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1 Introduction

Inflationary expansion of the Universe is now believed to have existed before the radiation
dominated era in the early Universe [1–7]. Although a lot of inflation models have been
proposed by now [8, 9], we do not know which model can describe this phenomenon correctly.
The relation between inflation and particle physics is also unclear. However, recent results
of the CMB observations seem to have ruled out many of them already [6, 7]. This has been
done by comparing both values of the scalar spectral index and the tensor-to-scalar ratio
obtained from the CMB observations and predicted values for them by each model.

If we take a large inflaton scenario in the slow-roll inflation framework, trans-Planckian
values are required for realization of sufficient e-foldings. In that case, we cannot answer the
question why higher non-renormalizable terms do not contribute to the inflaton potential. If
we include such terms in inflaton potential, slow-roll conditions cannot be satisfied. However,
such kind of difficulty can be reconciled by compactifying the inflaton trajectory into a
winding trajectory in the higher dimensional fields space. In that case, sufficient e-foldings
along the trajectory can be obtained even if each field is kept in sub-Planckian regions.
That possibility was studied in [10] by introducing an idea about a spiralized inflation in
two-dimensional field space as a possible solution of the multifield slow-roll inflation. Its
realizations have been proposed in the several frameworks, such as in string models [11], SUSY
models [12, 13], axions-based models [14–18] and a complex scalar model which has similar
features with axions-based models [19–21]. The higher order corrections to the potential
realizing the spiralized inflation are found to affect significantly the predicted tensor-to-scalar
ratio without changing the spectral index substantially [22].

In this paper we study an inflation model based on large but sub-Planckian inflaton.
The model considered here has been proposed in [23]. It could have an intimate connection to
neutrino mass generation. Although the required number for e-foldings is found to be realized
in this model, the predicted tensor-to-scalar ratio by the model is too large compared with a
central value of the up-dated observational results [6, 7, 24]. Our main purpose is to study
whether the favorable values for them can be obtained in this model. We also discuss a
possible connection to a certain particle physics model.
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Figure 1. Potential VS at a fixed θ for n = 2,m = 1 case. Other parameters are fixed at c1 =
1.1791× 10−7, c2 = 1.4 and Λ = 0.05Mpl.

2 A sub-Planckian inflaton model

The model studied here is defined by a complex scalar S which has Z2 odd parity. Its Z2

invariant potential is assumed to be given such as [23]

VS = c1
(S†S)n

M2n−4
pl

"

1 + c2

(

�

S

Mpl

�2m

exp

�

i
S†S

Λ2

�

+

�

S†

Mpl

�2m

exp

�

−i
S†S

Λ2

�

)#

.

If we use the polar coordinate S = ϕ√
2
eiθ, this potential can be written as

VS = c1
ϕ2n

2nM2n−4
pl



1 + 2c2

 

ϕ√
2Mpl

!2m

cos

�

ϕ2

2Λ2
+ 2mθ

�



 , (2.1)

where c2 is assumed to satisfy c2 < 0.5
�

ϕ√
2Mpl

�−2m
. As shown in figure 1, VS has local

minima with a potential barrier Vb ≃ c1c2ϕ2(n+m)

2n+m−2M
2(n+m−2)
pl

in the radial direction. These minima

form a spiral-like valley whose slope in the angular direction could be extremely small. As
a result, if we use the field evolution along this valley, slow-roll inflation is expected to be
caused even for sub-Planckian values of ϕ [21, 23].

The evolution of the scalar field S = 1√
2
(ϕ1 + iϕ2) in this potential is dictated by the

following equation of motion:

ϕ̈i + 3Hϕ̇i = −∂VS

∂ϕi
(i = 1, 2), (2.2)

where the Hubble parameter H of the system is now written as H2 = 1
3M2

pl


P

i
1
2 ϕ̇i

2 + VS

�

and ∂VS

∂ϕi
denotes partial derivative of the potential VS in the direction of field component ϕi.
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Figure 2. Inflaton evolution for n = 2,m = 1 case. Parameters in the potential are fixed at the
same values as the ones used in figure 1. Inflaton is assumed to be at a potential minimum initially.
In this case, it is numerically proven that the end of single field inflation signed as turning point in
the panel (a) is mostly realized much before ε ≃ 1, such that it is illustrated in the panel (b).

