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Abstract In this paper, the solutions of Einstein–Maxwell
Field Equations for relativistic strange quark star in Tolman-
IV potential considering MIT bag model EoS p = 1

3 (ρ−4B)

of interior matter in presence of charge in higher dimensions
is presented, where B is bag parameter. Here we consider
density dependent B as it has more practical application.
We note some interesting results. It is observed that interior
of a strange quark star may contain bulk stable quarks as
a whole having energy per baryon EB < 930.4 MeV/fm3

or stable quark matter core enclosed by a thin metastable
quark matter layer enveloped by unstable quark matter. It is
also found that interior composition depends on the value
of space-time dimension (D) and net charge (Q). The model
presented in this paper satisfies all the necessary stability and
energy conditions for a viable stellar configuration. We also
note the maximum mass of stable strange quark star is 1.773
M� for density dependent B and 1.684 M� for constant B.

1 Introduction

In last couple of decades compact objects have gained consid-
erable interest among researchers in relativistic astrophysics.
Compact objects may be categorized as White Dwarf (hence
f orth W D), Neutron Star (hence f orth N S), Black Hole
(hence f orth BH ). NS are fascinating astrophysical objects
having high density near the core region (∼ 2.7×1014 g/cm3

or more) and therefore are excellent test bed for the study
of matter at extreme densities. It is not possible always to
explain the observed masses and radii of many astrophys-
ical compact objects at such extreme densities using avail-
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able standard NS model till date. Both masses and radii of
such objects are found to be less than that of NS but the
compactification factor (defined as ratio of mass to radius)
is higher. A new type of compact object called Strange Star
(hence f orth SS) has been hypothesized [1–4] for such class.
These objects are grouped in the new family known as SS
family. Within this family recent studies on compact astro-
physical objects especially on strange quark stars find out
importance after the hypothesis given by Bodmer [5] and
Witten [6] that the ground state of matter at extreme condi-
tions may be deconfined phase of quarks (u, d and s) and not
56Fe. The Quark-Gluon-Plasma (hence f orth QGP) phase
is important particularly at high temperature or low baryonic
density. Such QGP phase may have been attained during the
time of formation of the universe at early stage or in the exper-
iments of heavy ion collision. Additionaly a deconfined phase
of quarks may also results when baryonic matter is com-
pressed to a high degree keeping the temperature low. Such
situation may arise in the interior of compact objects. Con-
sequently a compact star may be classified as ‘neutron star’
which is a gravitationally bound object primarily becomes a
bare ‘strange quark star’ composed of 3-flavor quarks or a
‘hybrid star’ in which the quark core is supported by a crust
made of hadronic matter. Due to the unavailability of exact
neucleon-neucleon interaction potential, the EoS of compact
stars is only model dependent. Hence predicted mass–radius
of such objects varies widely [7]. Neutron star interior com-
position explorer (NICER), dedicated for the exploration of
NS interior matter provides unprecedented sensitivity to the
measurements of NS masses and radii [8].

Anisotropy in pressure inside a compact object may arise
due to several reasons. One of the possible reason is the pres-
ence of type 3A superfluid in the solid core of compact objects
[9]. Oweing to fermion, nucleons can not reside together in a
given energy state due to Pauli exclusion principle. Again at
very short range strong repulsive nucleon-nucleon interaction
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comes into play. All of these repulsive forces help to over-
come gravitational collapse inside a neutron star. This sce-
nario changes in low temperature limit when nucleons form
cooper pairs [10] which are practically bosons. Thus at very
low temperature nucleons behave collectively on a very large
scale. Such nucleon condensates which is analogues to He-3
may flow without viscosity. Inside a neutron star the high
pressure region increases effectively the critical temperature
of cooper pair formation allows nuclear superfluidity to exist
even at temperature of the order of billion degrees. Three dif-
ferent types of superfluid may exist [11] inside a neutron star
core. Other possible causes of anisotropy in compact objects
may include (i) phase transitions [12], (ii) pion condensation
[13], (iii) slow rotation [14] etc.

It was Rosseland [15], who first predicted that a star may
contain a copious amount of electrons and positive ions. Due
to the enormously high kinetic energy, electrons have greater
probability to escape from the star than that of positive ions.
Consequently a star may contain significant amount of net
positive charge. This process continues untill the internal
electric field opposes electrons to escape further (please see
Eddington [16] for a detail review on this problem). The
Einstein Field Equations (hence f orth EFE) in presence
of electric field are very significant to study the properties
of neutron stars, quark stars, gravastars, black holes etc in
the context of relativistic astrophysics as electric field plays
an important role in the gross properties of such compact
objects. Sunzu et al. [17] obtained an exact solutions for
the Einstein–Maxwell equations of quark star by considering
equation of state (hence f orth EoS) of linear form. They also
obtained another classes of solution of the E–M equations for
a different form of the metric potential among which the type
of first class is regular in the interior of star having a constant
potential whereas the second one has a variable potential and
is singular at the centre [18]. According to Ivanov [19] a
perfect fluid must have non vanishing net charge to avoid
singularity. Bonnor [20] argued that charge plays a key role
to give stability of a stellar structure against graviational col-
lapse. The repulsive coulomb interaction can stop the fluid
sphere from further collapsing to a point singularity. Stet-
tner [21] showed that a uniform density star without charge
is more unstable than that of a star carrying a net surface
charge. Krasinski [22] showed that a net amount of charge is
required to halt the collapse of matter of spherical distribution
under inward pull of gravity towards a point singularity. By
generalizing the Oppenheimer–Volkof equation, Bekenstein
[23] analyzed the stability of charged fluid spheres quali-
tatively. A few number of authors also worked on this topic
[24–27]. The physical behaviour and stability of charged dust
stars were also discussed by some authors [28–32]. Exten-
sive studies of Ivanov [19] and Sharma [33] revealed that
presence of charge had affected advarsely the values of lumi-
nosity, surface redshift and maximum mass of a compact rel-

ativistic object. In this context, it is to be noted that various
uncharged solutions were extended to charged regime pre-
viously by different authors such as Nduka [34] and Adler
[35] who obtained charged version of the Kuchowicz [36]
solutions; Singh and Yadav [37], Nduka [34] and Klein
[38] modified the Wyman [39] solution; charged analogue
of Schwarzschild’s interior solution was obtained by Gupta
and Kumar [40], Gupta et al [41], Florides [42], Banerjee
and Som [43] and Guilfoyle [44]. Charged analogue of Tol-
man [45] solutions was obtained by Cataldo and Mitskievic
[46], Tikekar [47], Pant and Sah [48]. Charged anisotropic
solutions of Einstein–Maxwell equation in presence of both
linear and non linear EoS had been considered by Varela et
al. [49].

