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Realistic neutrino mixing is achieved at a one-loop level radiatively using S3 × Z2 symmetry. The model
is comprised of two right-handed neutrinos, maximally mixed to produce the structure of the left-handed
Majorana neutrino mass matrix characterized by θ13 ¼ 0, θ23 ¼ π=4, and any value of θ012 particular to the
tribimaximal (TBM), bimaximal (BM) and golden ratio (GR) or other mixings. A small deviation from this
maximal mixing between the two right-handed neutrinos could generate nonzero θ13, shifts of the
atmospheric mixing angle θ23 from π=4, and also could correct the solar mixing angle θ12 by a small
amount altogether in a single step. In this scotogenic mechanism of generating a nonzero θ13 by shifting
from the maximal mixing in the right-handed neutrino sector, two Z2 odd inert scalar SUð2ÞL doublets were
used, the lightest of which can serve as a dark matter candidate.

DOI: 10.1103/PhysRevD.100.035009

I. INTRODUCTION

Neutrinos oscillate owing to their massive nature as
established by the oscillation experiments. The mass

eigenstates and flavor eigenstates are different and are
related by the Pontecorvo, Maki, Nakagawa, Sakata—
PMNS—matrix,

U ¼

0
B@

c12c13 s12c13 −s13e−iδ

−c23s12 þ s23s13c12eiδ c23c12 þ s23s13s12eiδ −s23c13
−s23s12 − c23s13c12eiδ −s23c12 þ c23s13s12eiδ c23c13

1
CA: ð1Þ

Here, cij ¼ cos θij and sij ¼ sin θij. Needless to mention
that the mass eigenstates are nondegenerate.
Nonzero θ13, though small in comparison to the other

mixing angles, was discovered in 2012 by the short-
baseline reactor antineutrino experiments [1]. Before these
nonzero θ13 results, models were studied in literature that
correspond to the tribimaximal (TBM), bimaximal (BM),
and golden ratio (GR) mixings (that we now onwards
collectively refer to as popular lepton mixings). All these
mixings have θ13 ¼ 0, θ23 ¼ π=4, and tuning θ012 to the
specific values as shown in Table I produced the different
mixing patterns viz. TBM, BM, and GR.
Setting θ13 ¼ 0 and θ23 ¼ π=4 in Eq. (1) will yield a

general structure for all popular mixing as

U0 ¼

0
BB@

cos θ012 sin θ012 0

− sin θ0
12ffiffi
2

p cos θ0
12ffiffi
2

p − 1ffiffi
2

p

− sin θ0
12ffiffi
2

p cos θ0
12ffiffi
2

p 1ffiffi
2

p

1
CCA: ð2Þ

The current 3σ global fit [2,3] for θ13, θ23, and θ12 as
from NuFIT3.2 of 2018 [2] are

θ12 ¼ ð31.42 − 36.05Þ°;
θ23 ¼ ð40.3 − 51.5Þ°;
θ13 ¼ ð8.09 − 8.98Þ°: ð3Þ

So popular mixing and nonzero θ13 observations are not
in harmony. Several model-building exercises have been
taking place since the observation of the nonzero θ13 to
include it in the popular mixing framework. In [4],
the possibility of the smallness of θ13 and Δm2

solar to have
a common origin was explored. In some effort [5], a
dominant component was characterized by larger oscilla-
tion parameters such as Δm2

atmos and θ23 ¼ π=4, whereas
the smaller mixing parameters viz. nonzero θ13, θ12, solar
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splitting, and deviation of atmospheric mixing from max-
imality were produced by a smaller seesaw [6] component
as a perturbation to the dominant one.1 In [8,9], the mixing
angle θ13 ¼ 0was produced using various symmetries, and
nonvanishing θ13 was produced by a perturbation to these
symmetric forms.
The popular mixings were amended at tree level using a

two-component Lagrangian with the discrete symmetries
A4, S3 in [10,11]. In these models, type II seesaw yielded
the dominant component that gave the popular mixing;
corrections to which were offered by type I seesaw
subdominant component. A similar enterprise just for the
no solar mixing (NSM) case, i.e., θ012 ¼ 0 using A4 was
pursued2 in [12]. In [13], TBM was obtained radiatively
using A4. Recent works with realistic neutrino mixings can
be found in [14,15].
Here, we discuss a radiative S3 × Z2 model.3 Some