Taking m = 1, the terms ∂VS

∂ϕi
could be simply written for any number of n as follows,

∂VS

∂ϕ1
=

c1


S†S
�n

M2n−4
pl

�

nϕ1

(S†S)
+

c2ϕ1

M2
pl

(

n
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2
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#

, (2.3)

∂VS

∂ϕ2
=
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ϕ2
1 − ϕ2

2

�
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)

sin

�

S†S

Λ2

�

#

. (2.4)

We may solve eq. (2.2) numerically to see the evolution of ϕi. The initial value of each
component ϕi cannot be selected arbitrarily since the slow-roll behavior could be ruined
depending on it. If the initial position of the inflaton is located at a point higher than its
next potential barrier, the inflaton could cross over it without realizing the slow-roll motion
along the angular direction. The most simple setting for the initial value to realize the slow-
roll is to take it at a potential minimum. An example of the evolution of the scalar field
components is illustrated in figure 2.

Now we describe features of the inflation induced by this field evolution in detail. The
radial component ϕ is assumed to take a large initial value on a local minimum in the radial
direction. Even if ϕ is not just on this minimum initially, it converges to a minimum point
within a certain period of time as long as it starts to roll from the neighborhood of a minimum
point of the valley initially. In that case, as shown in [23], the model could cause sufficient
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e-foldings through the inflaton evolution along this spiral-like valley even for sub-Planckian
values of ϕ. An inflaton field χ could be identified with

χ ≡ ae +
ϕ3
e

6mΛ2
− a =

ϕ3

6mΛ2
, (2.5)

where the subscript e of the fields stands for the field value at the end of single field inflation.
The field a is defined by using ϕ as

da =

"

ϕ2 +

�

dϕ

dθ

�2
#1/2

dθ =

"

1 + 4m2

�

Λ

ϕ

�4
#1/2

ϕdθ. (2.6)

The number of e-foldings caused by χ during its slow-roll is given as

N = − 1

M2
pl

Z χe

χ
dχ

VS

V ′
S

≡ N(χ)−N(χe), (2.7)

where V ′
S = dVS

dχ and N(χ) is represented by using the hypergeometric function F as

N(χ) =
1

6m2n

�

Mpl

Λ

�4
 

ϕ√
2Mpl

!6


 1 +
6c2m

n(3 +m)

 

ϕ√
2Mpl

!2m

×F



1,
3

m
+ 1,

3

m
+ 2, 2c2

�

1 +
m

n

�

 

ϕ√
2Mpl

!2m






 . (2.8)

Slow-roll parameters ε ≡ M2
pl

2

�

V ′
S

VS

�2
and η ≡ M2

pl

�

V ′′
S

VS

�

for single field inflation can be

represented by using the model parameters as

ε = m2

 √
2Mpl

ϕ

!6
�

Λ

Mpl

�4







n− 2c2(m+ n)
�

ϕ√
2Mpl

�2m

1− 2c2

�

ϕ√
2Mpl

�2m







2

,

η = m2

 √
2Mpl

ϕ

!6
�

Λ

Mpl

�4 n(2n− 3)− 2c2(m+ n)(2m+ 2n− 3)
�

ϕ√
2Mpl

�2m

1− 2c2

�

ϕ1√
2Mpl

�2m . (2.9)

If the c2 term is neglected in these formulas, we can find very simple formulas for these slow-
roll parameters at the time characterized by the inflaton value χ∗. They can be represented
by using the e-foldings N∗, which is defined for N(χ∗) in eq. (2.7), as

ε ≃ n

6(N∗ +N(χe))
, η ≃ 2n− 3

6(N∗ +N(χe))
. (2.10)

Thus, the scalar index ns and the tensor-to-scalar ratio r can be derived as [23]

ns = 1− 6ε+ 2η ≃ 1− n+ 3

3(N∗ +N(χe))
, r = 16ε ≃ 8n

3(N∗ +N(χe))
. (2.11)

In order to see the features of this model, it may be useful to compare the model with
single field inflation with monomial potential ϕn̄. Since the e-foldings in this model is written
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as N ≃ 1
2n̄