In recent decades the inclusion of extra dimension in GTR
to unify gravity with other fundamental forces in nature has
been taken into consideration. In this context the credit for
introducing higher dimension to unify gravity with electro-
magnetic interaction goes to both Kaluza [50] and Klein [51].
In cosmology the theory of higher dimension is important
since it is known to us that the present universe is much
larger than the early universe. It may be possible that in
the evolutionary stage the present universe went through a
higher dimensional space which gets reduced to four dimen-
sion subsequently in the sense that the extra dimensions
become too minute to be detectable due to dynamical con-
traction as pointed out by Chodos and Detweiler [52]. A
serious question arises now whether the concept of extra
dimension is physically reachable or it is just a mathematical
tool to build models in both cosmology and astrophysics. In
this context Marciano [53] examined the time dependence
of fundamental constants within the framework of Kaluza–
Klein theory. He suggested that experimental detection of
time variation in any of them might be a strong signature
of the existance of multi dimensions. In connection with
Kaluza–Klein cosmology Alvarez and Gavela [54] studied
the dynamical compactification in a universe having multi
dimensions and showed that an adiabatic contraction had led
to a transfer of entropy to the four dimensional universe.
Sahdev [55] obtained a homogeneous, anisotropic cosmo-
logical model in 1 + d + D dimensions and showed that
for an isentropic contraction of dimension of universe, the
temperature T eventually dropped depending on the radius
of the compact space. Later some astrophysical models were
also genaralized in higher dimensions. Such as higher dimen-
sional solution of spherically symmetric Schwarzschild and
Reissner–Nordström black holes [56,57], rotating Kerr black
hole [58–61], black holes in compactified spacetime [62],
no hair theorem [63], Hawking radiation [58], stability of
Schwarzschild black hole against linearized perturbations of
metrics [64] have been investigated. In the framework of
higher dimension Paul [65] evaluated the upper bound of
mass to radius ratio of uniform density star and the result
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showed that minimum mass to radius ratio is possible only
when D = 4. Cassisi et al. [66] discussed in detail the infor-
mation about extra dimensions in the context of stellar evo-
lution theory and hence the constraints therein.
Tolman [45] presented a wide varity of solutions of the EFE
for a perfect fluid. In this article Tolman generated a total
of 8 solutions by connecting the metric functions through
a single equation and thereby imposing some restrictions on
them. Out of the 8 solutions, Tolman-IV particularly assumes
a simple form and admits a sphere of compressible fluid with
nonzero central density and pressures. In the background of
Tolman-IV potential Banerjee [67] obtained a regular and
well behaved solution of the EFE within the framework of
MIT bag model EoS which admits anisotropic matter dis-
tribution. Compact stellar model with Tolman IV potential
in anisotropic regime has been obtained by Bhar et al. [68]
which has been shown to be regular and stable. Das et al. [69]
assumed a particular form of the grr component of the metric
which may be regarded as anisotropic extension of Tolman-
IV potential. A vast amount of articles are available in which
extensive study on strange quark star are performed [70–
75]. Within relativistic approach several authors have studied
properties of strange quark stars qualitatively making use of
the MIT bag model EoS of the form p = 1

3 (ρ−4B) [76–80],
where B is vacuum energy density or bag constant. However,
in the present article, we have adopted a different approach to
obtain anisotropic extension of the isotropic Tolman IV solu-
tion for charged compact object in higher dimensions con-
sidering MIT Bag model EoS from which the isotropic and
uncharged counterpart can readily be arrived by just switch-
ing off some parameters. In this article our basic aim is to
construct stellar model for charged strange quark star admit-
ting MIT bag model EoS in presence of extra dimensions
(D ≥ 4). In the MIT bag model the constituent quarks are
assumed to be confined in a region of space of perturbative
vaccum known as ‘bag’ by means of a net inward pressure
B which is exerted by the surrounding non-perturbative vac-
uum. With rise in the baryon number density nB , the distinc-
tion between these two vacua disappears and the bag parame-
ter B which is the net inward pressure must vanish. Therefore
it is more practical to consider B as a density dependent quan-
tity [81]. In our approach we have considered that parameter
B depends on the energy density or baryon number instead
of constant B in MIT bag model.

In our analysis we have first determined the constraints
on the charge (γ ) and pressure (α) anisotropy parameters
for which central pressure of a star assumes positive value.
Within these constraints of α and γ , we have studied the
effects of dimensions (D), net charge (Q) and pressure
anisotropy on the gross properties of stellar configuration
such as maximum mass, surface redshift, stability window of
bulk strange quark and we obtained some interesting results.

The paper is organized as follows: in Sect. 2 we have intro-
duced the higher dimensional form of the Einstein–Maxwell
field equations. Exact solutions of the field equations are
obtained in Sect. 3 which corresponds to anisotropic and
charged extension of isotropic Tolman IV solution. The phys-
ical plausibility of the solution and restrictions on model
parameters are discussed in Sect. 4. The viability of the
present model is also studied from the variation of different
physical parameters. In Sect. 5 possible existence of strange
quarks inside various compact objects is visualized with the
help of MIT bag model EoS. A density dependence of the
bag parameter B is employed here. In Sect. 6 stability of
the present model is studied from different stability criteria.
Finally we have concluded by mentioning some important
aspects of our model in Sect. 7.

2 Einstein–Maxwell field equations and their solutions
in higher dimensions

The space-time of interior configuration of a spherically
symmetric and static line element in higher dimensions is
described by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dΩn
2, (1)

where we consider n = D − 2. D is known as the total
number of space-time dimensions and the angular part
of the metric element on the n-sphere is represented as
dΩn

2 = dθ1
2 + sin2θ1dθ2

2 + sin2θ1sin2θ2dθ3
2 + ........ +

(sin2θ1sin2θ2........sin2θn−1)dθn
2. Consequently for n = 2

we regain the metric in four dimension. In presence of elec-
tromagnetic field the corresponding energy momentum ten-
sor of the interior matter of a compact object in higher dimen-
sions is given by

T total
i j = diag

(
− ρ − 1

2
E2, pr − 1

2
E2, pt

+1

2
E2, . . . , pt + 1

2
E2

)
. (2)

In GR the EFE in the fundamental form is given by [82]:

Ri j − 1

2
gi jR = 8πGDT

total
i j , (3)

where Ri j and R are called Ricci tensor and Ricci scalar
respectively. GD = GVD−4 = GVn−2 represents the gravi-
tational constant in D dimensions, G being the four dimen-
sional Newtonian gravitational constant and VD−4 is the vol-

ume of the extra dimensions given by Vn−2 = π(n−2)/2r (n−2)

Γ ( n2 )
.

Using Eqs. (1) and (2), the EFE system of equations given in
Eq. (3) in presence of electric field give the following set of
equations

ne−2λλ′

r
+ n(n − 1)

2r2 (1 − e−2λ) = 8πGDρ + 1

2
E2. (4)
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ne−2λν′

r
− n(n − 1)

2r2 (1 − e−2λ) = 8πGD pr − 1

2
E2. (5)

e−2λ

[
ν′′ + ν′2 − λ′ν′ − (n − 1)(λ′ − ν′)

r

]

− (n − 1)(n − 2)

2r2 (1 − e−2λ) = 8πGD pt + 1

2
E2. (6)

The charge density as measured by an observer within a
radius ‘r ’ is given by

σ(r) = 1

H

1

rn
e−λ[rn E(r)]′, (7)

where H = (n+1)π
n+1

2

Γ
(
n+3

2

) [83]. Thus the net amount of charge

resides within the radius ‘r ’ can be obtained as

Q(r) = H
∫ r

0
r ′nσ(r ′)eλdr ′ = rn E(r). (8)

We now introduce the Durgapal–Bannerji [84] transforma-
tion

x = r2, Z(x) = e−2λ(r), y2(x) = e2ν(r), (9)

so that the Field equations in Eqs. (4)–(6) and the charge
density in Eq. (7) in terms of the new variable ’x’ take the
form

8πGDρ + 1

2
E2 = n(n − 1)

2x
(1 − Z) − nZx , (10)

8πGD pr − 1

2
E2 = 2nZ

yx
y

− n(n − 1)

2x
(1 − Z) , (11)

8πGD pt + 1

2
E2 = Z

[
4x

yxx
y

+ 2n
yx
y

+ 2x
yx
y

Zx

Z
+ (n − 1)

Zx

Z

]

− (n − 1)(n − 2)

2x
(1 − Z) , (12)

σ(x) = 2

H

√
Z

x

(n
2
E + xEx

)
, (13)

where yxx , yx , Zxx , Zx and Ex are the derivatives of these
functions with respect to x . In presence of electro-magnetic
field total mass of a star within radius ‘r ’ can be determined
using the following expression

m(r) = 2π
n+1

2

Γ
( n+1

2

)
∫ r

0
r ′n

[
ρ(r ′) + E2(r ′)

8π

]
dr ′. (14)

3 Generating exact solution

The exact solutions of the Einstein–Maxwell Field equations
can be obtained using Eqs. (11) and (12). We subtract Eq. (11)
from Eq. (12) and considering that Δ = pt− pr is account for
pressure anisotropy [85–88]. We finally obtain the following
equation

Zx + P1(x)Z = P2(x), (15)

where

P1(x) = 4x2yxx − (n − 1)y

2x2yx + (n − 1)xy
. (16)

and

P2(x) =
[
(8πGDΔ + E2)x − (n − 1)

]
y

2x2yx + (n − 1)xy
. (17)