earlier works on S3 in the context of neutrino mass are
[16,17]. A neutrino mass with S3 × Z2 within left-right
symmetry was studied in [18]. A common practice [19] was
to find a symmetry among the three neutrinos that can
produce a mass matrix that can be expressed as a linear
combination of a democratic matrix Mdem and an identity
matrix I, like c1I þ c2Mdem with c1 and c2 being two
complex numbers. This could serve as a reasonable
scenario to start with from which some models obtained
realistic mixing through a perturbation to such initial
structures [19], whereas in some models [20], various
GUT symmetries or extradimensional theories were con-
sidered to generate these initial structures, and renormal-
ization group effects at high energies were explored to
obtain realistic mixing. Another way [21] of constructing
S3 models is to have a 3-3-1 local gauge symmetry and later
on, associate it to a (B − L) extension or use soft breaking
of S3. Since S3 has irreducible representations of one-
dimension and two-dimension, the latter can be used to
obtain maximal mixing in the νμ − ντ block [22]. Collider
signatures of S3 flavor symmetry was vividly studied in
[23]. S3 models are also studied in the quark sector [24].
Some earlier studies on scotogenic models can be found
in [25].

In this work, our objective is to use S3 to radiatively4

obtain
(1) The structure of the mixing matrix of a popular

mixing kind as shown in Eq. (2) that is characterized
by θ13 ¼ 0, θ23 ¼ π=4, and θ012 of any of the
alternatives displayed in Table I.

(2) Realistic neutrino mixings, i.e., precisely nonzero
θ13, shifts of the atmospheric mixing angle θ23 from
maximality and tiny corrections to the solar mixing
angle θ12.

In this radiative S3 × Z2 model, neutrino masses and
mixings are generated at one loop. The model has two
right-handed neutrinos comprising an S3 doublet, that are
maximally mixed to obtain the structure as required by
popular mixings as in Eq. (2). A small deviation from this
maximal mixing in the right-handed neutrino sector
could produce in a single step nonzero θ13, shifts of θ23
from π=4, and small corrections to θ12 as is required by the
mixing to be realistic. To achieve this, two Z2 odd scalars
ηi, (i ¼ 1, 2) were required; the lightest among them can be
a good dark matter candidate. A similar analysis based on
A4 was performed, where instead of using deviations from
maximal mixing between the two right-handed neutrino
states to generate nonzero θ13, small mass splittings
between two right-handed neutrinos were used as in [27].

II. THE S3 × Z2 MODEL

In the mass basis, the left-handed neutrino Majorana
mass matrix is Mmass

νL ¼ diagðm1; m2; m3Þ. One can trans-
port this in its flavor basis with the help of the common
form of the popular lepton mixing matrix U0 in Eq. (2) as

Mflavor
νL ¼ U0Mmass

νL U0T ¼

0
B@

a c c

c b d

c d b

1
CA: ð4Þ

The a, b, c, and d used here are given by

a ¼ m1 cos2 θ012 þm2 sin2 θ012

b ¼ 1

2
ðm1 sin2 θ012 þm2 cos2 θ012 þm3Þ

c ¼ 1

2
ffiffiffi
2

p sin 2θ012ðm2 −m1Þ

d ¼ 1

2
ðm1 sin2 θ012 þm2 cos2 θ012 −m3Þ: ð5Þ

Thus,

tan 2θ012 ¼
2

ffiffiffi
2

p
c

bþ d − a
: ð6Þ

TABLE I. The values θ012 corresponding to various popular
lepton mixings namely, TBM, BM, and GR patterns.

Model TBM BM GR

θ012 35.3° 45.0° 31.7°

1For some earlier models with similar goals, see [7].
2The dominant type II seesaw had a vanishing solar splitting;

thus, one can make use of degenerate perturbation theory to get a
large solar mixing.

3A brief account on discrete group S3 in presented in
Appendix A of the paper.

4A systematic analysis of radiative neutrino mass models can
be found in [26].
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It is essential for a, b, c, and d to be nonzero for the
neutrino masses to be realistic and nondegenerate.
Our prime intent is to generate the form of Mflavor

