01 2.19 0.42

8 α ¼ 1 −0.03 2.31 0.65
8 α ¼ 2ðS1Þ 0.004 2.85 0.40
8 α ¼ 3

2
ðS2Þ 0.01 2.16 0.35

FIG. 8. Structure of the nonbranching melon in rank 3. The last
bubble involves 2p nodes along the ring of color i. We call
2-dipole the insertions along this mono-colored ring, built as two
black and white nodes hooked together by two colored edges of
color ≠ i.
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converge toward 2. The large truncations that wewill
consider in the next section for the nonbranching
sector and the exact results deduced from the EVE
method in the next section will confirm this heu-
ristic bound.

(3) TakingWard identities into account may improve the
results qualitatively, compared with the exact results.
This is indeed the case for the scheme S2, which
effectively improves the result, at the orders con-
sidered, compared with the results obtained with the
Litim regulator. Besides, the rate of convergence
seems significantly faster, for the critical exponent
than the anomalous dimension. However, the differ-
ence seems worse in the diagram S1, which however
displays a speed of convergence greater than the
diagram S1 when the order of the truncation in-
creases. Besides, the convergence is much slower
using the Litim regulator.

From this third point, we deduce that in the point of view
of the proximity to the exact result and the speed of
convergence with the order of truncation, it seems that any
regularization improving the disagreement with Ward
identities will be better than the regular Litim regulator.
This result will be supported with large order investigations
in the next section. Even to close this part, we aim to add an
important remark about the violation of Ward identities.
One may object that, even if we fine-tune the regulator to
vanish L2, the disagreement from coefficients that are not
canceled could be worse. It is, however, easy to check that
this is not the case. Indeed, from the computations
performed in the previous section [Eq. (49)], we see for
instance that using scheme S1, the additional factor 2p

arising, setting α ¼ 2, is compensated by the fact that,
numerically, jḡLitimj > 2ḡS1 , which becomes the tendency
that seems to increase with the order of truncation. The
same conclusion occurs for the regularization S2.
Moreover, the improvement of the hierarchical behavior
for higher couplings at the fixed point when α ≠ 1 enforces
this observation.

C. Nonbranching sector up to order 20

The nonbranching sector follows a well-know recursive
definition, and in this sector, one can easily find an
expression for the β functions for arbitrary order. For
convenience, we introduce the notation u2q for the renor-
malized coupling (for instance u4 ¼ g and so one). It is
therefore easy to check recursively that [60]

βðSÞ2p ¼ ð2ðp − 1Þ − pηÞu2p þ
Xp
k¼1

ð−1ÞkLðSÞ
kþ1ðηÞ

×
X

fn2qg∈Dk;p

k!Q
q≥2n2q!

Y
q≥2

ðqu2qÞn2q ; ð70Þ

where n2q denotes the number of interactions involved on
the loop of length k, and Dk;p is the set of fn2qg satisfying
the two conditions:

X
q≥2

n2q ¼ k;
X
q≥2

qn2q ¼ pþ q; ð71Þ

the first constraint being interpreted as the length of the
loop equal to k, and the second constraint takes into
account that we construct an effective coupling of valence
2p. Finally, it is easy to count the number of contractions
leading to a given nonbranching melonic interaction of
valence 2p. Each bubble of type 2q involved in a loop has q
different positions at the leading order and corresponding to
the permutation of the 2 dipoles along the monocolored
ring. With n2q diagrams, this leads to a factor qn2q. More-
over, the k bubbles contributing to the loop of length k can
be randomly arranged, for the singular propagator _rkðGð2ÞÞ2
(all the other contractions are involved only in the effective
propagator Gð2Þ). The number of arrangements is given by
the generalized binomial coefficients:

C
fn2qg
k

k!Q
q≥2n2q!

; ð72Þ

and the formula (70) follows.
We investigated numerically truncations up to order 20

in this section, and a first observation is that, for the fixed
point relevant for the double scaling limit, the presence of a
branching melon has no significant effect on the compu-
tation of universal quantities, especially on the values of the
critical exponents and anomalous dimension. The results
are summarized in Figs. 9 and 10. These figures confirm the
assumptions that we have done from octic truncations. In
Fig. 9, we show that in all cases the value of the critical

2 4 6 8
p 1

2.2

2.4

2.6

2.8

3.0

3.2

3.4

FIG. 9. The relevant critical exponents in the nonbranching
sector for truncations up to order 20. The x axis refers to the order
of the truncation p − 1. The blue (solid) curve is for the standard
Litim regulator, the green (dotted) curve is for the scheme S1
(α ¼ 2), and the yellow (dashed) curve is for the scheme
S2 (α ¼ 3=2).
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exponent is improved by the order of the truncation, going
more and less rapidly toward the exact value 1. However,
the observed tendency in octic truncation seems to be
confirmed. The values progress in the direction of the x axis
but seem to converge toward 2 rather than 1. Despite this
disagreement, this value 2 has a physical meaning. It is
nothing but the perturbative result in the first order, and we
are tempted to conclude that a purely local truncation
cannot significantly improve the physical result, better than
the one-loop result. Indeed, the β function at one loop must
have the following structure:

β ¼ ðd − 1Þgþ Ag2; ð73Þ
where A is a constant. This beta function has a fixed point
for g� ¼ −ðd − 1Þ=A, and the critical exponent reads as

θone-loop ¼ −β0ðg�Þ ¼ −ðd − 1Þ − 2Ag� ¼ d − 1; ð74Þ
which reduces to 2 for d ¼ 3. One expects that for a rank d
model, the critical exponent will converge toward d − 1.
We will moreover prove in Sec. III E that θ must be equal to
d − 1 for arbitrary large truncations in the nonbranching
sector using the EVE techniques. Then, remembering that
our aim is first to evaluate the quality of the truncation, we
have to take the bound θ ¼ d − 1 as reference. We will see
further in the next section that disconnected pieces play
an important role if we aim to reach the exact value
of θ ¼ d − 2.
To summarize Fig. 9, we conclude that, despite a bad

start for the critical exponent using scheme S1 with small
truncations, the speed of convergence is increased when the
disagreement with Ward identities is reduced. The best
choice seems to be the scheme S2, which improves both the
rapidity of the convergence and the difference to the
inductive limit d − 1 at each order. However, the scheme

S2 could compensate this badly, starting by its record
convergence speed. The stability of the results for trun-
cations involving a larger family of graphs could be,
ultimately, the only way to decide between the reliability
of the two schemes. Figure 10 for the anomalous dimension
enforces this conclusion. For the schemes S1 and S2, the
anomalous dimension seems to converge rapidly toward a
very small inductive limit, when the progression seems to
be slowly using the Litim regulator.