Equation (15) is a first order linear differential equation hav-
ing solution of the form

Z(x) = e− ∫
P1(x)dx

[∫
P2(x)e

∫
P1(x)dxdx + c

]
, (18)

where c is a constant. Variety of forms of the metric potental
e2ν may be chosen but it should be remembered that the
choice should satisfy all the desirable features for a physically
viable model. In this article we choose the Tolman-IV [45]
type ansatz for the metric potential e2ν .

e2ν = y2(x) = A2(1 + ax). (19)

This particular form of the metric ansatz is found to be non-
singular, continuous and well behaved throughout the interior
of a stellar configuration and therefore physically acceptable
for constructing stellar model. In order to integrate right hand
side of Eq. (18), we have to choose the form of Δ and E2

suitably. Many authors [18,89,90] prefer a polynomial form
of the pressure anisotropy Δ which is regular and vanishes
at the centre (r = 0). In this work we choose Δ following
the work of Goswami et al. [91] as given below

Δ = (n − 1)αa2x

8πGD(1 + ax)2 , (20)

which vanishes when r = 0 and takes maximum value at
surface. This particular form of Δ extensively depends on
dimension D. We also consider E2 to be of the form

E2 = γ a2x

(1 + ax)2 , (21)

this type of choice for E2 has been utilized by Mafa Tak-
isa and Maharaj [71] to find exact solution of the Einstein
Field equation for a polytropic equation of state and also by
Hansraj and Maharaj [92] to obtain charged solutions which
contain uncharged form of the Finch–Skea solution. We now
obtain the anisotropic and charged extension of the Tolman-
IV solution in D (= n + 2) dimensions as given by

Z(x) = (n − 1)(1 + ax) − [(n − 1)α + γ ]ax + cx(1 + ax)

n(1 + ax) − 1
.

(22)

For n = 2, α = γ = 0, Eq. (22) reduces to the isotropic,
uncharged Tolman-IV [45] potential as given below

Z(x) = (1 + ax)(1 + cx)

1 + 2ax
, (23)
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In this model the expressions of various physical parame-
ters relevant for a stellar configuration viz. energy density
(ρ), radial pressure (pr ), transverse pressure (pt ) and charge
density (σ ) are given below:

ρ = n(n − 1)

2

[
a − c(1 + ax) + a {(n − 1)α + γ }

n(1 + ax) − 1

]

+n

[
n(1 + ax) {a(n − 1) + acx}

[n(1 + ax) − 1]2

−a2nx {(n − 1)α + γ }
[n(1 + ax) − 1]2

]
− n

[
a(n − 1) + c(1 + 2ax)

n(1 + ax) − 1

−a {(n − 1)α + γ }
n(1 + ax) − 1

]
− γ a2x

2(1 + ax)2 . (24)

pr = na

1 + ax

[ {(n − 1) + cx} (1 + ax)

n(1 + ax) − 1

× −ax {(n − 1)α + γ }
n(1 + ax) − 1

]
− n(n − 1)

2

[
a − c(1 + ax)

n(1 + ax) − 1

× ax {(n − 1)α + γ }
n(1 + ax) − 1

]
+ γ a2x

2(1 + ax)2 . (25)

pt = pr + Δ. (26)

σ = 1

H

√
Z

x

√
γ xa

(1 + ax)2 [(n + 1) + ax(n − 1)] . (27)

The arbitrary constants a and c have to be evaluated from
matching conditions at the surface of the star given below:

1. The Reissner–Nördström [93,94] metric in higher dimen-
sions is given by

ds2 = −
[

1 − Kn

rn−1 + q2

r2(n−1)

]
dt2 +

[
1 − Kn

rn−1

+ q2

r2(n−1)

]−1

dr2 + r2dΩ2
n , (28)

where Kn is related to the mass of a star given by Kn =
16πGDM

nAn
with An = 2π

n+1
2

Γ
(
n+1

2

) . Matching of the internal

metric with the external Reissner–Nördström metric at
the boundary (r = Rb). Now at r = Rb the continuity of
metric function yields

e2ν(r=Rb) = e−2λ(r=Rb) =
[

1 − Kn

Rn−1
b

+ q2

R2(n−1)
b

]

i.e.
(n − 1)(1 + aR2

b) − [(n − 1)α + γ ]aR2
b

n(1 + aR2
b) − 1

+ cR2
b(1 + aR2

b)

n(1 + aR2
b) − 1

=
[

1 − Kn

Rn−1
b

+ q2

R2(n−1)
b

]
,

(29)

and

A2(1 + aR2
b) =

[
1 − Kn

Rn−1
b

+ q2

R2(n−1)
b

]
. (30)

2. The radial pressure (pr ) which is a monotonically decreas-
ing function of r should drops to zero at the surface r = Rb

i.e.

pr (r = Rb) = 0, (31)

which on using Eqs. (25), (29) and (31) determines the
constants a and c. Thus the complete determination of ρ,
pr , pt and charge density (σ ) are now possible.

4 Physical analysis and bounds on the model
parameters

In this section we discuss the physical viability of the model.
We observe that at the centre of star the graviational potentials
are (e2ν)r=0 = A2, (e2λ)r=0 = 1 and their first derivatives
(e2ν)′r=0 = (e2λ)′r=0 = 0. Therefore the gravitational poten-
tials and their derivatives are regular at the centre. The central
density assumes the form

ρ0 = n(n + 1)(a {1 + (n − 1)α + γ } − c)

2(n − 1)
, (32)

which takes higher value in high dimensions. It follows that
for ρ0 > 0, the condition a < 0 and c > 0 is not possible.
However for a > 0 and c > 0, we get a bound on their ratio
given below

c

a
< 1 + (n − 1)α + γ. (33)

Since for a < 0 the electric field (E) and charge density (σ )
become negative in view of Eqs. (21) and (27), the condition
a < 0, c < 0 is prohibited which although may give positive
value of ρ0. Similarly the central pressure in this model is
given by

(pr )0 = n

2

[
c − a {(n − 1)α + γ − 1}] , (34)

For (pr )0 > 0 the following cases are noted
• When (n − 1)α + γ > 1 the combination c < 0 and

a > 0 is not possible. However for c > 0, a > 0, the ratio of
c and a follows the inequality

c

a
> (n − 1)α + γ − 1. (35)

• When (n − 1)α + γ < 1, the combination a > 0, c > 0 is
always allowed. However for c < 0 and a > 0 we get

c

a
< 1 − (n − 1)α − γ. (36)
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Equations (33), (35) and (36) indicate that dimension (D),
pressure anisotropy parameter (α) and charge anisotropy
parameter (γ ) have some effect on the construction of physi-
cally viable stellar model. The fulfilment of Zeldovich’s con-
dition i.e. ( pr

ρ
)0 ≤ 1 leads to another restriction given below:

c

a
≤ 1 + n2α + n(γ − α)

n
. (37)

The square of radial sound velocity (v2
r ) is obtained as

v2
r =

(
γ a2

2(1 + ax)2 − γ a3x

(1 + ax)3 − na

(1 + ax)
f1(x)

−n(n − 1)

2x
f1(x) − na2

(1 + ax)2 f2(x)

+n(n − 1)

2x2 (1 − f2(x))

)

/ (
γ a3x

(1 + ax)3 − γ a2

2(1 + ax)2 − n f3(x)

+n(n − 1)

2x
f1(x) − n(n − 1)

2x2 (1 − f2(x))

)
, (38)

where

f1(x) =
[
an(n − 1)(1 + ax)

[n(1 + ax) − 1]2 + acnx(1 + ax)

[n(1 + ax) − 1]2

− a(n − 1)

n(1 + ax) − 1
− acx

n(1 + ax) − 1
− c(1 + ax)

n(1 + ax) − 1

−a2nx {(n − 1)α + γ }
[n(1 + ax) − 1]2 + a {(n − 1)α + γ }

n(1 + ax) − 1

]
. (39)

f2(x) =
[

(n − 1)(1 + ax)

n(1 + ax) − 1
+ cx(1 + ax)

n(1 + ax) − 1

−ax {(n − 1)α + γ }
n(1 + ax) − 1

]
. (40)

f3(x) =
[

2a2n2(n − 1)(1 + ax)