νL in
Eq. (4) radiatively with one loop. Thus, one has to
designate each of the fields in our model with particular
S3 × Z2 quantum numbers. There are two right-handed
neutrinos present in the model. Maximal mixing between
these two right-handed neutrino fields can produce the
desired form of the left-handed Majorana neutrino mass
matrix in Eq. (4) that corresponds to θ13 ¼ 0, θ23 ¼ π=4,
and θ012 of the popular lepton mixing scenarios. After
obtaining the form in Eq. (4), we will see, in due course,
that a slight shift from this maximal mixing between the
right-handed neutrino states is capable of yielding realistic
neutrino mixings, viz. a nonzero θ13, deviation of atmos-
pheric mixing θ23 from π=4 as well as small corrections to
solar mixing θ12.
The model has the three left-handed lepton SUð2ÞL

doublets LζL ≡ ðνζζ−ÞTL, where ζ ¼ e, μ, τ, out of which
LμL and LτL comprise a doublet of S3 whereas LeL remains
a singlet under S3. Apart from these, there are two Standard
Model (SM) gauge singlet right-handed neutrinos NαR,
(α ¼ 1, 2) that transform as a doublet under S3. The scalar
spectrum of the model has a couple of inert SUð2ÞL doublet
scalars, ηi ≡ ðηþi ; η0i ÞT , (i ¼ 1, 2), forming an S3 doublet
(η). We also have two other SUð2ÞL doublet scalars, namely
Φj ≡ ðϕþ

j ;ϕ
0
jÞT , (j ¼ 1, 2), that are combined to form an

S3 doublet (Φ). Besides the S3, the model also has an
unbroken Z2 symmetry under which all other fields except
the right-handed neutrinos and the scalar η are even. After
spontaneous symmetry breaking (SSB), ϕj get a vacuum
expectation value (vev), but ηi do not. Let vj be the vevs of
ϕ0
j , i.e., hΦji≡ vj, (j ¼ 1, 2). Fields and their specific

charges are shown in Table II. We deal with the neutrino
sector only in this model. The charged lepton mass matrix
is diagonal in the basis in which we perform the analysis,
and the entire mixing comes from the neutrino sector.

Neutrino mass can be generated radiatively at the
one-loop level from Fig. 1. The neutrino mass matrix
will receive contributions from the following terms of the
S3 × Z2 invariant scalar potential from the scalar four-point
vertex5:

Vrelevant ⊃ λ1½fðη†2ϕ2 þ η†1ϕ1Þ2g þ H:c:�
þ λ2½fðη†2ϕ2 − η†1ϕ1Þ2g þ H:c:�
þ λ3½fðη†1ϕ2Þðη†2ϕ1Þ þ ðη†2ϕ1Þðη†1ϕ2Þg þ H:c:�:

ð7Þ

Here, all the quartic couplings λj (j ¼ 1, 2, 3) are
taken real.
At all the three vertices of Fig. 1, all symmetries are

conserved. The Dirac vertices conserving S3 × Z2 can be
written as

LYukawa ¼ y1½ðN̄2Rη
0
2 þ N̄1Rη

0
1Þνe�

þ y2½ðN̄1Rη
0
2Þντ þ ðN̄2Rη

0
1Þνμ� þ H:c: ð8Þ

Since the left-handed neutrinos νζL transform as a doublet
of S3 for (ζ ¼ μ, τ) and is invariant under S3 if ζ ¼ e,
the Yukawa couplings involved are different for (ζ ¼ μ, τ)
and ζ ¼ e, namely, y1 for ζ ¼ e and y2 for (ζ ¼ μ, τ),
respectively.
Let us now have a look at the right-handed neutrino

sector. Recall we have two SM gauge singlet right-handed
neutrinos, N1R and N2R, that transform as a doublet of S3.
Thus, the S3 × Z2 invariant direct mass term for the right-
handed neutrinos will look like

TABLE II. All fields along with their respective charges. We
confine this model to the neutrino sector only.

SUð2ÞL S3 Z2

Leptons
LeL ≡ ðνe e−ÞL 2 1 1

LζL ≡
�
νμ μ−

ντ τ−

�
L

2 2 1

NαR ≡
�
N1R

N2R

�
1 2 −1

Scalars

Φ≡
�
ϕþ
1 ϕ0

1

ϕþ
2 ϕ0

2

�
2 2 1

η≡
�
ηþ1 η01
ηþ2 η02

�
2 2 −1

FIG. 1. One-loop scotogenic neutrino mass generation using
S3 × Z2 symmetry.