ϕ2

M2
pl
, the sufficient e-foldings require a trans-Planckian value for the inflaton ϕ. We

note that the contribution of ϕe is negligible in this case. If we use this number of e-foldings
N∗ ≃ N(ϕ∗), the slow roll parameters are expressed as

ε =
n̄

4N∗
, η =

n̄− 1

2N∗
, (2.12)

and then ns and r can be written as

ns = 1− n̄+ 2

2N∗
, r =

4n̄

N∗
. (2.13)

It is easily found that ns and r in both models have the same expression for n̄ = 2
3n in

the limit c2 = 0. However, we should remind that the present model works well only for the
non-negligible c2 since this term causes the potential barrier Vb in the radial direction. Vb

makes the inflaton a evolve along the spiral-like trajectory formed by the potential minima
like a single field inflation. This brings about a different feature for the model from the ϕn̄

inflation scenario.

In this model,the single field inflation is expected to end at the time when 1
2 χ̇

2 ≃ Vb is
realized. If we apply the slow-roll approximation 3Hχ̇ = −V ′

S to the slow-roll parameter ε,

the inflation is found to end at ε = 3Vb(Vb+VS)
V 2
S

. Since VS > Vb is satisfied, the end of inflation

could happen much before the time when ε ≃ 1 is realized. In such a case, N(χ) ≫ N(χe)
is not satisfied and then N(χe) has a substantial contribution to determine the number of
e-foldings N∗ in eq. (2.7). Thus, the smaller N∗ could be enough to realize the same values
for ns and r in comparison with the ϕn̄ inflation.1 We should also note that the values of ns

and r in this model could deviate largely from ones predicted in the ϕn̄ inflation model due
to the non-negligible contribution from the c2 term. Illustration given in figure 2b justifies
this argument numerically when whole contributions, including non-negligible c2 term, are
taken in to account. As it is expected, the end of inflation at which inflaton starts to oscillate
around global minimum of the potential takes place much before ε ≃ 1. After this time, the
inflaton falls in the reheating process and produces lighter particles.

3 Spectral index

We estimate the scalar spectral index ns and the tensor-to-scalar ratio r by taking account
of the c2 6= 0 effect. Before it, we constrain parameters in the potential by using the nor-
malization for the scalar perturbation found in the CMB. The normalization for the scalar
perturbation found in the CMB observations gives the constraint on the inflaton potential
VS at the time when the scale characterized by a certain wave number k∗ exits the horizon.

The observation of CMB requires the spectrum of scalar perturbation PR(k) = As

�

k
k∗

�ns−1

to take As ≃ 2.43× 10−9 at k∗ = 0.002 Mpc−1 [1–5], VS should satisfy

VS

ε
= (0.0275Mpl)

4, (3.1)

1Although this becomes clear especially in the small c2 case, ϕe could be well approximated as the ϕ value
at ε = 1 in other cases.
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Figure 3. Predicted regions in the (ns, r) plane are presented in panel (a) for n = 3, in panel (b)
for n = 2, and in panel (c) for n = 1. Λ is fixed as Λ = 0.05Mpl in all cases. The values of c1 and
ϕ∗ are given in table 1 for representative values of c2. Contours given in the right panel of figure 21
in Planck 2015 results.XIII. [6, 7] are used here. Horizontal black lines r = 0.01 represent a possible
limit detected by LiteBIRD in near future.

where we use As =
VS

24π2M4
plε

. If the c2 term does not dominate the potential, we can represent

the condition from this normalization constraint as c1 ≃ 9.5 × 10−8 n
N∗

�√
2Mpl

ϕ∗

�2n

where ϕ∗
is a value of ϕ at the time when the e-foldings is N∗.

On the other hand, the e-foldings N∗ expected after the scale k∗ exits the horizon is
dependent on the reheating phenomena and others in such a way as [8, 9]

N∗ ≃ 61.4− ln
k∗

a0H0
− ln

1016 GeV

V
1/4
k∗

+ ln
V

1/4
k∗

V
1/4
end

− 1

3
ln

V
1/4
end

ρ
1/4
reh

. (3.2)

This suggests that N∗ should be considered to have a value in the range 50 - 60. Taking these
constraints into account, we estimate both ns and r for the case where N∗ is in this range.