[n(1 + ax) − 1]3 + 2a2n2cx(1 + ax)

[n(1 + ax) − 1]3

− 2a2n(n − 1)

[n(1 + ax) − 1]2 − 2a2cnx

[n(1 + ax) − 1]2

− 2acn(1 + ax)

[n(1 + ax) − 1]2 + 2ac

n(1 + ax) − 1

−2a3n2x {(n − 1)α + γ }
[n(1 + ax) − 1]3

+2a2n {(n − 1)α + γ }
[n(1 + ax) − 1]2

]
. (41)

In case of higher dimensions the total mass of a charged star
within radius ‘Rb’ is calculated in this model which is given
by

M(Rb) = An
nRn+1

b

16π

[
Γ ( n2 )

π
n−2

2 R(n−2)
b

aC1 − c

C2

+ 2γ a

n(n + 1)
F(R2

b)

]
, (42)

where C1 = nα − α + γ + 1 − cR2
b and C2 =

n(1 + aR2
b) − 1. F(R2

b) =2 F1
[ n+1

2 , 1, n+3
2 ,−aR2

b

] −
2F1

[ n+1
2 , 2, n+3

2 ,−aR2
b

]
. Here 2F1[e, f, g, h] is known as

Gauss hypergeometric function [95] having arguments e, f ,
g, h. The mass function in Eq. (42) vanishes as Rb → 0
and is regular interior to a compact object. We now discuss
the nature of variation of different physical parameters. We
consider the compact objects HER X-1, PSR J1614-2230
and EXO1745-248 and their observed mass and radius are
tabulated in Table 1.

Here α and γ can not be chosen arbitrarily since beyond
a certain limit the central pressure becomes negative which
is not possible physically. We have plotted γ with respect to
α corresponding to different central pressure in Fig. 1. The
allowed values of α and γ are indicated by the region below
the respective coloured lines for three different compact
objects namely HER X-1, EXO1745-248 and PSR J1614-
2230 in different dimensions. It is observed that the allowed
range of α and γ decreases as we increase the dimension D.

4.1 Trends of energy density and various pressures

In this section, we study the nature of variation of energy
density (ρ), radial pressure (pr ), tangential pressure (pt ) and
anisotropic pressure (Δ) for the compact objects as men-
tioned in Table 1. We scale these parameters in unit of
(8πGD) so that the rescaled energy density (ρ̃), radial pres-
sure ( p̃r ), tangential pressure ( p̃t ) and pressure anisotropy
(Δ̃) become

ρ̃ = 8πGDρ, p̃r = 8πGD pr ,

p̃t = 8πGD pt , Δ̃ = 8πGDΔ. (43)

The radial variation of ρ̃ for these compact objects are plotted
in Fig. 2. It is clear that energy density (ρ̃) picks up higher
value in presence of higher dimension (D > 4) for the com-
pact objects chosen in the present analysis.

The plots of radial ( p̃r ) and tangential ( p̃t ) pressures are
presented in Figs. 3 and 4 respectively. It is observed that
p̃r picks up higher value in higher dimensions. The nature
of variation of tangential pressure ( p̃t ) is similar to that of ρ̃

and p̃r although it assumes a non zero value at the surface
which can be seen from Fig. 4.

The variation of Δ̃ is shown in Fig. 5 where it is clearly
observable that the regularity of the anisotropic pressure (Δ̃)
at the centre (r = 0) is maintained at which both radial ( p̃r )
and tangential ( p̃t ) pressures become equal.

4.2 Causality condition

One of the criteria of a well behaved solution is that the
sound speed should be causal throughout the interior of a
compact object. For a star composed of anisotropic pressures
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Table 1 Tabulation of different
compact objects and their
observed mass, radius

Compact object Mass (M�) Radius (km) References

HER X-1 0.85 8.1 Gangopadhyay et al. [96]

PSR J1614-2230 1.97 13 Demorest et al. [97]

EXO1745-248 1.4 11 Özel et al. [98]

Fig. 1 Plots of γ against α corresponding to different central pressure
for HER X-1 (blue line), EXO1745-248 (green line) and PSR J1614-
2230 (red line). Here the regions below each line represent allowed
combinations of α and γ for which positive value of central pressure

is obtained. The region above each of these lines represent forbidden
region (negative central pressure). The plots are drawn for D = 4 (top
left), D = 5 (top right), D = 6 (bottom left) and D = 11 (bottom right)

two different sound velocities namely radial (v2
r ) and tangen-

tial (v2
t ) should satisfy the conditions v2

r = (
dpr
dρ ) ≤ 1 and

v2
t = (

dpt
dρ ) ≤ 1. The two different sound velocities are plot-

ted in Figs. 6 and 7 respectively. It is observed that causality
condition is satisfied in this model. Apart from that it is also
interesting to note that both of these sound velocities assume
a monotonically decreasing nature.

4.3 Behaviour of electric field and charge density

The variation of square of electric field (E2) and charge den-
sity (σ ) are plotted in Figs. 8 and 9 respectively. It is observed

that electric field vanishes at the centre of the compact objects
which is consistent with Eq. (21). It is also evident that E2

takes maximum value at the surface which however decreases
with increase in number of space time dimension (D). The
variation of charge density (σ ) follows an opposite nature of
E2 which takes maximum value at the centre and minimum
at the surface. This type variation of σ can also be found in
the article of Varela et al. [49].

4.4 Energy conditions

For a charged anisotropic compact object the energy con-
ditions namely (i) null energy condition (NEC), (ii) weak
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Fig. 2 Radial variation of energy density (ρ̃) for different compact
objects as indicated in the figure. Here plots with solid, dashed and
dotted lines correspond to D = 4, 5 and 6 respectively. To obtain the
plots we choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25
when D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii)
α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and
α = 0.2, γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2,
γ = 0.25 when D = 6 for EXO1745-248

Fig. 3 Radial variation of radial pressure ( p̃r ) for different compact
objects as indicated in the figure. Here plots with solid, dashed and
dotted lines correspond to D = 4, 5 and 6 respectively. To obtain the
plots we choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25
when D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii)
α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and
α = 0.2, γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2,
γ = 0.25 when D = 6 for EXO1745-248

energy condition (WEC), (iii) dominant energy condition
(DEC) and (iv) strong energy condition (SEC) should be
satisfied [99,100]. We have determined the mathemati-
cal expressions for different energy conditions using the
approach discussed in [99] and are given below

NEC :ρ̃ + p̃r ≥ 0,

ρ̃ + p̃t + E2 ≥ 0. (44)

WEC :ρ̃ + E2

2
≥ 0,

Fig. 4 Radial variation of tangential pressure ( p̃t ) for different com-
pact objects as indicated in the figure. Here plots with solid, dashed and
dotted lines correspond to D = 4, 5 and 6 respectively. To obtain the
plots we choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25
when D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii)
α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and
α = 0.2, γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2,
γ = 0.25 when D = 6 for EXO1745-248

Fig. 5 Radial variation of anisotropic pressure (Δ̃) for different com-
pact objects as indicated in the figure. Here plots with solid, dashed and
dotted lines correspond to D = 4, 5 and 6 respectively. To obtain the
plots we choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25
when D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii)
α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and
α = 0.2, γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2,
γ = 0.25 when D = 6 for EXO1745-248

ρ̃ + p̃r ≥ 0,

ρ̃ + p̃t + E2 ≥ 0. (45)

DEC :ρ̃ + E2

2
≥ 0,

ρ̃ − p̃r + E2 ≥ 0,

ρ̃ − p̃t ≥ 0. (46)

SEC :ρ̃ + p̃r ≥ 0,

ρ̃ + p̃t + E2 ≥ 0,

(n − 1)ρ̃ + p̃r + n p̃t + (n − 1)E2 ≥ 0. (47)
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Fig. 6 Radial variation of square of the radial sound velocity (v2
r ) for

different compact objects as indicated in the figure. Here plots with
solid, dashed and dotted lines correspond to D = 4, 5 and 6 respectively.
To obtain the plots we choose (i) α = 0.4, γ = 0.45 when D = 4;
α = 0.3, γ = 0.25 when D = 5 and α = 0.25, γ = 0.2 when D = 6
for HER X-1, (ii) α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.25
when D = 5 and α = 0.2, γ = 0.15 when D = 6 for PSR J1614-2230,
(iii) α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.2 when D = 5
and α = 0.2, γ = 0.25 when D = 6 for EXO1745-248

