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Abstract

The full set of Casimir elements of the centrally extended /-conformal Galilei algebra is found in simple
and tractable form.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Recently there has been a burst of activity in studying dynamical realizations of the
[-conformal Galilei algebra [1-12]. It is expected that such systems may prove useful for a
deeper understanding of the non-relativistic holography. The term “/-conformal” stems from
the fact that both the dimension of the algebra and its structure relations depend on an external
parameter /, which may take integer or half—integer values [13]. One more free parameter, which
characterizes the algebra, is linked to the spatial dimension d.

In general, models with [ > % involve higher derivative terms. Making no harm to a free the-
ory, such terms typically entail unstable classical dynamics or trouble with ghosts in quantum
description as soon as the interaction is present. Currently known second order systems invariant
under the /-conformal Galilei group include a set of the isotropic oscillators coupled to the exter-
nal conformal mode [3,7] and the geodesic equations associated with a specific Ricci—flat metric
of the ultrahyperbolic signature [10].
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Thus far, attention was mostly drawn to classical models. Potential quantum—mechanical
applications pose the question of describing the Casimir operators of the centrally extended
[-conformal Galilei algebra in simple and tractable form. In a very recent work [14], a quar-
tic Casimir invariant was constructed for the cases of d = 1 and half-integer /, and d = 2 and
integer /. Worth mentioning also is the instance of d = 3 and half-integer / analyzed in [6]. The
goal of this brief note is to present the full set of the Casimir elements of the centrally extended
[-conformal Galilei algebra for arbitrary values of [ and d.

Let us choose the basis, in which the structure relations of the algebra read (cf. [15])

(L, L] = (m = 1) Ly, [Ln, C* 1= (@ — In)C",
[Mij, €1 = ‘Sikcj(a) — 8 C, [Mij, M1 = 8ixMj1 + 81 Mix — 811 M jic — 8k M.
(D
Here (L_1, Lo, L1) designate the generators of temporal translations, dilatations, and special
conformal transformations, respectively, M;;, i, j =1,...,d, are associated with spatial rota-
tions, and Ci(a), a=-1,...,1,i=1,...,d, signify vector generators in the algebra. In this

notation, Ci(fl) and Cfle) are linked to spatial translations, and Galilei boosts, while higher
values of the index « correspond to accelerations.
In general, the algebra admits an extension by the central element Z [16]

(€, CP1= (=D* (@ +DUB+ D Z8urp.omij, @)

where 7n;; = §;; for half-integer / and arbitrary d, while n;; = €;;, €;; = —¢€j;, €12 = 1, for integer
[ and d = 2. Keeping the central charge apart, the dimension of the algebra is equal to 3 +
d(d+1) +2d1

2 . ) . . . . . .

Proceeding to the construction of the Casimir invariants, we first use the previous formula so
as to disentangle L, from Cl.(a). Introducing the operators

! l—a
_ 1 (=1 (@ — In) (—a) ~(a+n)

a=—1
one finds the relations
[£q, C¥1=0, (L, Mij] =0,
[Lh, Ll =Z(m — n)[fn+m, [Ly, Lin]l=(m — n)£n+m’ “4)

which all together imply that the operator

1
5 Ll LiLoy) = LG (5)

is a quartic Casimir invariant of the centrally extended /-conformal Galilei algebra. In particular,
(5) encompasses all the cases previously studied in the literature [6,14]. When verifying the
structure relations (4), the identity
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proves to be helpful.!
In a similar fashion one can disentangle M;; from C i(“) by introducing the operators
e o Vs (o)A@ _ o) @
Mij=ZMij—§a_Zlm(Ci Ujka —Cj T)ika )7 (7N
which obey
(€, Mj]1=0, [Ln, Mij1=0,
[Mij, Ml = 8ixMji + 8 jiMik — 8it M jk — 8k M. @®)

These allow one to build the Casimir elements associated with the so(d) subalgebra. For odd d,

there are % such operators, which are obtained by the consecutive contraction of an even num-

ber of M with each other (see, e.g., Sect. 5 in [17]). For even d, one reveals % invariants, which
are constructed in a similar fashion, as well as one extra element resulting from the contraction
of M with the Levi-Civitd totally antisymmetric tensor €;, ;.

Finally, according to the analysis in [18], the total number of the Casimir elements charac-
terizing a Lie algebra is given by the difference of its dimension and the rank of its commutator
table regarded as a numerical matrix. It is straightforward to compute this number for the case
at hand and verify that no further invariants ought to be expected. Thus, the centrally extended
[-conformal Galilei algebra admits dzil Casimir invariants if the dimension is odd and dziz such
operators if d is even.

Concluding this work, we note that a similar analysis for the case of the vanishing central
charge turns out to be surprisingly complex. The invariants constructed above, continue to hold
after implementing the limit Z — 0. Yet, a close inspection of various particular cases shows
that, according to the criterion in [ 18], extra Casimir elements ought to be expected, their number
growing rather fast with / and d increasing. At the moment we lack a clear guiding principle of
how to systematically build the missing invariants and hope to report on the progress elsewhere.
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