Numerical examples are shown in table 1 for the cases n = 1, 2, 3 with a fixed Λ.2 For
given values of c2, the values of c1 and ϕ∗ are fixed so that the normalization condition given
in eq. (3.1) is satisfied and also N∗ takes its value in the imposed range 50 - 60. Both ns

and r are estimated for them.3 In figure 3, we plot the predicted points in the (ns, r) plane
by red and green circles, which correspond to N∗ = 50 and 60 respectively for every 0.1 of
c2 starting from c2 = 0.1 on the right-hand side while Λ is fixed as Λ = 0.05Mpl. We show
the boundary values of c2 by the red and black stars, for which either red or green circles are
inside of the region of 2σ CL and 1σ CL of the latest Planck TT+lowP+ BKP+lensing+ext
combined data for the n = 3 and n = 1, 2 panels, respectively. They show that the present
model with c2 included in this interval are favored by the latest Planck data combined with
others. The best fit result is obtained for the n = 1 case.

As discussed above, the present model shows the similar behavior to the monomial
inflation models at least for the spectral index and the tensor-to-scalar ratio in the limiting

2We note that the first term of VS becomes c1M
2
plS

†S and c1(S
†S)2 for n = 1 and 2, respectively.

3If we apply the value of As at k∗ = 0.05 Mpc−1 [6, 7] to the present analysis using the same values of c1,2
and Λ, ϕ∗ and N∗ are changed. This effect on r is found to be r0.05 ≃ 1.07r0.002 for the fixed values of c1 and
c2 which give ns ≃ 0.971 and r0.002 ≃ 0.1 at k∗ = 0.002 Mpc−1.
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n c1 c2
Λ

Mpl

ϕ∗
1√

2Mpl
H∗ N∗ ns r n′

s

(×1013GeV)

3 1.00 ×10−6 1.5 0.05 0.417 6.528 60.0 0.967 0.070 -0.00047

9.84 ×10−7 1.7 0.05 0.411 5.914 60.0 0.964 0.056 -0.00043

8.62 ×10−7 1.9 0.05 0.406 5.399 60.0 0.959 0.040 -0.00032

2 1.32 ×10−7 1.1 0.05 0.394 7.019 60.0 0.973 0.058 -0.00043

1.76 ×10−7 1.1 0.05 0.384 6.725 50.0 0.968 0.072 -0.00061

1.22 ×10−7 1.6 0.05 0.383 5.931 60.0 0.969 0.039 -0.00040

1.71 ×10−7 1.6 0.05 0.374 5.767 50.0 0.964 0.052 -0.00059

1.03 ×10−7 1.9 0.05 0.374 5.318 60.0 0.963 0.026 -0.00035

1 1.36 ×10−8 0.5 0.05 0.349 5.079 50.0 0.975 0.041 -0.00046

7.45 ×10−9 1.6 0.05 0.333 4.146 60.0 0.970 0.015 -0.00036

1.02 ×10−9 1.6 0.05 0.326 4.102 50.0 0.966 0.019 -0.00052

6.15 ×10−9 1.8 0.05 0.327 3.976 60.0 0.966 0.011 -0.00035

8.77 ×10−9 1.8 0.05 0.320 3.944 50.0 0.962 0.016 -0.00052

Table 1. Examples of the predicted values for the spectral index ns and the tensor-to-scalar ratio r

in this scenario with m = 1.

case with the negligible c2. However, if c2 is not negligible, this feature could be changed
and these values largely deviate from the monomial inflation models. Since the predicted
region in the (ns, r) plane could be distinctive from other inflation models, the model might
be tested through future CMB observations. One of the promising CMB observations would
be LiteBIRD which is expected to detect the signal of the gravitational wave with r > 0.01 at
more than 10σ [25]. Thus the whole of the predicted region could be verified in near future.

