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Celestial amplitudes provide holographic imprints of four-dimensional scattering processes in terms of 
conformal correlation functions on a two-dimensional sphere describing Minkowski space at null infinity. 
We construct the generators of Poincaré and conformal groups in the celestial representation and discuss 
how these symmetries are manifest in the amplitudes.
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Celestial amplitudes provide holographic imprints of four-
dimensional scattering processes in terms of conformal correla-
tion functions on a two-dimensional celestial sphere describing 
Minkowski space at null infinity [1]. In these amplitudes, Lorentz 
symmetry is realized as the S L(2, C) conformal symmetry of the 
celestial sphere. They are particularly interesting in the soft limit, 
when one or more particles carry zero energy. In this limit, the 
well-known soft theorems can be interpreted as Ward identi-
ties of 2D CFT currents associated to asymptotic symmetries of 
four-dimensional spacetime [2–4]. Beyond the soft limit, several 
examples of celestial amplitudes have been recently discussed in 
[5–7]. The underlying 2D CFT may be very complicated but it is 
worth studying because it could lead to a holographic description 
of gauge theories and of (at least) some aspects of perturbative 
quantum gravity in asymptotically flat spacetimes. In the present 
work, we address the question how four-dimensional Poincaré and 
conformal symmetries are realized at the level of 2D celestial am-
plitudes. We construct the symmetry generators in the celestial 
representation. One of their interesting features is the presence of 
operators that shift conformal dimensions. In particular, the mo-
mentum (spacetime translation) operators involve such shifts.

We first review the steps leading from “old-fashioned” to ce-
lestial amplitudes. We will be considering the scattering processes 
involving massless gauge bosons and gravitons. Their asymptotic 
momenta, long before or after gauge/gravitational interactions take 
place, can be parametrized as

pμ = ωqμ , with qμ = 1

2
(1 + |z|2, z + z̄,−i(z − z̄),1 − |z|2) ,

(1)
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where ω are the (light-cone) energies and (z, ̄z) are complex kine-
matic variables that determine momentum directions. On the other 
hand, the celestial sphere describing Minkowski spacetime at null 
infinity, from where these particles emerge and to where they 
head after they interact, is a Riemann sphere parameterized by 
complex coordinates. The starting point for constructing celestial 
amplitudes is the identification of kinematic variables (z, ̄z) of 
Eq. (1) as the coordinates of points on celestial sphere. It follows 
that four-dimensional Lorentz group is realized as S L(2, C) confor-
mal symmetry of celestial sphere,

z → az + b

cz + d
(ad − bc = 1) . (2)

In this framework, it is natural to replace the asymptotic in and
out plane wave functions by the so-called conformal wave pack-
ets characterized by (z, ̄z) and two-dimensional conformal weights 
(h, ̄h), with the conformal spin J = h − h̄ identified as the helic-
ity of the particle [8]. Their dimensions � = h + h̄ are restricted by 
the requirement of normalizability to the so-called principal series 
with � = 1 + iλ, λ ∈ R.

At the level of scattering amplitudes, the change of asymptotic
in and out basis from plane waves to conformal packets is accom-
plished by Mellin transformations with respect to the energies:

Ã{hn,h̄n}(zn, z̄n) =
( N∏

n=1

∞∫
0

ω�n−1
n dωn

)
δ(4)(ω1q1 + ω2q2

−
N∑

k=3

ωkqk) M(ωn, zn, z̄n) ,

(3)

with the dimensions �n = hn + h̄n dual to ωn . Here, M are the 
N-particle invariant matrix elements describing particles 1 and 2 
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scattering into N−2 final particles.1 They depend on all quan-
tum numbers, including internal gauge charges, and may contain 
some group-dependent (a.k.a. color) factors. In this case, we will be 
extracting purely kinematic “partial” (or “stripped”) amplitudes as-
sociated to individual Chan-Paton trace factors. Thus Ã(i, j, k, . . . )
denotes the celestial amplitude associated to Tr(T ai T a j T ak · · · ) [9].

The celestial amplitudes defined in Eq. (3) transform under 
conformal S L(2, C) transformations like the correlation functions 
of N conformal primary fields with weights (hn, ̄hn). It is clear 
that Lorentz invariance of underlying amplitudes must be reflected 
in conformal Ward identities [10]. This helps in identifying the 
Lorentz generators

L1 ≡ M23 + iM10 = (1 − z2)∂z − 2zh , − M23 + iM10 = L̄1

L2 ≡ M20 + iM13 = (1 + z2)∂z + 2zh , −M20 + iM13 = L̄2

L3 ≡ M21 + iM03 = 2(z∂z + h) , − M21 + iM03 = L̄3 ,

(4)

which obey the usual su(1, 1) commutation relations

[L1, L2] = 2L3

[L2, L3] = 2L1 (5)

[L3, L1] = −2L2 .