5Two η are created and two ϕ are destroyed at the scalar four
point vertex causing terms of ðη†ϕÞðη†ϕÞ nature to be pertinent
among other terms in the scalar potential. The complete scalar
potential containing all the terms can be found in Appendix B.
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Lright−handed neutrinos ¼
1

2
mR12

½NT
1RC

−1N2R þ NT
2RC

−1N1R�:
ð9Þ

Thus, the S3 symmetry allows a symmetric mass matrix
with only nonzero off diagonal terms for the right-handed
neutrinos. If one allows the soft breaking of S3 at the scale
where the right-handed neutrinos get mass by introducing
terms like

Lsoft ¼
1

2
½mR11

NT
1RC

−1N1R þmR22
NT

2RC
−1N2R� ð10Þ

to get nonzero diagonal entries, then one can write the
right-handed neutrino mass matrix as

MνR ¼ 1

2

�
mR11

mR12

mR12
mR22

�
: ð11Þ

The symmetric structure of the matrix in Eq. (11) also
reflects its Majorana nature.
Before moving on, let us have a brief discussion about

the dark matter candidates in the model. It is a common
practice in literature to stabilize dark matter candidate with
discrete symmetries like Z2. Thus, the Z2 symmetry is an
indication that this model can provide dark matter candi-
date. Both the right-handed neutrinos and the scalar fields η
are odd under Z2, among which η are chosen lighter than
the right-handed neutrinos NαR, (α ¼ 1, 2). Although from
the m2

η term in Eq. (B1), the ηi (i ¼ 1, 2) appear to be
degenerate in mass; since the S3 symmetry is softly broken
in the right-handed neutrino sector, it can lead to small mass
splitting between the two ηi, (i ¼ 1, 2). The lightest among
the two ηi, (i ¼ 1, 2) can be the dark matter candidate.
With the model ingredients ready, at this stage, we are in

a position to present a basic description of the left-handed
Majorana neutrino mass matrix arising from Fig. 1; the
detailed expressions for which will be provided at a later
stage of our analysis. To set the stage of the discussion, let
us first sketchily indicate how the elements of the left-
handed neutrino mass matrix will receive contributions
from this one-loop diagram [28] in Fig. 1. Let us make a
few simplifying assumptions to make the expressions look
less complicated at the moment. For this purpose, let λ
commonly represent some combinations of the three
quartic couplings given in Eq. (B), i.e., λ1, λ2, and λ3.
Also the splitting between the masses of η1 and η2
comprising the S3 doublet is neglected, and m0 is assumed
to be the common mass of them. Further, if the real part of
η0j is denoted by ηRj and ηIj be the imaginary part of η0j ,
then difference between the masses of ηRj and ηIj can be
taken to be proportional to λvj and can be small, in general.
It is imperative to note that under S3, νe is invariant,

whereas νζ (ζ ¼ μ, τ) transform as a doublet. This feature
will manifest through the Yukawa couplings [see Eq. (8)] at

the two Dirac vertices, which in its turn will dictate
the structure of the left-handed neutrino mass matrix.

Let z≡ m2
R

m2
0

, where mR is the average mass of the heavy

right-handed neutrino states. Since z always appears only
in the logarithm, we do not distinguish between the masses
of the different right-handed neutrinos for the purpose of
defining z throughout. Under this assumption, the second
diagonal entry, for example, will have the form,

ðMflavor
νL Þ22 ¼ λ

vmvn
8π2

y22
mR22

½ln z − 1�: ð12Þ

It is noteworthy that Eq. (12) is valid in the limit m2
R ≫ m2

0.
For ðMflavor

νL Þ22, as noted earlier in Eq. (8), νμ couples only to
N2R; thus, at both the Dirac vertices, N2R will couple with
νμ. Hence, the (2,2) element of the left-handed neutrinomass
matrix will get contribution from mR22

only. Also, y2 is the
only Yukawa coupling that will appear since we are dealing
with νμ at both theDirac vertices for ðMflavor

νL Þ22. From similar
arguments, one can obtain an expression for ðMflavor

νL Þ33 just
by replacing mR22

by mR11
in Eq. (12).

Let us now concentrate on the off diagonal (2,3) entry.
Thus, one has to consider νμ at one of the Dirac vertices and
ντ at the other. From Eq. (8), one can note that νμ couples to
N2R only, whereas ντ does so with N1R. Thus, at one of the
Dirac vertices, we will have N1R and N2R at the other.
Therefore, off diagonal entries from right-handed neutrino
mass matrix will come into play, and ðMflavor