Fig. 7 Radial variation of square of the tangential sound velocity (v2
t )

for different compact objects as indicated in the figure. Here plots with
solid, dashed and dotted lines correspond to D = 4, 5 and 6 respectively.
To obtain the plots we choose (i) α = 0.4, γ = 0.45 when D = 4;
α = 0.3, γ = 0.25 when D = 5 and α = 0.25, γ = 0.2 when D = 6
for HER X-1, (ii) α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.25
when D = 5 and α = 0.2, γ = 0.15 when D = 6 for PSR J1614-2230,
(iii) α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.2 when D = 5
and α = 0.2, γ = 0.25 when D = 6 for EXO1745-248

The NEC, WEC, DEC and SEC are plotted in Figs. 10, 11,
12, 13, 14 and 15 respectively. It is evident that all of these
energy conditions are satisfied for the compact objects used
here for analysis.

Fig. 8 Radial variation of square of the electric field (E2) for different
compact objects as indicated in the figure. Here plots with solid, dashed
and dotted lines correspond to D = 4, 5 and 6 respectively. To obtain
the plots we choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3,
γ = 0.25 when D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER
X-1, (ii) α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when
D = 5 and α = 0.2, γ = 0.15 when D = 6 for PSR J1614-2230, (iii)
α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.2 when D = 5 and
α = 0.2, γ = 0.25 when D = 6 for EXO1745-248

Fig. 9 Radial variation of charge density (σ ) for different compact
objects as indicated in the figure. Here plots with solid, dashed and
dotted lines correspond to D = 4, 5 and 6 respectively. To obtain the
plots we choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25
when D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii)
α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and
α = 0.2, γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2,
γ = 0.25 when D = 6 for EXO1745-248

5 Stability of strange quarks inside various compact
objects in the framework of MIT bag model with
density dependent B

In the MIT bag model the quarks are considered as a gas
composed of degenerate fermi particles. In this model the
dynamics of quark confinement is described in terms of the
following equations [101]

pr + B =
∑

i=u,d,s,e−
pi , (48)
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Fig. 10 Radial variation of ρ̃ + p̃r for different compact objects as
indicated in the figure. Here plots with solid, dashed and dotted lines
correspond to D = 4, 5 and 6 respectively. To obtain the plots we
choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25 when
D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and α = 0.2,
γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4, γ = 0.5
when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2, γ = 0.25
when D = 6 for EXO1745-248

Fig. 11 Radial variation of ρ̃ + p̃t + E2 for different compact objects
as indicated in the figure. Here plots with solid, dashed and dotted lines
correspond to D = 4, 5 and 6 respectively. To obtain the plots we
choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25 when
D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and α = 0.2,
γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4, γ = 0.5
when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2, γ = 0.25
when D = 6 for EXO1745-248

and

ρ =
∑

i=u,d,s,e−
ρi + B, (49)

where B is a constant also known as bag parameter. In the
MIT bag model the quarks are assumed to be confined in a
region of perturbative vaccum known as ‘bag’ by means of
a net inward pressure B which is exerted by the surrounding
non-perturbative vacuum. These two vacua may disappear
with rise of baryon number density nB and the bag parame-
ter B which is the net inward pressure must vanish. Conse-

Fig. 12 Radial variation of ρ̃ + E2

2 for different compact objects as
indicated in the figure. Here plots with solid, dashed and dotted lines
correspond to D = 4, 5 and 6 respectively. To obtain the plots we
choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25 when
D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and α = 0.2,
γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4, γ = 0.5
when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2, γ = 0.25
when D = 6 for EXO1745-248

Fig. 13 Radial variation of ρ̃ − p̃r + E2 for different compact objects
as indicated in the figure. Here plots with solid, dashed and dotted lines
correspond to D = 4, 5 and 6 respectively. To obtain the plots we
choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25 when
D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and α = 0.2,
γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4, γ = 0.5
when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2, γ = 0.25
when D = 6 for EXO1745-248

quently it is more practical to consider B as a density depen-
dent quantity [81]. The baryon number density is given by

nB = (nu + nd + ns)

3
, (50)

where nu , nd and ns stand for number densities of up, down
and strange quarks respectively. Using the charge neutrality
condition 2

3nu − 1
3 (nd + ns) = 0 and the expression for the

energy density of quarks as given in the articles of Kettner
et al. [102] and Kapusta [103], the energy density of quarks
(ρi ) may be obtained as a function of baryon number density
(nB) i.e. ρi = gi

8π2 (π2nB)4/3. For density dependent B(nB),
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Fig. 14 Radial variation of ρ̃ − p̃t for different compact objects as
indicated in the figure. Here plots with solid, dashed and dotted lines
correspond to D = 4, 5 and 6 respectively. To obtain the plots we
choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3, γ = 0.25 when
D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER X-1, (ii) α = 0.4,
γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when D = 5 and α = 0.2,
γ = 0.15 when D = 6 for PSR J1614-2230, (iii) α = 0.4, γ = 0.5
when D = 4; α = 0.3, γ = 0.2 when D = 5 and α = 0.2, γ = 0.25
when D = 6 for EXO1745-248

Fig. 15 Radial variation of (n−1)ρ̃+ p̃r+n p̃t+(n−1)E2 for different
compact objects as indicated in the figure. Here plots with solid, dashed
and dotted lines correspond to D = 4, 5 and 6 respectively. To obtain
the plots we choose (i) α = 0.4, γ = 0.45 when D = 4; α = 0.3,
γ = 0.25 when D = 5 and α = 0.25, γ = 0.2 when D = 6 for HER
X-1, (ii) α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.25 when
D = 5 and α = 0.2, γ = 0.15 when D = 6 for PSR J1614-2230, (iii)
α = 0.4, γ = 0.5 when D = 4; α = 0.3, γ = 0.2 when D = 5 and
α = 0.2, γ = 0.25 when D = 6 for EXO1745-248

Eq. (49) implies that energy density of the system can be
related to the baryon number density nB which in turn moti-
vates us to write B as a function of the total energy density ρ

(i.e. B(ρ)). Following the work of Chattopadhyay and Paul
[104], we assume a polynomial relation between pr and ρ as

pr = pr (ρ) =
l∑

i=0

aiρ
i , (51)

Table 2 Values of coefficients ki in different dimensions for HER X-1
taking α = 0.1 and γ = 0.2

ki D = 4 D = 5

k0 56.4636 104.678

k1 0.02846 0.033914

k2 0.000217 0.000059

k3 −2.548 × 10−7 −3.063 × 10−8

k4 1.892 × 10−10 1.202 × 10−11

k5 −6.192 × 10−14 −2.227 × 10−15

ki D = 6 D = 7

k0 125.042 120.056

k1 0.09862 0.16196

k2 − 0.000021 − 0.000042

k3 1.654 × 10−8 1.682 × 10−8

k4 −5.364 × 10−12 −3.649 × 10−12

k5 7.118 × 10−16 3.427 × 10−16

again if we consider the EoS of interior matter to be SQM
obeying MIT bag model EoS

pr = 1

3
(ρ − 4B), (52)

then eliminating pr from Eqs. (51) and (52) we get density
dependence of B as

B(ρ) =
l∑

i=0

kiρ
i , (53)

where the coefficients ki s are related to ai s through the
relations k0 = − 3

4a0, k1 = (1−3a1)
4 , k j = − 3

4a j , where j
runs from 2 to l. We take the range of i = 0 to 5 and the
coefficients ki are tabulated in Tables 2, 3 and 4 for HER X-
1, PSR J 1614-2230 and EXO1745-248 respectively. Effect
of higher order polynomial (i > 5) is negligible.