D. Disconnected pieces

In the last sections, we considered connected melonic
truncations up to valence 8 and a nonbranching sector up to
valence 20. We observed that our results are strongly
improved by increasing the order of the truncation, and
we expect that this regular progression could converge
for sufficiently large truncations. However, we showed that
the expected limit does not reach the theoretical result of
θ ¼ 1, but becomes θ ¼ 2. We provide an explanation of
this phenomena in the next section. Nevertheless, we
completely neglected the influence of next-to-leading order
bubbles. One may expect that this can be an important
mistake for a theory whose interacting fixed point structure
arises from the irrelevant couplings. Indeed, from the
power counting (24), we have seen that nonmelonic pieces
must have larger canonical dimension than some melonic
interactions, and should be included in the truncations.
Therefore, for higher-order truncations, one can expect that
NLO bubbles could play an important role, especially about
the bad melonic limit θ ¼ 2. It would not be surprising,
moreover, that the NLO contributions play such a role, the
double scaling limit being by nature the result which taking
into account the influence of the subdominant sectors at the
critical point. A complete investigation of the influence of
subdominant orders is reserved for the other article.
However, the question of the role of disconnected diagrams
is expected to be completely different. Indeed, such a
diagram arises for instance from the contraction

ð75Þ

and does not appear for instance in a truncation involving
only a single quartic melonic interaction among the d ones.
Therefore, we can in principle discard the influence of
disconnected pieces from a breaking of the color symmetry
invariance of the models considered above. The results are
summarized on Table II, using scheme S2. We show that the
results are significantly closer to the exact limit of θ ¼ 2,
and, once again, the regulator α ¼ 3=2 is quantitatively
better than the standard Litim regulator. Interestingly, the
convergence of the anomalous dimension becomes more
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FIG. 10. The corresponding anomalous dimension in the non-
branching sector for truncations up to order 20. Once again, the
x axis refers to the order of the truncation p − 1. Moreover the
color conventions are the same as in the previous figure. The blue
(solid) curve is for the standard Litim regulator, the green (dotted)
curve is for the scheme S1 (α ¼ 2), and the yellow (dashed) curve
is for the scheme S2 (α ¼ 3=2).
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precise towards the value 0, and by using the regulator
α ¼ 3=2 (see claim 1 of the next section).
As firstly pointed out in [104], the influence of dis-

connected interactions is not to improve the precision of the
critical exponent in regard to the double scaling limit, but to
create new fixed points having more than one relevant
direction. Such a fixed point is interpreted by the authors as
an evidence for a scaling limit beyond double scaling,
providing a new continuum limit. However, recovering the
double scaling seems to require a specific phase space
parametrization, breaking the color symmetry. Indeed, we
showed that our results in the previous section, taking into
account only the melonic sector, is in agreement with the
simplest truncation breaking the color symmetry, but,
rigorously, we have no reason to discard the disconnected
pieces in the color-symmetric truncations, and the relevant
fixed point for double scaling disappears. This pathology
has been pointed out as a consequence of finite truncations
in [104].
From the power counting (24), an interaction of the form

ð76Þ

has canonical dimension −3. In contrast, the valence
6 melonic bubbles have dimension −2ðd − 1Þ ¼ −4.
Therefore, from a strict power counting point of view,
there is no reason to discard disconnected pieces. This also
concerns the case for the disconnected piece:

ð77Þ

which has power counting dimension −5, smaller than the
dimension of melonic octic truncations, which is −6. In this

section, we briefly consider their influence. Let us consider
the colored symmetric truncation:

ð78Þ

The disconnected terms do not affect the flow equations for
h1 and h2 computed in the previous section (setting to zero
the octic couplings). The flow equation for g2 receives the
additional contribution

ð79Þ

and the expression of _Z becomes

Moreover, the couplings g1 and h3 have their own flow
equations, explicitly,

and

TABLE II. Characteristics of the non-Gaussian fixed point
relevant for the double-scaling limit for a single-colored melonic
truncation. We considered complete melonic truncations up to
order 8, and only the nonbranching sector up to order 20.

Truncations order α (scheme S2) ḡ Relevant θη

4 α ¼ 1 −0.08 2.26 0.57
4 α ¼ 3

2
ðS2Þ 0.036 2.13 0.31

6 α ¼ 1 −0.06 2.18 0.21
6 α ¼ 3

2
ðS2Þ 0.02 2.08 0.18

8 α ¼ 1 −0.05 2.15 0.33
8 α ¼ 3

2
ðS2Þ 0.01 2.06 0.14

20 α ¼ 1 −0.02 2.06 0.13
20 α ¼ 3

2
ðS2Þ 0.005 2.02 0.04
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This leads to the following system:

βðSÞg1 ¼ ð3− 2ηðSÞÞḡ1 − 6h̄3L
ðSÞ
2 þ 4ḡ21K

ðSÞ
3 þ 24ḡ1ḡ2L

ðSÞ
3

þ 24ḡ22J
ðSÞ
3 ;

βðSÞg2 ¼ 2ð1− ηðSÞÞḡ2 þ 4ḡ22L
ðSÞ
3 − ð3h̄1 þ 2h̄2ÞLðSÞ

2 − h̄3K
ðSÞ
2 ;

βðSÞh1
¼ ð4− 3ηðSÞÞh̄1 − 8ḡ32L

ðSÞ
4 þ 12ḡ2h̄1L

ðSÞ
3 ;

βðSÞh2
¼ ð4− 3ηðSÞÞh̄2 þ 8ḡh̄2L

ðSÞ
3 ;

βðSÞh3
¼ ð5− 3ηðSÞÞh̄3 þ 4ḡ1h̄3K

ðSÞ
3 þ 12ḡ1h̄1L

ðSÞ
3

þ 8ḡ1h̄2L
ðSÞ
3 − 24ḡ22ḡ1L

ðSÞ
4 − 48ḡ32J

ðSÞ
4

þ 16ḡ2h̄2J
ðSÞ
3 þ 4ḡ2h̄3K

ðSÞ
3 : ð80Þ

In these equations we introduced KðSÞ
n defined as

KðSÞ
n ≔

Zn−1

k2

Z
ddx

_rkðxÞ
ðZþrkðxÞÞn

≕Kð1;SÞ
n ηðSÞþKð2;SÞ

n ; ð81Þ

and the anomalous dimension ηðSÞ is given by

ηðSÞ ¼ −
6ḡ2L

ð2;SÞ
2 þ 2ḡ1K

ð2;SÞ
2

1þ 6ḡ2L
ð1;SÞ
2 þ 2ḡ1K

ð1;SÞ
2

; ð82Þ

where Kð1Þ
n and Kð2Þ

n can be computed exactly as (see
Appendix)

Kð1Þ
n ¼ d3

2

�
1

nþ 2
−

α

nþ 3

�
αnþ2 ð83Þ

and

Kð2Þ
n ¼ d3

2

1

nþ 2
αnþ2 þ d3

2
ð1 − αÞαnþ2: ð84Þ

We moreover introduced the one-dimensional integrals:

JðSÞn ≔
Zn−1

k2

Z
dx

_rkðxÞ
ðZ þ rkðxÞÞn

≕ Jð1;SÞn ηðSÞ þ Jð2;SÞn : ð85Þ

Explicitly,

Jð1;SÞn ¼ d

�
1

n
−

α

nþ 1

�
αn; ð86Þ

and

Jð2;SÞn ¼ d

�
1

n
þ ð1 − αÞ

�
αn: ð87Þ

Note that it is clear that fixed points discarding the
disconnected pieces cannot be a fixed point of the previous
system. This can be easily checked at the lowest order,
keeping only the quartic disconnected pieces (the coupling
g1). Setting g1 ¼ 0, the corresponding flow equation
involves the product dðd − 1Þg22, which does not vanish,
except for g2 ¼ 0 or if we consider only one quartic melon
among the d allowed (i.e., if we break the color permutation
symmetry).
We work only with the scheme S2, and consider the

values α ¼ 1 and α ¼ 3=2. Starting with the quartic
truncation, we get a large number of isolated fixed points.
Some of them, however, have to be discarded, violating the
regulator bound η ¼ −1, or being below the singularity line
defined by the denominator of η.6 For α ¼ 1, the physical
relevant fixed point closer to the Gaussian fixed point
vanishes the branching couplings (h̄2 ¼ 0), and the critical
exponents take the values

Θα¼1 ¼ ð5.22; 0.52;−2.40;−1.49Þ; ð88Þ
with anomalous dimension ηα¼1 ≈ 1.14. For α ¼ 3=2, we
recover a fixed point reminiscent of this one for values

Θα¼3=2 ¼ ð8.99; 1.64;−6.84;−2.79Þ; ð89Þ

6The singularity line defined by the denominator of η split the
phase space in two connected regions. The denominator is
moreover positive only in the region connected to the Gaussian
fixed point.

VINCENT LAHOCHE and DINE OUSMANE SAMARY PHYS. REV. D 102, 056002 (2020)

056002-18



and the anomalous dimension ηα¼3=2 ≈ 1.44. Note that in
the absence of an exact result, we cannot identify which of
these results is qualitatively better. The only indication in
favor of the second regularization is its good convergence
properties in the melonic sector.7 Moreover, we show
explicitly the disappearance of the fixed point with one
relevant direction discovered above, illustrating how the
results are strongly dependent on the phase space
parametrization.
Now, let us consider the full sextic truncation. Once

again, we get a large number of isolated fixed points, but
only one of them has stable characteristics. We do not
recover the fixed points discovered above, but a fixed point
having one relevant complex direction. For α ¼ 1, we get a
nonbranching fixed point having a critical exponent:

Θα¼1 ¼ ð1.48þ 0.84i; 1.48 − 0.84i;−4.46;−1.59;−1.30Þ;
ð90Þ

and anomalous dimension ηα¼1 ≈ 0.56. For α ¼ 3=2we get

Θα¼3=2 ¼ ð2.28þ 0.68i;2.28− 0.68i;−4.31;−1.95;−1.56Þ;
ð91Þ

with anomalous dimension ηα¼3=2 ¼ 0.33. Once again, we
have no reference to compare these results. However, the
characteristics of the fixed points obtained from quartic and
sextic truncations seem to be very different. Therefore, a
deeper analysis, involving larger truncations, is required to
conclude about the reliability of this fixed point, or, as for
the melonic sector, a deeper understanding of the exact
relations between disconnected pieces, as there exist
between connected melonic pieces (see the next section).

E. A limit for the ultralocal melonic approximation

The previous result showed that the convergence for
higher truncation seems to be very dependent on the sectors
of the theory space that we take into account. For instance,
we showed that taking only the nonbranching melonic
sector, for instance, cannot allow reaching the exact value
of θ ¼ d − 2. This result was in large part empirical
because we only considered three regulators among an
infinity of possibilities. In this section we provide a solid
argument, based on the effective vertex expansion (EVE),
showing that even with a truncation of arbitrarily large size,
and without making an explicit choice for the regulator, the
critical exponent reaches the value θop ¼ d − 1, which is
nothing but the inductive bound discovered from large
truncations in the nonbranching sector.

Note that in the point of view developed in this paper, the
disagreement between the exact value θexact ¼ d − 2 and
θop is not a consequence of the method but of the restricted
domain of the full phase space that we investigated. We
separate the question of exploring the vast expanses of
phase space from the effectiveness of the method, for which
we have retained essentially two criteria, namely proximity
with an optimal result (in this case θop ¼ d − 1) and the
speed of convergence. It is expected that the methods
giving good results for specific sectors will be as effective
on larger domains, and more likely to allow one to discover
new critical behaviors.
The EVE is a recent development for tensorial group

field theories [78–86]. It allows the capturing of entire
sectors, i.e., an infinite set of effective vertices and their
exact momentum dependence, in contrast with crude
truncations discussed in the previous section. This method
is easy to use only in the nonbranching melonic sector, and
we only focus on it in this paper. Extensions to subleading
order is a very fastidious task discussed in [79], and no
version exists for disconnected interactions. However, the
fact that we may be able to keep the complete momentum
dependence of the effective vertices could strongly improve
the local truncation with the Ward identity violation,
without requiring a fine-tuning adjustment. We do not
discuss in full detail this issue here, deferring a more
exhaustive analysis to a future article. In Sec. V, we will
discuss the influence of derivative coupling, and we will
return briefly to the EVE at this time.
Let us consider the quartic model described by the

classical action:

ð92Þ

Note that we stopped the sum over melonic interaction to
the number 1 ≤ ν ≤ d. The reader may be surprised by this
restriction. To be more clear we had not made an explicit
choice of classic action before. We implicitly use the same
argument of universality [105], arguing that the critical
behavior of the tensor models must be the same as for the
quartic model. We therefore do not lose anthing by
restricting ourselves to a quartic model, with which it is
easier to work. Investigating the properties of the leading
order (i.e., melonics) diagrams, it is not hard to prove the
following statement [78,79]:
Proposition 1. LetG be a nonvacuum 1PI diagram with

2n external edges. The following properties hold:
(i) The 2n external edges are pairwise connected to

(d − 1) dipoles. They build ðd − 1Þn open cycles of
type 0i.

(ii) In addition there exist n open cycles of the same
color hooked to external edges pairwise.

7Another indication could be the range of values for the
couplings at fixed points, sensitively larger for the Litim
regulator.
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Figure 11 provides an illustration of this statement, and
we recall the definition of a k dipole:
Definition 5. A k dipole is built as two black and white

nodes linked together by k colored edges of colors different
from 0.
As a direct consequence of this proposition, the Feynman

graphs involved in the expansion of the effective vertex
functions Γð2nÞ

k can be labeled by an index i corresponding

to the color of the n open cycles. Thus, Γð2nÞ
k decomposes as

a sum of d functions:

Γð2nÞ
k;n⃗1;…;n⃗2n

¼
Xd
i¼1

Γð2n;iÞ
k;n⃗1;…;n⃗2n

: ð93Þ

The Feynman diagrams involved in the expansion of

Γð2n;iÞ
k;n⃗1;…;n⃗2n

fix completely the relation between the different
indices. For n ¼ 2, the relation between the different
indices has been described in (10). Graphically,

ð94Þ

The aim of the EVE is to close the infinite hierarchical
system obtained by expanding the exact flow equation (1).
Restricting firstly our attention to local couplings, this
closure requires one to express the 6-point function

Γð6;iÞ
k;n⃗1;…;n⃗6

in terms of the 4- and 2-point functions. From
proposition III E; the 6-points vertex function must have the
following structure:

ð95Þ

where perm denotes the permutations of the three elements.