νL Þ23 will get
contributions from mR12

in addition to that from mR11
and

mR22
. Needless to mention that the Yukawa coupling

involved will be y2 as can be seen from Eq. (8). Thus,
one can write

ðMflavor
νL Þ23 ¼ λ

vmvn
8π2

y22mR12

mR11
mR22

½ln z − 1�: ð13Þ

While writing down Eq. (13), we are taking into account the
mass insertion approximation. In a similar spirit, one can
write down expressions for (1,1), (1,2), and the (1,3) entries
of the left-handed Majorana neutrino mass matrix.
For notational ease, let us absorb everything else

present in the rhs of expressions for the elements of the
left-handed Majorana neutrino mass matrix, as in Eq. (12)
and Eq. (13) except for the Yukawa couplings, quartic
couplings, and the vevs in loop contributing factors say
rαβ given by

r11 ≡ 1

8π2mR11

½ln z − 1�;

r22 ≡ 1

8π2mR22

½ln z − 1�;

r12 ≡ mR12

8π2mR11
mR22

½ln z − 1�: ð14Þ
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From Eqs. (12), (13), (14), and (7), the left-handed
neutrino Majorana mass matrix radiatively generated at one
loop as shown in Fig. 1 is

Mflavor
νL ¼

0
B@

χ1 χ4 χ5

χ4 χ2 χ6

χ5 χ6 χ3

1
CA; ð15Þ

where

χ1≡y21½4r12v1v2ðλ3þλ1−λ2Þþðr11v21þ r22v22Þðλ1þλ2Þ�
χ2≡y22½r22ðλ1þλ2Þv21�
χ3≡y22½r11ðλ1þλ2Þv22�
χ4≡y1y2½r12ðλ1þλ2Þv21þ2r22ðλ3þλ1−λ2Þv1v2�
χ5≡y1y2½r12ðλ1þλ2Þv22þ2r11ðλ3þλ1−λ2Þv1v2�
χ6≡y22½2r12ðλ3þλ1−λ2Þv1v2�: ð16Þ

Here, hΦji≡ vj with (j ¼ 1, 2).

For the left-handed neutrino mass matrix in Eq. (15) to
be of the form of Eq. (4), i.e., the structure needed for
θ13 ¼ 0, θ23 ¼ π=4, and θ012 of the popular mixing kind, we
have to set χ1 ≠ χ2 ¼ χ3 as well as χ4 ¼ χ5. This is
achieved when v1 ¼ v2 ¼ v and r11 ¼ r22 ¼ r. The con-
dition r11 ¼ r22 ¼ r when translated in terms of the right-
handed neutrino mass matrix in Eq. (11) using Eq. (14)
will lead to

MνR ¼ 1

2

�
mR11

mR12

mR12
mR11

�
: ð17Þ

The matrix in Eq. (17) corresponds to maximal mixing in
the right-handed neutrino sector. Thus, to get the form of
left-handed neutrino mass matrix as in Eq. (4), it is
necessary to have v1 ¼ v2 ¼ v as well as maximal mixing
between N1R and N2R; i.e., we have to set r11 ¼ r22 ¼ r.
Implementing these constraints to the general form of the
mass matrix in Eq. (15), we get

Mflavor
νL ¼ v2

0
B@

y21½4r12λ123 þ 2rλ12� y1y2½r12λ12 þ 2rλ123� y1y2½r12λ12 þ 2rλ123�
y1y2½r12λ12 þ 2rλ123� y22rλ12 y22ð2r12λ123Þ
y1y2½r12λ12 þ 2rλ123� y22ð2r12λ123Þ y22rλ12

1
CA: ð18Þ

Here, λ12 ≡ λ1 þ λ2 and λ123 ≡ λ3 þ λ1 − λ2. To get the
form of Mflavor

νL in Eq. (4), one has to identify

a≡ y21v
2½4r12λ123 þ 2rλ12�

¼ y21v
2½4r12ðλ3 þ λ1 − λ2Þ þ 2rðλ1 þ λ2Þ�

b≡ y22v
2rλ12 ¼ y22v

2rðλ1 þ λ2Þ
c≡ y1y2v2½r12λ12 þ 2rλ123�
¼ y1y2v2½r12ðλ1 þ λ2Þ þ 2rðλ3 þ λ1 − λ2Þ�

d≡ y22v
2ð2r12λ123Þ ¼ y22v

2½2r12ðλ3 þ λ1 − λ2Þ�: ð19Þ

So far, we are able to obtain the form of left-handed
neutrino mass matrix required for θ13 ¼ 0, θ23 ¼ π=4, and
θ012 of the popular mixing varieties. With this in hand, the
obvious follow-up enterprise, as mentioned earlier, will be
to obtain realistic mixing viz. nonzero θ13, deviations of the

atmospheric mixing angle θ23 from π=4 as well as tiny
corrections to θ12 also. To get such realistic neutrino mixing,
we have to shift from the choice of r11 ¼ r22 ¼ r, i.e., allow
the two diagonal entries of the right-handed neutrino mass
matrix to slightly differ from each other. In other words, let
r22 ¼ r11 þ ϵ, where ϵ is a small quantity. Therefore, one
gets back the general form ofMνR in Eq. (11) characterized
by nonmaximal mixing betweenN1R andN2R. Thus, setting
r22 ¼ r11 þ ϵ is precisely shifting from the maximal mixing
between the two right-handed neutrino states. With v1 ¼
v2 ¼ v still valid, we can get a dominant component of
Mflavor