It has already been stated that at the surface the radial
pressure vanishes (pr = 0) from which Eq. (48) gives the
energy per baryon of strange quark matter as follows [105]

EB = 2
√

3

(
3π2B

4

) 1
4

. (54)

Quark matter consists of u, d and s quarks is stable relative
to 56Fe if the energy per baryon lies below 930.4 MeV. If
however the energy per baryon exceeds the value 930.4 MeV
but remains below the number 939 MeV (typical mass of
nucleons), the 3-flavor quarks are said to be metastable [106].
Above this limit 3-flavor quarks are unstable.

In Figs. 16, 17 and 18, we have plotted energy per baryon
as a function of density. Following inferences can be drawn
from these figures:
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Fig. 16 Variation of energy per baryon (EB ) with density (ρ) for HER
X-1. Here the dashed line represents energy per baryon of 56Fe which
is 930.4 MeV and dot dashed line corresponds to the mass of nucleons
(939 MeV)

Fig. 17 Variation of energy per baryon (EB ) with density (ρ) for PSR J
1614-2230. Here the dashed line represents energy per baryon of 56Fe
which is 930.4 MeV and dot dashed line corresponds to the mass of
nucleons (939 MeV)

Fig. 18 Variation of energy per baryon (EB ) with density (ρ) for
EXO1745-248. Here the dashed line represents energy per baryon of
56Fe which is 930.4 MeV and dot dashed line corresponds to the mass
of nucleons (939 MeV)

Table 3 Values of coefficients ki in different dimensions for PSR J
1614-2230 taking α = 0.1 and γ = 0.2

ki D = 4 D = 5

k0 27.1594 49.0425

k1 0.040577 0.049477

k2 0.000283 0.000056

k3 −5.136 × 10−7 −3.133 × 10−8

k4 5.998 × 10−10 1.456 × 10−11

k5 −3.082 × 10−13 −3.372 × 10−15

ki D = 6 D = 7

k0 56.7135 52.0353

k1 0.109278 0.167475

k2 − 0.000042 − 0.000062

k3 4.427 × 10−8 3.545 × 10−8

k4 −2.135 × 10−11 −1.129 × 10−11

k5 4.266 × 10−15 1.558 × 10−15

Table 4 Values of coefficients ki in different dimensions for EXO1745-
248 taking α = 0.1 and γ = 0.2

ki D = 4 D = 5

k0 34.7118 63.3551

k1 0.034393 0.041957

k2 0.000287 0.000067

k3 −4.828 × 10−7 −4.355 × 10−8

k4 5.178 × 10−10 2.233 × 10−11

k5 −2.448 × 10−13 −5.534 × 10−15

ki D = 6 D = 7

k0 74.4272 69.8959

k1 0.1041 0.164833

k2 − 0.000035 − 0.000059

k3 3.659 × 10−8 3.29 × 10−8

k4 −1.673 × 10−11 −1.003 × 10−11

k5 3.155 × 10−15 1.326 × 10−15

(i) In case of HER X-1, bulk strange quark matter is abso-
lutely stable throughout the star with respect to 56Fe for
D = 4. For D = 5 and 6 the stable region decreases and
we get a 3 layered structure in which the core contains
stable quark matter, a very thin layer of metastable quarks
is formed above which quarks are found to be unstable
as the energy per baryon exceeds the limit 939 MeV.
However for D ≥ 7 bulk strange quark matter is totally
unstable resulting a pure hadron star. With inclusion of
extra dimension the effective volume of phase space
increases therefore the quarks can occupy the lowest pos-
sible energy states at T = 0 K which results in a decrease
of Fermi Energy of the system and can also be verified
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Fig. 19 Variation of bag parameter at the centre (B(ρ0)) with dimen-
sions (D) for different compact objects

from the result obtained by Al-Jaber [107]. Therefore the
value of bag parameter B must increase (see Fig. 19) to
compensate for this decrement of fermi energy. It was
shown by Tmurbagan et al. [108] that increased value of
bag parameter may switch off hadron-quark phase transi-
tion and subsequently number of hyperons in the system
increases. Which supports our results.

(ii) For PSR J 1614-2230 and EXO1745-248 we get similar
type of variation and it is noticeable that bulk Quark Star
is possible upto D = 5.

The cross sectional view of the compact objects are
depicted in Figs. 20, 21 and 22. It is observed that the hadronic
phase increases with inclusion of charge at the compensation
of decrease in the number of stable quarks at the core of the
star. In our model we have calculated radius of various com-
pact objects by taking their observed masses using MIT bag
model EoS considering the density dependence on B. The
results are shown in Tables 5, 6 and 7. It is evident that in
D = 4 radius of a star increases with increase in amount of
charge which is determined by the charge anisotropy param-
eter γ . This is physically acceptable since higher amount
of charge increases coulomb repulsion therefore radius must
increase. However reverse effect is noticed for D > 4 which
can be understood as follows: according to Cooperstock and
La Cruz [109] in case of a charged sphere in equibrium
the total mass and total charge should satisfy the condition
M2 > Q2. In Figs. 23, 24 and 25 we have combined the plots
of M2 and Q2 against radial coordinate ’r ’. It is worthwhile
to note that with increase in number of space-time dimen-
sions the difference between M2 and Q2 increases rapidly.
Therefore for D > 4 mass of a star has greater influence on
equilibrium than charge. Therefore despite of increment of
charge of the system the abrupt increment of mass results in
decrement of the radius.

The mass–radius plot for compact objects with density
dependent B and constant B is shown in Fig. 26. The fig-

Fig. 20 Cross sectional view of the star HER X-1 for different stability
region of quarks. Here inner region marked with white colour represents
stable quark relative to 56Fe above which a thin layer of metastable
quark exists which is shown in black colour and the outer layer in gray
colour consists of unstable quarks. Figure in the top panel (a) is plotted
without charge (γ = 0) and in the bottom panel (b) we consider the
effect of charge and take γ = 0.2. The pressure anisotropy (α) is set to
0.1

ure indicates that a density dependence of the bag parameter
(B) allows more mass and radius compared to a constant B
value. The maximum mass corresponding to density depen-
dent B(ρ) = 82.11 MeV/ f m3 at the surface is found to be
1.773 M� which however assumes the value 1.684 M� when
a constant B of same value throughout the star is considered.
Also the maximum radius in our model is about 10.03 km for
density dependent B and is about 9.22 km when a constant
value of B is considered. The corresponding compactness
(u) are 0.261 and 0.269 respectively which are well below
the Buchdahl bound 4

9 [110].
The surface redshift may be obtained from the relation

zs = (1 − 2u)−1/2 − 1. (55)
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Fig. 21 Cross sectional view of the star PSR J1614-2230 for different
stability region of quarks. Here inner region marked with white colour
represents stable quark relative to 56Fe above which a thin layer of
metastable quark exists which is shown in black colour and the outer
layer in gray colour consists of unstable quarks. Figure in the top panel
(a) is plotted without charge (γ = 0) and in the bottom panel (b) we
consider the effect of charge and take γ = 0.2. The pressure anisotropy
(α) is set to 0.1

The maximum surface redshift obtained from our model are
0.446 when B is assumed to have density dependence and
0.471 when B is held fixed. The mass (M) vs central density
(ρ0) plot is shown in Fig. 27. According to Zeldovich and
Novikov [111] for a stable stellar system, mass (M) of the
star should increase with increase in central density (ρ0) i.e.(

∂M
∂ρ0

)
> 0. From Fig. 27 it is observed that central density

corresponds to maximum mass are 2.428 × 1015 g/cm3 and
2.699 × 1015 g/cm3 for density dependent B and constant B
respectively and above these values the Zeldovich-Novikov

criteria is violated (
(

∂M
∂ρ0

)
< 0). Therefore these values for

the central density may be regarded as the maximum central
densities obtainable from our model for the chosen values of
B.