Denoting formally by πð3Þk ðn11; n31; n51Þ the sum of the
interiors of the graphs contribute to the perturbative

expansion of Γð6;iÞ
k;n⃗1;…;n⃗6

. The explicit expressions of πð2Þk

and πð3Þk can be easily obtained from the recursive structure

of melonic diagrams [81]. For πð2Þk , we get

πð2Þk ðn; nÞ ¼ gð1 − 2gA2;n þ 4g2ðA2;nÞ2 þ � � �Þ
¼ g

1þ 2gA2;n
; ð96Þ

where

Am;n ≔
X
n⃗

ðgð2Þðn⃗ÞÞmδn1n: ð97Þ

In the same way, the internal structure of the 6-point
melonic diagram can be investigated recursively. The
explicit structure is given in Fig. 12, which can be
translated as

πð3Þk ðn; n; nÞ ¼ 2ð2πð2Þk ðn; nÞÞ3A3;n; ð98Þ

the combinatorial factor 2 in front of πð2Þk arises from the
two allowed orientations for the boundary effective
2-points vertices. Following [84], we call structure equa-
tions the relations (100), (96), and (98) between effective
melonic vertices. Note that, even if we focus on the first
relations, such a relation exists to all orders, and the 2n-
point functions may be expressed in terms of the 4- and
2-point functions8 [81]. Interestingly, all the effective
vertices depend on the knowledge of the 2-point function.
This function, or more precisely the self-energy Σkðn⃗Þ is
determined in the melonic sector from a closed equation.
Like the structure equations (96) and (98), the closed
equation arises directly from proposition III E, and the
reader may consult [48,106] and references therein.
Defining the monocolored 2-point functions σk as

FIG. 11. A melonic 4-point graph, with external nodes labeled
as A, B, C, and D. Pairs ðA; BÞ and ðC;DÞ build (d − 1) dipoles.
Moreover, pairs ðA;CÞ and ðB;DÞ are boundaries of external
cycles of the same colors, one per pair. The corresponding cycle
for the pair ðA;CÞ is materialized by the blue arrows.

FIG. 12. Internal structure of the 1PI 6-points graphs.

8Note that these structure equations are nothing but the
melonic version of the well-known Schwinger-Dyson equations.
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Σkðn⃗Þ ≔
Xd
i¼1

σkðniÞ; ð99Þ

which is nothing but the transcription of Eq. (93) for
2-point functions, we have the following statement:

σkðnÞ ¼ −2g
X
n⃗

δn1n
1

1 −
P

ν
i¼1 σkðniÞ þ rkðn⃗Þ

: ð100Þ

We will use this equation especially in Sec. V, investigating
the momentum dependence of the melonic functions, in
regard to modified Ward identities. Expanding the flow
equation (1) and keeping only the leading-order terms in
the large-k limit, we get, using the same notations as in the
previous section:

ð101Þ

and

ð102Þ

the factor 2 in front of the six points contribution arising
from the remaining permutation of external edges hooked
to white nodes. In this form, the RG equations are com-
pletely closed, the 6-point function being expressed in
terms of 2- and 4-points ones. Setting the external momenta
to zero, and from the renormalization condition

πð2Þk ð0; 0Þ≡ gðkÞ; ð103Þ

we deduce

ηðSÞ ¼ −2νḡðkÞLðSÞ
2 ðηÞ; ð104Þ

and

βg;EVE ¼ ððd − 1Þ − 2ηÞḡðkÞ þ 4ḡ2ðkÞL3ðηÞ

−
1

2
πð3Þk ð0; 0; 0ÞL2ðηÞ; ð105Þ

where in (104) ν is equal to the number of quartic melonic
interactions that we have in the classical action (92). These
equations are exact, in the sense that they do not require
more than exact relations between melonic observables at
leading order. At this stage, we can address the following
issue: Assuming that we intend to construct an ultralocal
approximation of the effective action from an arbitrarily
wide truncation, such that this approximation is compatible
with the constraints given by the EVE, the β function, in
an ultralocal truncation, has been computed in the pre-
vious section, and it corresponds to the previous equation,

taking into account the definition ð3!Þ2h1 ¼ 3!πð3Þk ð0; 0; 0Þ.
However, there is another constraint, arising from the
definition (103) of the effective coupling. Indeed, taking
the first derivative with respect to k, we get, using (96)

_gðkÞ ¼ 4g2ðkÞ
X
n⃗

δn10
−
P

i
dσk
dt ðniÞ þ drk

dn ðn⃗Þ
ð1 −P

ν
i¼1 σðniÞ þ rkðn⃗ÞÞ3

: ð106Þ

Recognizing that dσkdt is nothing but −η=ν in local approxi-
mation, we thus obtain

βðExactÞg ¼ ððd − 1Þ − 2ηÞḡþ 4ḡ2L3ðηÞ þ 4ḡ2ηĀ3;0; ð107Þ

where Ān;0 is the renormalized version of An;0, extracted by
the global k and Z dependence. Note that these equations
only depend on the coupling gðkÞ, which is the only one
relevant to drive the RG flow (see [79,81] for more details).
Equation (107) has to be compared with Eq. (105). From

the definition of πð3Þk ð0; 0; 0Þ [Eq. (98)], we conclude that
the two equations are compatible, and the ultralocal
melonic approximation makes sense, if

Ā3;0ðηþ 2ḡL2Þ ¼ 0; ð108Þ

which has two solutions:
(1) Ā3;0 ¼ 0, and
(2) η ¼ −2ḡL2.