Recent CMB results suggest that the running of the spectral index is consistent with
zero at 1σ level. Thus, this can be an another useful test of the model. The running of the
spectral index is known to be expressed by using the slow-roll parameters as

n′
s ≡

dns

d ln k
≃ −24ε2 + 16εη − 2ξ2, (3.3)

where ξ is defined as ξ2 ≡ M4
pl

V ′
SV

′′′
S

V 2
S

. In the present model, it is written by using the model

parameters as

ξ2 = 2m4

 √
2Mpl

ϕ

!12
�

Λ

Mpl

�8







n− 2c2(n+m)
�

ϕ√
2Mpl

�2m

1− 2c2

�

ϕ√
2Mpl

�2m

×
n(n− 3)(2n− 3)− 2c2(n+m)(n+m− 3)(2n+ 2m− 3)

�

ϕ√
2Mpl

�2m

1− 2c2

�

ϕ√
2Mpl

�2m






. (3.4)

If we use the parameters given in table 1, the running of the spectral index can be estimated
in each case by using these formulas. The results are shown in the last column of table 1.
Although they are consistent with the latest Planck data, they take very small negative
values. We might be able to use it for the verification of the model in future.
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4 Relation with particle physics

Finally, we discuss the relation of the model with particle physics. Although we cannot clarify
the origin of potential (2.1) at the present stage, we expect it might be produced through
some non-perturbative effects of Planck scale physics. The complex scalar S can play an
important role in particle physics if we embed it in an extended standard model. As such
an interesting example, we consider the radiative neutrino mass model proposed by Ma [26].
This model is given by the following Lagrangian for the neutrino sector:

−L =
3
X

α,k=1

�

hαkN̄kη
†ℓα + h∗αk ℓ̄αηNk +

Mk

2
N̄kN

c
k +

Mk

2
N̄ c

kNk

�

+m2
φφ

†φ+m2
ηη

†η + λ1(φ
†φ)2 + λ2(η

†η)2 + λ3(φ
†φ)(η†η) + λ4(η

†φ)(φ†η)

+
λ5

2

h

(η†φ)2 + (φ†η)2
i

, (4.1)

where ℓα and φ are the doublet leptons and the ordinary doublet Higgs scalar in the standard
model. Two types new fields are introduced in this model, that is, an inert double scalar
η and singlet fermions Nk. All their masses are assumed to be of O(1)TeV. New fields η

and Nk are assigned odd parity of imposed Z2 symmetry, although all the standard model
contents have its even parity. Since η is assumed to have no vacuum expectation value, this
Z2 symmetry is exact and then neutrino masses cannot be generated at tree level. Neutrinos
get masses through a one-loop diagram which has η and Nk in the internal lines as shown
in the left-hand diagram of figure 4. Moreover, the lightest neutral Z2 odd field is stable
to be a good dark matter (DM) candidate. Thus, DM is an inevitable ingredient for the
neutrino mass generation in this model. The model has been clarified quantitatively to have
interesting features through a lot of studies [27–33].

We can relate the present model to the Ma model by identifying the Z2 symmetry in the
present model with that in the Ma model. We assign its odd parity to the complex scalar S.
If we take account of these symmetry, new terms which are subdominant during the inflation
period are introduced as invariant ones,

−LS = m̃2
SS

†S +
1

2
m2

SS
2 +

1

2
m2

SS
†2 + κ1(S

†S)2 + κ2(S
†S)(φ†φ) + κ3(S

†S)(η†η)

− µSη†φ− µS†φ†η. (4.2)

Here we note that the λ5 term in eq. (4.1) is also allowed under the imposed symmetry.
However, since its β-function is proportional to itself if an interaction µSη†φ in the last line
of eq. (4.2) is neglected, λ5 = 0 is stable for radiative corrections. On the other hand, if it
is included in the Lagrangian, the λ5 term can be induced through this interaction as the
effective one at low energy regions after integrating out the heavy S field.

This can be easily seen through the neutrino mass generation. In the present extended
model, the neutrino masses can be generated through the right-hand diagram of figure 4.
The neutrino masses obtained through this diagram can be described by the formula

(Mν)αβ =
3
X

k=1

X

a=1,2

hαkhβkMkµ
2
ahφi2

8π2
I(Mη,Mk,mϕa), (4.3)

where M2
η = m2

η + (λ3 + λ4)hφi2 and mϕa represents the mass of the real and imaginary
component of S which can be expressed as m2