Fig. 22 Cross sectional view of the star EXO1745-248 for different
stability region of quarks. Here inner region marked with white colour
represents stable quark relative to 56Fe above which a thin layer of
metastable quark exists which is shown in black colour and the outer
layer in gray colour consists of unstable quarks. Figure in the top panel
(a) is plotted without charge (γ = 0) and in the bottom panel (b) we
consider the effect of charge and take γ = 0.2. The pressure anisotropy
(α) is set to 0.1

6 Stability conditions

The stability of the model analyzed here is studied from the
following points of view:

(i) Generalized TOV equation
(ii) Herrera cracking condition and

(iii) Variation of adiabatic index

6.1 Generalized TOV equation

The question how a charged fluid sphere remains in hydro-
static equilibrium in which the repulsive coulomb interaction
is balanced by gravitational and other forces can be investi-
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Table 5 Predicted radius of HER X-1 having mass M = 0.85M�. Here
the bag parameter (B) is defined at the surface of the compact object
where radial pressure vanishes. The pressure anisotropy parameter (α)
is taken as unity

Dimension D γ B (MeV/fm3) Predicted radius Rb (km)

4 0 86.72 8.10

0.1 84.41 8.14

0.2 82.30 8.17

0.3 80.36 8.21

0.4 78.56 8.24

5 0 152.96 8.10

0.1 147.27 7.99

0.2 142.43 7.91

0.3 138.22 7.86

0.4 134.50 7.82

6 0 230.55 8.10

0.1 239.19 6.93

0.2 233.54 6.59

0.3 226.69 6.41

0.4 220.18 6.29

Table 6 Predicted radius of PSR J1614-2230 having mass M =
1.97M�. Here the bag parameter (B) is defined at the surface of the
compact object where radial pressure vanishes. The pressure anisotropy
parameter (α) is taken as unity

Dimension D γ B (MeV/fm3) Predicted radius Rb (km)

4 0 42.38 13.00

0.1 40.25 13.14

0.2 38.50 13.26

0.3 36.99 13.36

0.4 35.65 13.45

5 0 77.38 13.00

0.1 76.35 12.24

0.2 74.15 11.94

0.3 71.99 11.77

0.4 70.01 11.66

6 0 118.82 13.00

0.1 154.85 8.80

0.2 147.21 8.43

0.3 139.71 8.28

0.4 133.48 8.20

gated by analyzing the TOV equation [45,112]. Bekenstein
[23] obtained an extended form of the TOV equation in case
of charged compact object which later on followed by vari-
ous authors [113–116]. Recently Das et al. [117] utilized the
higher dimensional form of the TOV equation to study the

Table 7 Predicted radius of EXO1745-248 having mass M = 1.4M�.
Here the bag parameter (B) is defined at the surface of the compact
object where radial pressure vanishes. The pressure anisotropy param-
eter (α) is taken as unity

Dimension D γ B (MeV/fm3) Predicted radius Rb (km)

4 0 53.68 11.00

0.1 51.69 11.08

0.2 49.96 11.15

0.3 48.41 11.21

0.4 47.01 11.27

5 0 96.06 11.00

0.1 93.06 10.64

0.2 90.14 10.45

0.3 87.50 10.33

0.4 85.15 10.24

6 0 145.94 11.00

0.1 167.29 8.35

0.2 162.39 7.91

0.3 156.40 7.71

0.4 150.94 7.59

Fig. 23 Radial variation of M2 and Q2 inside HER X-1. Here blue
and black curves correspond to plots of M2 and Q2 respectively. Solid,
dashed and dotted curves correspond to D = 4, D = 5 and D = 6
respectively. To obtain these plots we have considered pressure isotropy
condition and set γ = 0.4

equilibrium of a class of relativistic stellar model in EGB
gravity.

− MG(ρ + pr )

r2 eλ−ν − dpr
dr

+ σ Eeλ + n

r
(pt − pr ) = 0,

(56)

here MG is reffered to as active gravitational mass within a
radius r and can be obtained from Tolman-Whittaker formula
as given below

MG = r2e(ν−λ)ν′. (57)
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Fig. 24 Radial variation of M2 and Q2 inside PSR J1614-2230. Here
blue and black curves correspond to plots of M2 and Q2 respectively.
Solid, dashed and dotted curves correspond to D = 4, D = 5 and
D = 6 respectively. To obtain these plots we have considered pressure
isotropy condition and set γ = 0.4

Fig. 25 Radial variation of M2 and Q2 inside EXO1745-248. Here
blue and black curves correspond to plots of M2 and Q2 respectively.
Solid, dashed and dotted curves correspond to D = 4, D = 5 and
D = 6 respectively. To obtain these plots we have considered pressure
isotropy condition and set γ = 0.4

Equation (57) describes the equilibrium of a charged fluid
sphere under the mutual influence of gravitational, hydro-
statics, ani- sotropic and electric forces. Using Eq. (57) in
Eq. (56) a modified form of the equation is obtained

− ν′(ρ + pr ) − dpr
dr

+ σ Eeλ + n

r
Δ = 0, (58)

In the above equation the first term is known as gravitational
force (Fg), second term is hydrostatic force (Fh), third term is
electrostatic force (Fe) and the last term is called anisotropic
force (Fa). Different forces are depicted in Figs. 28, 29 and
30. It is noticeable that gravitational force (Fg) assumes neg-
ative value though out the compact objects whereas hydro-
static (Fh), anisotropic (Fa) and electrostatic force (Fe) are
positive. Here the force Fg is balanced by combined actions
of Fh , Fa and Fe and they summed up zero.

Fig. 26 Variation of mass (M) of compact objects with its radius (Rb)
for Bsur f ace = 82.11 MeV/fm3 defined at the surface where radial
pressure vanishes. Here we consider two different cases (i) at first
case we take B as constant and (ii) a density dependence of B is
considered in accordance with Eq. (53) where the coefficients ki are
k0 = 56.4636, k1 = 0.02846, k2 = 0.000217, k3 = −2.548 × 10−7,
k4 = 1.892 × 10−10 and k5 = −6.192 × 10−14. The maximum mass
points are indicated with small filled circles

Fig. 27 Variation of mass (M) of compact objects with central den-
sity (ρ0) for Bsur f ace = 82.11 MeV/fm3 defined at the surface where
radial pressure vanishes. Here we consider two different cases (i) at
first case we take B as constant and (ii) a density dependence of B is
considered in accordance with Eq. (53) where the coefficients ki are
k0 = 56.4636, k1 = 0.02846, k2 = 0.000217, k3 = −2.548 × 10−7,
k4 = 1.892 × 10−10 and k5 = −6.192 × 10−14. The maximum mass
points are indicated with small filled circles

6.2 Herrera cracking condition

In relativistic astrophysics it is an essential criteria that any
anisotropic stellar model should be stable against fluctua-
tions of its physical parameters. Herrera [118] in this context
introduced a concept known as ‘cracking’ to verify whether
an anisotropic matter distribution is stable or not. Based on
Herrera’s concept, Abreu [119] on the other hand formulated
a criteria which depicts that any stellar model will be stable
if the radial (vr ) and tangential (vt ) sound velocities satisfy
the condition
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Fig. 28 Radial variation of different forces inside HER X-1. Here red,
green, blue and black lines represent gravitational force (Fg), hydro-
static force (Fh), anisotropic force (Fa) and electrostatic force (Fe)
respectively. Solid, dashed and dotdashed curves correspond to D = 4,
D = 5 and D = 6 respectively

Fig. 29 Radial variation of different forces inside PSR J1614-2230.
Here red, green, blue and black lines represent gravitational force (Fg),
hydrostatic force (Fh), anisotropic force (Fa) and electrostatic force
(Fe) respectively. Solid, dashed and dotdashed curves correspond to
D = 4, D = 5 and D = 6 respectively

Fig. 30 Radial variation of different forces inside EXO1745-248. Here
red, green, blue and black lines represent gravitational force (Fg), hydro-
static force (Fh), anisotropic force (Fa) and electrostatic force (Fe)
respectively. Solid, dashed and dotdashed curves correspond to D = 4,
D = 5 and D = 6 respectively

Fig. 31 Radial variation of |v2
t − v2

r | inside different compact objects
as indicated in the figure. Here solid, dashed and dotdashed curves
correspond to D = 4, D = 5 and D = 6 respectively

Fig. 32 Radial variation of adiabatic index (Γ ) inside different com-
pact objects as indicated in the figure. Here solid, dashed and dotdashed
curves correspond to D = 4, D = 5 and D = 6 respectively. The black
horizontal line represents the value 4

3

0 ≤ |v2
t − v2

r | ≤ 1. (59)

It is evident from Fig. 31 that Abreu’s inequality is obeyed
in our model.