We will investigate separately these two conditions. Note
that the second one is in conflict with (104) if ν ≠ 1.
Therefore, if the second condition holds, we have two
possibilities: ν ¼ 1 or ν ≠ 1 ⇒ η ¼ 0. From the second
condition, we deduce that Eq. (105) reduces to

βg ¼ ðd − 1Þgþ 4g2L3ðη ¼ 0Þ; ð109Þ

and, from our perturbative analysis of the previous section
[Eq. (73)] admits a non-Gaussian fixed point for g� ¼
−ðd − 1Þ=L3ð0Þ, with critical exponent,

θ ¼ −β0gðg ¼ g�Þ ¼ d − 1: ð110Þ

The case ν ¼ 1 may be analyzed with more attention.
Explicitly, the flow equation for the coupling g reads as
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βg ¼ ððd − 1Þ − 2ηÞḡþ 4ḡ2ðL3 þ ηĀ3;0Þ: ð111Þ

In a purely local approximation, L3ðηÞ is given by Eq. (66).
To compute A3;0, we assume that we work with a sharp
regulator (f is proportional to a Heaviside distributions), so
that we have

Ān;0 ¼
X
n⃗

δn10

�
θðαk −P

iniÞ
ð1þ fðn⃗ÞÞn þ θ

�X
i

ni − αk

��
: ð112Þ

The f-dependent part of this equation can be easily
computed, and we introduce the notation

Sn ≔
X
n⃗

δn10
θðαk −P

iniÞ
ð1þ fðn⃗ÞÞn : ð113Þ

Note that the f-independent contribution is n independent
as well. Therefore Ān;0 − Ām;0 ¼ Sn − Sm is finite.
Moreover, from (96), we have

A2;0 ¼
1

2

�
1

gðkÞ −
1

gðΛÞ
�
; ð114Þ

for some UV cutoff Λ [gðΛÞ being what we denoted by g in
Eq. (96) for instance, i.e., the initial bare coupling]. As a
result, we get, after some algebraic manipulations:

Ā3;0 ¼ S3 − S2 þ
1

2

�
1

ḡðkÞ −
Z2

k2gðΛÞ
�
: ð115Þ

Moreover, following (66),

LkðηÞ ¼ ηLð1Þ
k þ Lð2Þ

k ; ð116Þ

where the LðjÞ
k are independent of η; it is easy to check, from

definition (66) that Sn − Sn−1 ¼ −Lð1Þ
n . Therefore,

L3 þ ηĀ3;0 ¼ Lð2Þ
3 þ 1

2

�
1

ḡðkÞ −
Z2

k2gðΛÞ
�
; ð117Þ

and the β-function βg becomes

βg ¼ ðd − 1Þḡþ 4ḡ2Lð2Þ
3 þ ḡ2

2ηZ2

k2gðΛÞ : ð118Þ

This is a nontractable equation, depending on the initial
conditions. For η ¼ 0, the difficulty to think about this
equation disappears, and we recover the precedent result,
with θ ¼ d − 1. However, it has two simpler and interesting
limit cases. In the deep UV limit k ≈ Λ, we must have

ḡ2
2ηZ2

k2gðΛÞ ≈ 2ηḡ; ð119Þ

so that the β function reduces to

βg ¼ ððd − 1Þ − 2ηÞḡþ 4ḡ2Lð2Þ
3 : ð120Þ

In contrast, let us consider the intermediate regime
Λ ≫ k ≫ 1, far from the deep UV regime, but also far
enough from the deep IR so that nonmelonic terms are
neglected. Remembering that from the power counting
gðΛÞ ∼ Λ−2, we deduce that the η-dependent term domi-
nates the flow, and

βg ≈ ḡ2
2ηZ2

k2gðΛÞ : ð121Þ

Equation (121) vanishes only for ḡ ¼ 0. However, the first
equation (120) has a more interesting fixed point structure.

Solving the equation η ¼ −2ḡðηLð1Þ
2 þ Lð2Þ

2 Þ as

η ¼ −2ḡLð2Þ
2

1þ 2ḡLð1Þ
2

; ð122Þ

we get for βg ¼ 0 the condition

ððd − 1Þð1þ 2ḡLð1Þ
2 Þ þ 4ḡLð2Þ

2 Þ þ 4ḡð1þ 2ḡLð1Þ
2 ÞLð2Þ

3 ¼ 0

ð123Þ

where we assumed ḡ ≠ 0. Numerical investigations, using
the regulators used in this section, show that the resulting
fixed point match with the results of the previous section.
In rank 3, we recover a fixed point having essentially the
same characteristics as the fixed point obtained from a
quartic truncation. More interestingly is the behavior of this
solution with the rank d of the tensor. In Fig. III E, we show
the behavior of the critical exponent with the rank using the
scheme S2, and we show that θ ≥ d − 1, and converge
weakly toward this limit.
Now, let us consider the first condition A3;0 ¼ 0. From

Eq. (115),

−Lð1Þ
3 þ 1

2

�
1

ḡðkÞ −
Z2

k2gðΛÞ
�

¼ 0: ð124Þ

Noting that Lð1Þ
3 is a pure number, this equation can be

translated locally as a differential equation:

_̄g ¼ ððd − 1Þ − 2ηÞ
�

Z2

gðΛÞk2
�
ḡ2: ð125Þ

In the deep UV regime, it may be approximated by the most
suggesting expression:

_̄g ≈ ððd − 1Þ − 2ηÞḡ: ð126Þ
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The β function behaves as if there are no interactions at all.
The only trace of the non-Gaussian measure is in the
definition of the anomalous dimension and for this reason
we refer to this solution as the purely scaling limit. In
addition to the Gaussian fixed point, we get the condition

η� ¼ d − 1

2
⇒ ḡ� ¼ −

1

2

d − 1

2dLð2Þ
2 þ ðd − 1ÞLð1Þ

2

; ð127Þ

leading to the critical exponent

θ ¼ þ2
∂η
∂ḡ

����
ḡ¼ḡ�

¼ ðd − 1Þ
�
1þ Lð1Þ

2

Lð2Þ
2

d − 1

2d

�
: ð128Þ

Once again, the numerical investigations based on the
regulator considered in this paper show that this critical
exponent is always bigger than d − 1. Moreover, we
showed that, except for the solution η ¼ 0, all the solutions
of (108) do not allow one to obtain autonomous local
systems, without dependence on the initial conditions. To
summarize, we note the following:
Claim 1. In the UV regime, the compatibility with the

melonic structure equations imposes that for any full
ultralocal approximation of the effective action, involving
only connected bubbles we must have η ¼ 0. Moreover, for
the complete truncation, when all the graphs are taken into
account, we get θop ¼ d − 1.
This conclusions are obviously in accordance with

our results of the previous subsections. In particular, we
showed that any truncation which reduces theWard identity
violation, and therefore improves the reliability of the
purely local truncation improves as well the rate of con-
vergence toward the limit θop ¼ d − 1. In the next sub-
section, we will consider the effect of disconnected pieces,
from a “dressed” parametrization of the local theory space.
To close this section, let us add another important

remark. From the structure equations between 2n, 4- and
2-point observables, we were able to close the infinite
hierarchy of flow equations in the melonic sector. In this
sense, these equations take into account the whole melonic
sector. Interestingly, we do not find more than one, or
eventually two interacting fixed points. This strongly
contrasts with the results obtained in the melonic sector
in the previous sections, using large local truncations,
where a large number of fixed points were found. Some
of these fixed points were interpreted as an artifact of the
truncation, but a certain number of them, with more than
one relevant direction, seems to stay in high truncations.
We see now that these fixed points are artifacts of the
truncation as well, which does not take into account the
strong relation coming from the structural equations. This
appears to be a new effect of the pathology which can
appear when the constraints inherent in a given sector are
ignored, making all the more difficult confidence in the
results coming from a local truncation.