νL as in Eq. (18) denotedM0 and a smaller contribution
M0 proportional to ϵ. Hence,

Mflavor
νL ¼ M0 þM0 ð20Þ

with

M0 ¼ v2

0
B@

y21½4r12λ123 þ 2r11λ12� y1y2½r12λ12 þ 2r11λ123� y1y2½r12λ12 þ 2r11λ123�
y1y2½r12λ12 þ 2r11λ123� y22r11λ12 y22ð2r12λ123Þ
y1y2½r12λ12 þ 2r11λ123� y22ð2r12λ123Þ y22r11λ12

1
CA; ð21Þ
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and

M0 ¼ ϵ

0
B@

x y 0

y x0 0

0 0 0

1
CA; ð22Þ

where

x≡ y21v
2λ12 ¼ y21v

2ðλ1 þ λ2Þ
x0 ≡ y22v

2λ12 ¼ y22v
2ðλ1 þ λ2Þ

y≡ y1y2v2λ123 ¼ y1y2v2ðλ3 þ λ1 − λ2Þ: ð23Þ

M0 in Eq. (21) will represent the form of left-handed
neutrino mass matrix needed for θ13 ¼ 0, θ23 ¼ π=4, and
θ012 of the popular mixing types as in Eq. (4) when we
identify

a0 ≡ y21v
2½4r12λ123 þ 2r11λ12�

¼ y21v
2½4r12ðλ3 þ λ1 − λ2Þ þ 2r11ðλ1 þ λ2Þ�

b0 ≡ y22v
2r11λ12 ¼ y22v

2r11ðλ1 þ λ2Þ
c0 ≡ y1y2v2½r12λ12 þ 2r11λ123�

¼ y1y2v2½r12ðλ1 þ λ2Þ þ 2r11ðλ3 þ λ1 − λ2Þ�
d0 ≡ y22v

2ð2r12λ123Þ ¼ y22v
2½2r12ðλ3 þ λ1 − λ2Þ� ð24Þ

in the same spirit6 as was done in case of Eq. (19).
With the help of a nondegenerate perturbation theory, we

can calculate the corrections to eigenvalues and eigenvec-
tors of M0 from M0. The unperturbed flavor basis is given
by the columns of the mixing matrix U0 as shown in
Eq. (2). For ease of presentation, it is useful to define

γ ≡ ðb0 − 3d0 − a0Þ and

ρ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a02 þ b02 þ 8c02 þ d02 − 2a0b0 − 2a0d0 þ 2b0d0

p
:

ð25Þ

Thus, the third ket after receiving first order corrections will
take the form,

jψ3i ¼

0
BB@

ϵ
γ2−ρ2 ½ρð

ffiffiffi
2

p
y cos 2θ012 − x0 sin 2θ012Þ − γ

ffiffiffi
2

p
y�

− 1ffiffi
2

p ½1þ ξϵ�
1ffiffi
2

p ½1 − ξϵ�

1
CCA:

ð26Þ

Here, we have used

ξ≡ ½γx0 þ ρðx0 cos 2θ012 þ
ffiffiffi
2

p
y sin 2θ012Þ�=ðγ2 − ρ2Þ: ð27Þ

If we consider a CP-conserving scenario then,

sin θ13 ¼
ϵ

γ2 − ρ2
½ρð

ffiffiffi
2

p
y cos 2θ012 − x0 sin 2θ012Þ − γ

ffiffiffi
2

p
y�:

ð28Þ

The expression for a nonzero θ13 in terms of the parameters
of our model viz. ϵ, the vacuum expectation values v and
the quartic couplings λi, (i ¼ 1, 2, 3), can be obtained with
help of Eqs. (24), (25), and (28).
The shift of θ23 from π=4 can be found from Eq. (26) as

tanφ≡ tanðθ23 − π=4Þ ¼ ξϵ: ð29Þ

The first-order corrections to the first and second ket will
contribute to changes in θ12. Defining