6.3 Adiabatic index

For anisotropic star one may define the adiabatic index (Γ )
through the following equation

Γ = ρ + pr
pr

dpr
dρ

= ρ + pr
pr

v2
r (60)

Heintzmann and Hillebrandt [120] gave a criteria according
to which any stellar structure will be dynamically stable if
Γ > 4

3 .
The radial variation of adiabatic index are shown in Fig. 32

for three different compact objects. It is obvious that for
dimensions D = 4, 5 and 6, the adiabatic index Γ is greater
than the limit 4/3 as given by Heintzmann and Hillebrandt.
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7 Discussions

In this article we have tried to demonstrate a method to
generate an exact solution of the Einstein equations for a
class of anisotropic and charged compact object described
by Tolman-IV metric potential in higher dimensional space-
time. The metric function for the grr component assumes a
modified form of the Tolman-IV potential which is charac-
terized by two constants a and c which are evaluated from
matching conditions at the boundary of a star. The metric
potentials and their derivatives are found to be regular at the
centre. For the finite nature of energy density (ρ) and pres-
sure (pr ) at the centre (r = 0) of a star, the constants a
and c are found to be constrained to certain limits. The con-
dition that the central pressure (pr (0)) should remain posi-
tive removes the arbitraryness of pressure anisotropy (α) and
charge anisotropy (γ ). We have noted that a combinations
of α and γ are not allowed so that central pressure becomes
negative. We restrict our analysis for allowed value of α and
γ indicated by respective coloured lines shown in Fig. 1
for three stars namely HER X-1, EXO1745-248 and PSR
J1614-2230. Inclusion of extra dimension (D > 4) reduces
effectively the region in which combinations of α and γ are
allowed which is also observed from Fig. 1. The mass func-
tion given in Eq. (42) is regular, well behaved and vanishes
as r → 0. The behaviour of energy density (ρ), radial (pr ),
tangential (pt ) and anisotropic (Δ) pressures are depicted
in Figs. 2, 3, 4 and 5. It is evident from the figures that all
these parameters are regular and continuous inside the com-
pact objects. The central density (ρ0) takes higher value in
higher dimensions (D > 4) thus higher dimension allows the
formation of more compact structure compared to usual four
dimension. Similar type of variations are also noted for pr , pt
and Δ. Both radial (v2

r ) and tangential (v2
t ) sound velocities

are causal i.e. 0 ≤ v2
r ≤ 1 and 0 ≤ v2

t ≤ 1 in our model which
may be seen from Figs. 6 and 7. It is also interesting to note
that sound velocities are monotonically decreasing function
of the radial distance ‘r ’. The variation of E2 is such that it
always vanishes at the centre irrespective of dimension D and
takes maximum value at the surface. The surface value of E2

however increases with the increase of space-time dimension
D. The charge density σ shows an opposite type of variation
taking maximum value at the centre then gradually falls to a
minimum value at the surface. From the plots in Figs. 10, 11,
12, 13, 14 and 15 it is noticeable that the energy conditions
for charged fluid sphere are obeyed for the chosen compact
objects in our model. In the context of MIT Bag model EOS
and density dependent B parameter [81], we study the sta-
bility of quark stars constitute with u, d and s quarks and
try to explore the possibility of different compact stars to be
a candidate of quark star family. Here we consider density
dependent B(ρ) for which energy density of the system can
be related to the baryon number density. Subsequently the

energy per baryon can be related to B(ρ) through the rela-

tion EB = 2
√

3
(

3π2B
4

) 1
4

[105]. Depending on the value of

EB we have three regions: (i) stable (EB < 930.4 MeV), (ii)
metastable (930.4 MeV < EB < 939 MeV) and (iii) unstable
(EB > 939 MeV). We consider a polynomial relation [104]
between bag parameter B and energy density ρ and find the
energy per baryon (EB) of the system. The variation of EB is
studied as a function of ρ. The plots show that in case of HER
X-1 when D = 4 the interior of the star consists of stable
strange quark matter having energy per baryon less than that
of 56Fe (EB < 930.4 MeV). For D = 5 and 6 the stabil-
ity window decreases and a thin metastable region is formed
above which quarks are unstable. For D > 6 the stable and
metastable region disappears and the whole star is found to
be composed of unstable quarks only. For PSR J 1614-2230
and EXO1745-248 a similar type of variation is observed
and it is noticed that bulk strange quark is stable upto D = 5.
This observation signifies that a three layered structure is
possible for the compact objects in which the core consists
of stable strange quarks, an intermediate layer of metastable
quarks which holds the core and the outer region containing
unstable quarks. From Figs. 20, 21 and 22 it is obvious that
charge of the system has a major influence on the stability
of 3-flavour quarks. With inclusion of charge, the unstable
region increases at the cost of decrement of stability win-
dow. Thus we may conclude that hadronic phase increases
with an increase of charge of a stellar system consisting of
3-flavour quarks. In this model we have predicted radius of
compact objects HER X-1, PSR J1614-2230 and EXO1745-
248 which are shown in tabular form in Tables 5 , 6 and 7. It is
worthwhile to note that for D = 4 a star has more radius for
increased value of charge anisotropy (γ ) which is physically
relevant as for instance higher amount of charge increases
coulomb repulsion which counterbalances the inward gravi-
tational pull. However according to Cooperstock and La Cruz
[109] a charged star should obey the condition M2 > Q2

and the effect of mass on equilibrium over charge rapidly
increases for D > 4 (Figs. 23, 24, 25). Therefore in higher
dimensions, gravity dominates over coulomb repulsion and
the star shrinks to a lower radius. However this does not
assert that the star will be ended up with collapse. To study
the effects of dimensions on the stability window, we have
plotted EB vs ρ for different dimensions. Plots are shown in
Figs. 16 , 17 and 18. It is noted that as space-time dimension
increases, EB picks up higher values and beyond a specific
dimension the value of energy per baryon EB > 939 MeV
implying unstable quark matter. Such configuration may be
looked upon as pure hadronic star.

We have also determined the maximum compactness in
different space-time dimensions (D) and are tabulated in
Table 8. The nature of variation is similar to that as obtained
by Paul [65]. The mass–radius plot for compact objects is
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Table 8 Variation of GD
M

RD−3
b

with space-time dimensions

Dimension GD
M

RD−3
b

D Predicted from our model Predicted in Ref. [65]

4 0.2595 0.4444

5 0.2785 0.8836

6 0.3614 1.3404

7 0.5227 1.7135

8 0.8028 1.9336

9 1.1984 1.9783

shown in Fig. 26 from which it is noted that the maximum
mass of 1.773 M� is attainable with density dependent B
parameter and is more relative to the value of mass 1.684
M� when a constant B is considered. We also note that the
maximum radius is about 10.03 km for density dependent
B whereas it reduces to the value 9.22 km when a constant
value of B is assumed. The maximum surface redshifts are
0.446 and 0.471 for density dependent and constant B respec-
tively. Both are well below the limit zs < 5 given by Böhmer
and Harko [121] and also consistent with the upper limit
zs < 5.211 predicted by Ivanov [19]. Following Zeldovich
and Novikov [111] condition the maximum central densi-
ties are found to be 2.428 × 1015 g/cm3 and 2.699 × 1015

g/cm3 respectively for B(ρ) and constant B. The stability of
the system is studied with the help of (i) generalized TOV
equation, (ii) Herrera cracking criteria and (iii) variation of
adiabatic index. Equilibrium of the system in terms of gen-
eralized TOV equation demands that different forces i.e. Fg ,
Fh , Fe and Fa must be balanced as indicated in Figs. 28, 29
and 30. The fulfilment of Herrera cracking criteria and adi-
abatic index are shown graphically in Figs. 31 and 32 and it
is obvious that all these conditions are well obeyed.
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