Finally, the reader may be wondering what happens
when you impose the condition η ¼ 0 for the truncation.
This can be easily checked, for instance using the scheme
S2. With the choice α ¼ 4=3, we show from Eq. (58) that η
vanishes. This condition does not vanish L2, and the
violation of the modified Ward identity holds. However,
the result seems to be strongly improved in the light of the
exact results obtained in this section. In particular, we show
that for large melonic truncations, up to order 8 taking into
account all the melons and up to order 20 for the non-
branching sector, we find an interacting fixed point with
one relevant direction, whose critical exponent is always
exactly equal to 2. Once again, this result goes in the
direction of our conclusions, and it seems that by taking
into account the structural equations, one has compara-
tively greater importance even than the Ward identities
concerning the convergence of the flow. However, the fixed
point in question has a very bad characteristic, effective
high valence couplings with very large values (of order
10100), meaning that the flow has moved away considerably
from the Gaussian point, and once again, highlighting a
very strong dependence on nonuniversal quantities at the
choice of regularization.

F. Closing hierarchy around the full quartic sector

Let us briefly consider the influence of disconnected
melonic pieces on the results of the previous section. As
discussed above, the disconnected pieces appear as soon as
ν ≠ 1. First of all, note that the exact relations as (96) and
(98) hold, independently with the parametrization used in
the phase space. Now we have the following important
question which needs to be solved: What is the condition
satisfied by this parametrization in agreement with the
exact relation at the leading order sector?
Equation (107) holds. However, Eq. (105) has to be

modified by the coupling that we called h3 in Sec. III D:

βg;EVE ¼ ððd − 1Þ − 2ηÞḡðkÞ þ 4ḡ2ðkÞL3ðηÞ
− 8Ā3;0ḡ3L2ðηÞ − h̄3K2ðηÞ: ð129Þ

The compatibility with Eq. (96) therefore requires

−8Ā3;0ḡ3L2 − h̄3K2 ¼ 4ḡ2ηĀ3;0: ð130Þ
Moreover, the expression for the anomalous dimension
receives a contribution for the disconnected quartic cou-
pling (we keep the notation g1 used in Sec. III D)

η ¼ −6ḡL2 − 2ḡ1K2: ð131Þ
Therefore, assuming η ≠ 0, we get the relation

8ḡ2Ā3;0ð2ḡL2 þ ḡ1K2Þ − h̄3K2 ¼ 0: ð132Þ
We then have the explanation of the phenomenon observed
in Sec. III D, i.e., the existence of the relations making the
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disconnected couplings dependent on the other couplings.
From the previous section, we know that the presence
of Ā3;0 introduces a spurious dependence on the initial
condition. Moreover, a direct inspection shows that, adjust-
ing h3 to compensate the term sharing the factor Ā3;0

ultimately requires η ¼ 0, which implies that

3ḡL2 þ ḡ1K2 ¼ 0; ð133Þ
and

8ḡ3Ā3;0L2 þ h̄3K2 ¼ 0; ð134Þ
and then discards the two last terms of (129). These two

equations moreover ensure that _̄g ¼ 0 ⇒ _̄g1 ¼ _̄h3 ¼ 0.
Therefore, the difficulties arising from the disconnected
pieces seems to be solved. The strong relation between
observables makes them dependent on other couplings,
explaining the apparent success of ultralocal truncation.
Obviously, this reasoning remains fairly qualitative, and we
will endeavor to remedy the shortcomings in our future
work. However, at this stage, we can ask ourselves if the
convergence problems notified in Sec. III D do not come
quite simply by taking into account these constraints.

IV. OPTIMIZATION CRITERIA

At this stage we must specify our criteria for judging the
quality of an approximation. Let us recall that an approxi-
mation is essentially the combination of two choices, the
choice of a particular parametrization of the space of the
phases given by Γk, and the choice of a regulator rk.
Usually, in FRG literature, optimization has a precise
meaning. In the symmetric phase, all the loop integrals
involved in the flow equations involves the effective
propagator P ≔ C−1 þ rk, where C denotes the bare
propagator of the theory. This effective propagator has a
minimum, whose position depends on the choice of rk.
More generally, as the development of the effective action
takes place around a nonzero vacuum, and the minimum of
P, we remove the risk of seeing a singularity develop
around the nonzero vacuum. A regulator is then optimal
when the lower bound of the free propagator P is minimal.
This is the sense given by Litim for optimization, and this is
a very general criterion, essentially independent on the
specificity of the problem that we consider. The so-called
Litim regulator is optimal in this sense. This is as well the
case of the regulator with α > 1 that we considered in
schemes S1 and S2. However, in this paper, the notion of
optimization is quite different and may be summarized as
follows. Among a more or less large set of regulators
(optimal in the Litim sense), the optimal choice(s) is
such that

(i) the calculation of universal quantities such that the
critical exponents are as close as possible to the
exact results available, or the speed of convergence

to these exact results is most important when the
order of the truncation increases;

(ii) the disagreement with the set of constraints on the
observables (coming for example from the sym-
metries of field theory) remains as small as possible,
and does not increase with the order of truncation, to
the orders corresponding to the effects that we hope
to update; and

(iii) the computation of the universal quantities, in a
scheme satisfying the two previous requirements,
should not change too much under slight modifica-
tions of the regulator.

We showed in the previous section how the two first
requirements work for practical calculations.

V. DERIVATIVE EXPANSION: A FIRST LOOK

In this section, we provide a first look about an
alternative way to deal with modified Ward identities
violations: introducing derivative operators on the trunca-
tion itself. We do not provide a deep investigation on this
effect; the only interest is to compare this method with the
other one considered in the previous section. We provide a
solution at the same level of approximation, from an
approximate solution solving only the first Ward identity
(13). We consider a local truncation of the form

ð135Þ

where the cross on the link of color i denotes insertion of
the “derivative” operator ni=k. For instance,

ð136Þ

With this definition, we have [see Eq. (13)]:

γðkÞ≡ d
dx1

γð2Þk ; ð137Þ

and therefore, from (13), γðkÞ must be related to ḡðkÞ as

2ḡL̄2 ¼ −γ̄ðkÞ: ð138Þ

We introduced the notation L̄n, denoting the dimensionless
version of the quantity Ln, discarding the k and Z depen-
dence. Moreover, we defined the renormalized γ̄ as

γ̄ðkÞ ≔ 1

Z
γðkÞ: ð139Þ
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The flow equations for g and γ can be easily deduced from
(1). Indeed, the expression for βg remains the same as
computed in (68):

βg ¼ ððd − 1Þ − 2ηÞḡþ 4ḡ2L3ðηÞ − ð3h̄1 þ 2h̄2ÞL2ðηÞ;
ð140Þ

where η is given by Eq. (122). The equation for γ can be
deduced taking the first derivative of (101) with respect to
n1. It is easy to check that the derivative of the effective
loop involving _rkðGð2ÞÞ2 vanishes in the large k limit. Then
only the derivative of the effective vertex contributes; we
then get (βγ ≡ _̄γ):