ϕ1
= m̃2

S +m2
S and m2

ϕ2
= m̃2

S −m2
S . µa stands
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ηη

Nk

µa

<φ><φ>

ν ν

ηη

Nk

<φ><φ>

ν ν

λ5 µa

ϕa

Nk Nk

Mk Mk

Figure 4. One-loop diagrams contributing to the neutrino mass generation. The left-hand diagram
is the one in the Ma model. Lepton number is violated through the Majorama mass of NK . The
right-hand diagram is the one in the present extended model. ϕa represents the real and imaginary
part of the singlet scalar S defined by S = 1√

2
(ϕ1 + iϕ2). µa is a dimensional coupling for ϕa which

is expressed as µ1 = µ√
2
and µ2 = iµ√

2
.

for µ1 =
µ√
2
and µ2 =

iµ√
2
, respectively. The function I(ma,mb,mc) is defined as

I(ma,mb,mc) =
(m4

a −m2
bm

2
c) lnm2

a

(m2
b −m2

a)
2(m2

c −m2
a)

2
+

m2
b lnm2

b

(m2
c −m2

b)(m
2
a −m2

b)
2

+
m2

c lnm2
c

(m2
b −m2

c)(m
2
a −m2

c)
2
− 1

(m2
b −m2

a)(m
2
c −m2

a)
. (4.4)

If m2
ϕa

≫ M2
k ,M

2
η is satisfied and it corresponds to the present case, this formula is found to

be reduced to

Mν
αβ ≃





X

a=1,2

µ2
a

m2
ϕa





3
X

k=1

hαkhβkhφi2
8π2

Mk

M2
η −M2

k

"

1 +
M2

k

M2
η −M2

k

ln
M2

k

M2
η

#

, (4.5)

which is equivalent to the neutrino mass formula obtained through the left-hand diagram of

figure 4 for the Ma model. This shows that λ5 can be identified with
P

a
µ2
a

m2
ϕa

as the effective

coupling obtained at the low energy regions much smaller than mϕa . The key coupling for the
neutrino mass generation in the Ma model could be closely related to the inflaton interaction
terms in this extension.

We should also note that the interesting feature for DM in the Ma model is completely
kept in this extended model. We suppose that the Z2 odd lightest field is the neutral real
component of the inert doublet ηR. Its stability is guaranteed by the imposed Z2 symmetry.
Since its relic abundance is determined by the coannihilations among the components of η
which are controlled by the coupling constants λ3,4 in eq. (4.1), the results obtained in [36–38]
can be applied to the present model without affecting the analysis in this paper. They shows
the required relic abundance Ωh2 = 0.12 could be easily realized if either λ3 or λ4 takes a
value of O(1) for the ηR with the mass of O(1)TeV. Thus, this extended model could give
a simple explanation not only for the inflation but also for the neutrino masses and the DM
abundance, simultaneously.

– 9 –



J
C
A
P
0
9
(
2
0
1
5
)
0
3
9

5 Summary

We have considered an inflation scenario based on a complex singlet scalar. Special potential
of this scalar constrains the inflaton evolution along a spiral-like trajectory in the space of
two degrees of freedom. This makes the model behave like a single field inflation scenario.
However, since the slope along this constrained direction is flat enough, inflaton can travel
through trans-Planckian path. As a result, the sufficient e-foldings can be realized even for
sub-Planckian inflaton values. Serious potential problem in the large field inflaton could be
solved in this model. Both the spectral index and the tensor-to-scalar ratio predicted in this
model can be consistent with recently up-dated CMB observational results. Since these could
take values in distinctive regions from other inflation scenario, the model might be tested
through future CMB observations.

The inflaton in this model might be embedded into the extended standard model as an
important ingredient. As such an example, we have discussed a possibility that the inflaton is
an indispensable element in the radiative neutrino mass model, where a certain quartic scalar
coupling plays a crucial role in the neutrino mass generation. Since the inflaton causes this
coupling as an effective one at low energy regions, it could have a close relation with particle
physics in this extension. The model might have another interesting feature. Reheating
through the inflaton decay might give the origin of baryon number asymmetry through the
generation of the lepton number asymmetry in a non-thermal way. Detailed study of this
subject will be presented in future publication [35]. If it could be shown through explicit
analysis, the problems in the standard model might be solved in a compact way in this
extended model.
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