β≡ ½ yffiffi
2

p cos 2θ012 þ 1
2
ðx − x0

2
Þ sin 2θ012�

ρ
ð30Þ

will lead to corrected solar mixing angle given by,

tan θ12 ¼
sin θ012 þ ϵβ cos θ012
cos θ012 − ϵβ sin θ012

: ð31Þ

Needless to mention, expressions for the corrected θ12 in
Eq. (31) and deviations of θ23 from maximal mixing in
Eq. (29) can be translated in terms of parameters of this
S3 × Z2 symmetric model by applying Eqs. (24), (25), (27),
and (30).
In our entire analysis, we have taken rαβ, (α, β ¼ 1, 2), to

be real therefore allowing no CP violation. But one can
associate Majorana phases to masses of the right-handed
neutrinos; thus, rαβ can be complex quantities. Therefore,
ϵ can also be complex that can give rise to CP violation
from Eq. (26).
Finally, we want to make a remark on the flavor

changing decays of the charged leptons. For a charged
lepton flavor violation (LFV), one requires the part of the
Yukawa Lagrangian similar to Eq. (8),

LLFV ¼ y1½ðN̄2Rη
þ
2 þ N̄1Rη

þ
1 Þe−�

þ y2½ðN̄1Rη
þ
2 Þτ− þ ðN̄2Rη

þ
1 Þμ−� þ H:c: ð32Þ

At a one-loop level, LFV processes can take place through
diagrams as shown in Fig. 2. From Eq. (32), it is readily
seen that the μ− → e−γ, τ− → e−γ, and τ− → μ−γ processes
in Fig. 2 are disallowed in the model. Specifically, the ηi
and Nα fields needed at the two Yukawa vertices in Fig. 2
for these LFV processes to occur can never be matched,
taking into account Eq. (32). Thus, these LFV processes are

6We are introducing the primed notation to differentiate from
the r11 ¼ r22 ¼ r case.
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identically zero at the one-loop level as long as the S3
symmetry is conserved7.

III. CONCLUSION

In a nutshell, a radiative S3 × Z2 symmetric scheme of
scotogenic generation of realistic neutrino mixing is put
forward. The model has two right-handed neutrinos, N1R
and N2R, which when maximally mixed can radiatively
yield the form of a left-handed Majorana neutrino mass
matrix at one loop characterized by θ13 ¼ 0, θ23 ¼ π=4, and
θ012 of any of the values specific to the tribimaximal (TBM),
bimaximal (BM), and golden ratio (GR) mixing, collectively
termed as popular lepton mixings. A small deviation from
maximal mixing between the two right-handed neutrino
states can produce realistic mixing angles, i.e., nonzero θ13,
shifts of the atmospheric mixing angle θ23 from π=4 and
small corrections to θ12. There are two inert SUð2ÞL doublet
scalar fields ηi, (i ¼ 1, 2) in the model. Since the ηi are odd
under the action of the unbroken Z2, the lightest among these
two scalars can serve as dark matter.
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APPENDIX A: THE GROUP S3

It is the permutation group of three objects [29] and
therefore, has 3! ¼ 6 elements. S3 has two generators A and

B that satisfy A2 ¼ I ¼ B3 and ðABÞðABÞ ¼ I. The group
properties can be clearly understood from the group table
shown in Table III.
It has two one-dimensional representations 1 and 10, as

well as one two-dimensional representation 2. The one-
dimensional representation 1 is immune to both A and B,
whereas 10 flips sign when acted by A. In two-dimensions,
the group can be represented by the following matrices that
obey all the properties discussed so far:

I ¼
�
1 0

0 1

�
; A ¼

�
0 1

1 0

�
; B ¼

�
ω 0

0 ω2

�
:

ðA1Þ

Here, ω ¼ e2πi=3 is a cube root of one. With the generators
in Eq. (A1), we can construct the rest of the members of the
group as

C ¼
�
0 ω2

ω 0

�
; D ¼

�
0 ω

ω2 0

�
;

F ¼
�
ω2 0

0 ω

�
: ðA2Þ

S3 is characterized by the following product rules:

1 × 10 ¼ 10; 10 × 10 ¼ 1; and 2 × 2 ¼ 2þ 1þ 10:

ðA3Þ

All the matrices Mij in Eqs. (A1) and (A2) obey

X
j;l¼1;2

αjlMijMkl ¼ αik: ðA4Þ

Here, αij ¼ 0 if i ¼ j and αij ¼ 1 if i ≠ j.
Let Φ≡ ðϕ1

ϕ2
Þ and Ψ≡ ðψ1

ψ2
Þ be two doublets of S3 which

when combined according to Eq. (A3) will yield

ϕ1ψ2 þ ϕ2ψ1 ≡ 1; ϕ1ψ2 − ϕ2ψ1 ≡ 10; and�
ϕ2ψ2

ϕ1ψ1

�
≡ 2: ðA5Þ

Often, we have to work with Hermitian conjugate of
the fields. Owing to the properties of the complex

FIG. 2. Decays of the charged leptons at one loop. Here, ζ− and
ζ0− stands for ðe−; μ−; τ−Þ. For charged lepton flavor violating
(LFV) processes, ζ− ≠ ζ0−. Kinematically, only μ− → e−γ, τ− →
e−γ and τ− → μ−γ are allowed and are therefore searched for. S3
symmetry forbids LFV processes at a one-loop level in this
model.

TABLE III. The group table of the discrete symmetry S3.

I A B C D F

I I A B C D F
A A I C B F D
F F C I D A B
C C F D I B A
D D B A F I C
B B D F A C I

7Since neutrino masses are small, one can neglect the LFV
processes mediated by the W boson.
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representations of S3, [say, as for B displayed in Eq. (A1)],

the Hermitian conjugate of Φ is given by Φ† ≡ ðϕ†
2

ϕ†
1

Þ. This
Φ† when combined with Ψ, keeping Eq. (A3) in mind,
we get

ϕ†
2ψ2 þ ϕ†

1ψ1 ≡ 1; ϕ†
2ψ2 − ϕ†

1ψ1 ≡ 10 and�
ϕ†
1ψ2

ϕ†
2ψ1

�
≡ 2: ðA6Þ

Equations (A5) and (A6) play a pivotal role in determining
the structure of the mass matrices in the model.

APPENDIX B: THE SCALAR POTENTIAL

The scalar sector of the model, as can be seen from
Table II, is comprised of two inert SUð2ÞL doublets,
ηi ≡ ðηþi η0i ÞT , (i ¼ 1, 2), forming a doublet under S3
denoted by η and two other SUð2ÞL doublet scalar fields
Φj ≡ ðϕþ

j ϕ
0
jÞT , (j ¼ 1, 2), represented by Φ, transforming

as a doublet under S3. Under the unbroken Z2, η is odd,
whereasΦ is even. Thus, after SSB, ϕ0

j can acquire vevs vj,
(j ¼ 1, 2), but the η0i cannot. The complete scalar potential
consisting of all the terms allowed by the SM gauge
symmetry and S3 × Z2 is given by

V total ¼ m2
ηðη†2η2 þ η†1η1Þ þm2

ϕðϕ†
2ϕ2 þ ϕ†

1ϕ1Þ þ λ̃1ðη†2η2 þ η†1η1Þ2 þ λ̃2ðη†2η2 − η†1η1Þ2 þ λ̃3ðϕ†
2ϕ2 þ ϕ†

1ϕ1Þ2

þ λ̃4ðϕ†
2ϕ2 − ϕ†

1ϕ1Þ2 þ λ̃5½ðη†2η2 þ η†1η1Þðϕ†
2ϕ2 þ ϕ†

1ϕ1Þ� þ λ̃6½ðη†2η2 − η†1η1Þðϕ†
2ϕ2 − ϕ†

1ϕ1Þ�
þ λ̃7½ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ� þ λ̃8½ðη†1η2Þðη†2η1Þ� þ λ̃9½fðϕ†

1ϕ2Þðη†2η1Þg þ fðϕ†
2ϕ1Þðη†1η2Þg� þ Vrelevant; ðB1Þ

where

Vrelevant ¼ λ1½fðη†2ϕ2 þ η†1ϕ1Þ2g þ H:c:�
þ λ2½fðη†2ϕ2 − η†1ϕ1Þ2g þ H:c:�
þ λ3½fðη†1ϕ2Þðη†2ϕ1Þ þ ðη†2ϕ1Þðη†1ϕ2Þg þ H:c:�:

ðB2Þ

Since at the four-point scalar vertex in Fig. 1, two ϕ are
destroyed and two η are created, the terms only of
ðη†ϕÞðη†ϕÞ type play a crucial role in determining the
neutrino mass matrix. Thus, we call these terms as the
relevant part of the scalar potential, represented by Vrelevant
in Eq. (B2). The quartic couplings λj (j ¼ 1, 2, 3)
appearing in Eq. (B2) were taken to be real for the analysis.
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