βγ ¼ −ηγ̄ − 2
dπ̄ð2Þk

dx1
ð0; 0ÞL2ðηÞ: ð141Þ

The equation for the first derivative of the effective 4-point
vertex can be obtained taking the fourth order derivative of
the full Ward identity (6), and vanishing external momenta.
We can easily prove that

ðð6h1 þ 4h2ÞL2 − 8g2L3Þ ¼ −2
d
dn

πð2Þk ð0; 0Þ: ð142Þ

Similarity from (142), we obtain

βγ ¼ −ηγ̄ − 2ðð3h̄1 þ 2h̄2ÞL̄2 − 4ḡ2L̄3ÞL2ðηÞ: ð143Þ

We focus on Litim regulator, and L̄n can be easily
computed. Using the notation of Sec. III A, it is not
difficult to check that (α ¼ 1):

L̄n ¼ d2
Z

1

0

xn−1

ð1þ dγ̄x2Þ2 ≡ χn−1;2; ð144Þ

where we introduced χp;q defined as

χp;q ≔ d2
Z

α

0

xp

ð1þ dγ̄x2Þq : ð145Þ

For d ¼ 3, the integral can be easily computed using a
simple integration by parts. For instance,

L̄2 ¼ d2
Z

1

0

x
ð1þ dγ̄x2Þ2 ¼ −

d2

2dγ̄

Z
1

0

d
dx

1

1þ dγ̄x2
;

ð146Þ

leading to

L̄2 ¼ −
d2

2

1

1þ dγ̄
: ð147Þ

We will need also to write the explicit expression for L3:

L̄3 ¼ d2
Z

1

0

x2

ð1þ dγ̄x2Þ2

¼ −
9

6γ̄

�
x

1þ 3γ̄x2

����
1

0

−
Z

1

0

dx
1

1þ 3γ̄x2

�

¼ −
9

6γ̄

�
1

1þ 3γ̄
−

1ffiffiffiffiffi
3γ̄

p arctanð
ffiffiffiffiffi
3γ̄

p
Þ
�
: ð148Þ

From (147) the Ward identity becomes

γ̄ ¼ d2ḡ
1

1þ dγ̄
; ð149Þ

which can be solved as9

γ̄ ¼ −
1

6
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 108ḡ

p
Þ: ð150Þ

Then, differentiating this relation with respect to t ¼ lnðkÞ,
we get

βγ ¼
9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 108ḡ
p βg ¼

9

1þ 6γ̄
βg: ð151Þ

Then, from explicit expressions for βg and βγ , we deduce a
relation between 3h̄1 þ 2h̄2 and ḡ and γ̄; 3h̄1 þ 2h̄2 ¼
hðḡ; γ̄Þ, with

hðḡ; γ̄Þ ¼ ð1þ 6γ̄Þ
ηAðγ̄Þ þ 18ḡ ð1−ηÞþ9ḡð η

10
þ1

2
Þ

1þ6γ̄

27ðη
4
þ 1Þð1þ 1þ6γ̄

1þ3γ̄Þ
; ð152Þ

and

Aðγ̄Þ ≔ γ̄ −
2

3

�
1 −

1þ 3γ̄ffiffiffiffiffi
3γ̄

p arctanð
ffiffiffiffiffi
3γ̄

p
Þ
�
: ð153Þ

We can remark that the nonbranching sector is relevant for
fixed point investigations, especially for the double scaling
limit. Vanishing h2, and from the relation (149), we have

3h̄1 ¼ h
�
γ̄ð1þ 3γ̄Þ

9
; γ̄
�
≕Hðγ̄Þ; ð154Þ

and the flow equations reduces to a single relation:

βγ ¼ −ηγ̄ þ 27
Hðγ̄Þ
1þ 3γ̄

�
1þ η

4

�

þ η

9

�
1 −

1þ 3γ̄ffiffiffiffiffi
3γ̄

p arctanð
ffiffiffiffiffi
3γ̄

p
Þ
�
; ð155Þ

where in this equation η have to be expressed in term of γ̄,
explicitly:

9The other solution γ̄ ¼ − 1
6
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 108ḡ
p Þ does not vanish

for ḡ → 0.
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η≡ −
4ð1þ 3γ̄Þγ̄

2þ ð1þ 3γ̄Þγ̄ : ð156Þ

Interestingly, taking into account the first order deviation
from ultralocality allows one to describe all the non-
branching sectors with a single flow equation, (155).
Indeed, we expressed h1 in terms of ḡ and γ̄, and the flow
equation for h̄1 allows us to fix u1, the octic coupling, and
so on. Obviously, we discarded all the higher derivatives,
and the momentum dependence of the observables with
valence higher than 2. Nevertheless, we illustrate on this
simple example how the interdependence between local
and nonlocal observables coming fromWard identities may
have consequences on entire sectors.
We may investigate the fixed point structure of the flow

equation (155). Figure 14 represents the effective β-
function βγ . Among the zeros of the β function, only γ̄ ≈
−0.15 seems to be relevant. The corresponding critical
exponent is θ ≈ 1.77 and the anomalous dimension

η ≈ 0.17. As we observed, taking into account the first
Ward identity this improves strongly the result. Note that
because our truncation is nonlocal, the bound θop ¼ d − 1

for local truncations does not hold. The Fig. 13 provides the
dependence of θ with respect to the rank of the tensor, by
using the regularization scheme S2.
In regard to the EVE, as mentioned at the beginning of

Sec. III E, the fact that we take into account all the
momentum dependence of the effective vertices allows
one in principle to go beyond the dressed local potential
approximation that we considered. There is in particular a
very interesting aspect or the melonic EVE: In the melonic
sector, all the relations between effectivevertex functions due
to theEVE are compatiblewithWard identities,meaning that
no additional assumptions are required to deal with them.
The same thing has been observed for a subleading sector in
[79], and it is tempting to conjecture that it must be a general
property of EVE, sector by sector in the 1=N expansion. This
property can be easily checked for the melonic sector. From
Sec. III E, we know that the melonic self-energy per color
σkðnÞmust satisfy the closed equation (100). Taking the first
derivative with respect to the external momenta n, we get
(note that we set ν ¼ d for this section):

dσk
dn

¼ 2g
X
n⃗

δn1n
− dσk

dn þ drk
dn

ð1 −P
d
i¼1 σðniÞ þ rkðn⃗ÞÞ2

: ð157Þ

From the definitions ofLp [seeEq. (14)],Am;n [seeEq. (97)],
and γ ≡ −dσk=dnðn ¼ 0Þ, we get, setting n ¼ 0,

−γ ¼ 2gL2 þ 2gγA2;0; ð158Þ

or simply

γ ¼ −2
�

g
1þ 2gA2;0

�
L2: ð159Þ

Then, from Eq. (96), the bracket term is nothing but

πð2Þk ð0; 0Þ, and the previous equation reduces to the Ward
identity (13). The same compatibility can be checked for
higher order Ward identities. For instance, restricting to the
nonbranching sector, we deduce from (142)

ðπð3Þk ð0;0;0ÞL2−8ðπð2Þk ð0;0ÞÞ2L3Þ¼−2
d
dn

πð2Þk ð0;0Þ ð160Þ

in the same way as we derive in Eq. (13). From Eq. (96), the
derivative can be easily computed, leading to

πð3Þk ð0; 0; 0ÞL2 ¼ 4ðπð2Þk ð0; 0ÞÞ2
�
dA2;0

dn
þ 2L3

�
: ð161Þ

Moreover, as for Eq. (157), it is easy to compute the
derivative of A2;n. Using once again the fact that, in the
melonic sector the free energy decomposes as Σkðn⃗Þ ¼P

i σkðniÞ, we get straightforwardly

5 10 15 20
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FIG. 13. Dependence of θ with the rank using the regularization
scheme S2.
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FIG. 14. Numerical plot of the function βγ . We see that it has
two zeros, for γ̄ ¼ 0 and γ̄ ≈ −0.15. Moreover, it has a vanishing
limit point at γ̄ ≈ −0.33, beyond which the function becomes
imaginary.
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dA2;0

dn
¼ −2

X
n⃗

δn10
− dσk

dn þ drk
dn

ð1 −P
d
i¼1 σðniÞ þ rkðn⃗ÞÞ3

; ð162Þ

and therefore

dA2;0

dn
− 2L3 ¼ −2γA3;0: ð163Þ

Finally, from Eq. (96) and Ward identity (13), we get

πð3Þk ð0; 0; 0ÞL2 ¼ 24ðπð2Þk ð0; 0ÞÞ3γA3;0L2; ð164Þ

from which we recognize the expression of πð3Þk ð0; 0; 0Þ
given by the EVE, Eq. (98). Note that the proof seems to be
very dependent on the fact that Eq. (93) holds, especially for
2-point functions. Such a condition, however, could be lost
for subleading orders [79], which may require additional
conditions regarding Ward identities.

VI. CONCLUSION

In this paper, we have essentially focused on the com-
patibility between local truncations and exact relations
between observables at the large N limit. These relations,
moreover, have different natures. The modified Ward iden-
tities come from the internal symmetry group used to define
the allowed interactions, and the structure equations are
nothing but ordinary Schwinger-Dyson equations in the
melonic sector. With this respect, these relations may be
understood in two different manners. On the one hand,
Schwinger-Dyson equations are the consequence of the
formal Lebesgue measure involved in the path integral
definition of the partition function [96]. On the other hand,
the structure equations may be derived directly in the large
N limit as a consequence of the recursive definition of
melons [84]. To put it in a nutshell, we showed the
following:

(i) Accommodating these constraints, we improved the
rate of convergence toward a given limit in a given
sector, this limit depending on the sector that we
consider.

(ii) The flow seems to be more sensitive to the structural
constraints, arising from the Schwinger-Dyson
equations, than to the symmetry constraint given
by the modified Ward identities.

One expects that the second point is a consequence of the
fact that generating the flow requires a symmetry breaking,
modifying the Ward identities, while the structure equa-
tions remain formally unchanged. Despite the existence
of a fixed point having a single relevant direction, and
reminiscent to the critical scenario of the double scaling,
two difficulties appeared in the light of this study. The first
is that a considerable number of fixed points generally
accompany this (fixed points which generally have more
than one lifting direction, and can persist in high trunca-
tions). This is not clearly understood because, although it is

tempting to interpret these fixed points as a possible
multicritical fixed point, it corresponds to different limits
beyond double scaling. It has been shown that an analysis
taking into account the close relations between observables
coming from the structural equations discard these residual
fixed points. The effect of Ward identities moreover seems
less crucial. Indeed, it is easy to check that taking into
account the locality constraint coming from the structure
equations, η ¼ 0, provides a fixed point with one relevant
direction having exactly the limit value θ ¼ 2 for any
truncations (up to order 20). In contrast, to accommodate
Ward identities, at least in the first order of derivative
expansion, implies slow convergence phenomena. These
conclusions will be straightforwardly extended to the real
models based on the internal group OðNÞ, which probably
remains in agreement with the conclusions of the recent
work [80] and which remains a subject of forthcom-
ing work.
Thus, we then expect that this work provides a serious

way of reflection and investigation on the methods used to
compute the critical behavior of random tensor models. We
have pointed out the crucial role played by exact functional
relations, but we focused only on the leading order in the
1=N expansion. The EVE method for sectors beyond
melons quickly becomes intractable, as showed in [79].
A promising way, outlined in this paper, could be to “dress”
a few complete sectors with truncations, taking care for
each new magnitude explored for the coupling constants,
the violation of the different exact relation is available. This
strategy should be explored in an upcoming article and
will help to increase confidence in the validity of the
results made in the deep regions of the phase space. Finally,
deeper investigations about integrability and regularity of
the resulting RG flow has yet to be done for RMMs and
RTMs, for the considered approximations. These aspects
will be considered in future work.
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APPENDIX: USEFUL INTEGRALS

Let us consider integrals of the form

J ¼
Z

∞

0

dx1dx2θðα − x1 − x2Þfðx1 þ x2Þ: ðA1Þ

Firstly, we set xi ¼ y2i , leading to

J ¼ 4

Z
∞

0

dy1dy2y1y2θðα − r2Þfðr2Þ; ðA2Þ

where r2 ≔ y21 þ y22. Then, we use polar coordinates,
dy1dy2 ¼ rdrdφ, y1 ¼ r cosðφÞ, y2 ¼ r sinðφÞ, leading to
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J ¼
�Z π

2

0

dφ2 sinðφÞ cosðφÞ
�Z

α

0

dr2r2θðα − r2Þfðr2Þ;

ðA3Þ

where we restricted our analysis to the angular domain
in the region where both y1 and y2 are positives.
Finally,

J ¼
Z

α

0

dxxfðxÞ: ðA4Þ

In the same way, we consider the three-dimensional
integral:

K ¼
Z

dx1dx2dx3fðx1 þ x2 þ x3Þθðα − x1 − x2 − x3Þ:

ðA5Þ

We introduce yi defined as xi ¼ y2i , and r
2 ¼ P

i y
2
i , so that

K ¼ 8

Z
d3yðy1y2y3Þfðr2Þθðα − r2Þ: ðA6Þ

Then, introducing the polar coordinates,

y1 ¼ r cosðϑÞ;
y2 ¼ r cosðφÞ sinðϑÞ;
y3 ¼ r sinðφÞ sinðϑÞ;

the integral K becomes

K ¼ 8

Z π
2

0

dϑ
Z π

2

0

dφ cosðϑÞ sin3ðϑÞ cosðφÞ sinðφÞ

×
Z ffiffi

α
p

0

drr5fðr2Þ:

The angular integrals can be easily computed, and we find

8

Z π
2

0

dϑ
Z π

2

0

dφ cosðϑÞ sin3ðϑÞ cosðφÞ sinðφÞ ¼ 1; ðA7Þ

and finally, introducing x ¼ r2,

K ¼ 1

2

Z
α

0

x2fðxÞdx: ðA8Þ
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