Indeed, as a consequence of conformal Ward identities, any 
N-point celestial amplitude satisfies the requirements of Lorentz 
invariance

LIÃN = L̄IÃN = 0 , LI =
N∑

n=1

LI,n , (6)

where LI,n , I = 1, 2, 3, are the Lorentz transformations (4) acting 
on the coordinates of nth particle.

In standard amplitudes, the momentum operator acts as multi-
plication by pμ written in Eq. (1). Multiplication by an ω energy 
factor yields a shift of conformal weights: (h, ̄h) → (h + 1/2, ̄h +
1/2), cf. Eq. (3). Hence the momentum generators are realized as

P0 = (
1 + |z|2)e(∂h+∂h̄)/2

P1 = (z + z̄)e(∂h+∂h̄)/2

P2 = −i(z − z̄)e(∂h+∂h̄)/2

P3 = (
1 − |z|2)e(∂h+∂h̄)/2

(7)

and the momentum conservation reads

PμÃN = 0 , Pμ = Pμ,1 + Pμ,2 −
N∑

n=3

Pμ,n , (8)

where Pμ,n , μ = 0, 1, 2, 3, act on the coordinates of nth particle. 
The operators (4) and (7) generate the Poincaré group. It is easy to 
check that all celestial amplitudes written explicitly in Refs. [5–7]
are Poincaré invariant; they satisfy Eqs. (6) and (8). More details 
are given in the Appendix.

While shifting conformal weights may seem as a trivial op-
eration, it affects the ultra-violet behavior of Mellin transforms. 
Yang-Mills amplitudes are “mariginally” convergent, with the over-
all energy scale integral [5–7]

1 Our discussion applies though to all scattering channels. We omit the factor 
i(2π)4. For notation, conventions and a general introduction into the subject, see 
[9].
∞∫
0

ω
( ∑N

n=1 �n−N−1
)
dω = 2πδ

(∑N
n=1 λn

)
(9)

(recall that �n = 1 + iλn). A shift of conformal dimension �n →
�n + 1 induced by the momentum operator Pμ,n results in a lin-
early divergent integral. As shown in Ref. [7], such divergences 
can be avoided by treating the amplitudes as α′ → 0 limits of 
superstring amplitudes. This works because superstring theory is 
“supersoft” in the ultra-violet: all scattering amplitudes are ex-
ponentially suppressed at high energies. In Ref. [7], some four-
point gravitational amplitudes have been discussed by using such 
a superstring embedding. Each power of the gravitational coupling 
constant (with mass dimension −1) brings an energy factor hence 
at the level of celestial amplitudes, it has the same effect as the 
momentum operator. Seen in this way, celestial gravitational am-
plitudes appear as Yang-Mills amplitudes translated in space-time. 
As an example, the well-known relation [11] between the Einstein-
Yang-Mills amplitude with a single graviton G and pure gauge 
amplitudes can be written as

g Ã(1,2, . . . , N, G±±)

= κ

N−1∑
l=1

(ε
±μ
G Xμ,l) Ã(1,2, . . . , l, G±, l + 1, . . . , N),

(10)

where

Xμ,l = Pμ,1 + Pμ,2 −
l∑

n=3

Pμ,n , (11)

while g and κ are the gauge and gravitational couplings, respec-
tively. The polarization vectors are given by

ε+
Gμ = 1√

2(z − w)

(
1 + z̄w, w + z̄,−i(w − z̄),1 − z̄w

)
,

ε−
Gμ = (ε+

Gμ)∗ ,

(12)

where w is a reference point on celestial sphere. The amplitude 
(10) does not depend on this point as a consequence of gauge 
invariance [11] which, in this case, follows from the Bern-Carrasco-
Johansson relations [12]. It is remarkable that the relations (10)
hold in full-fledged heterotic superstring theory, to all orders in 
the α′ expansion [13].

At the tree-level, Yang-Mills theory is scale-invariant. Accord-
ingly, the tree-level helicity amplitudes are invariant under four-
dimensional conformal transformations [14]. The celestial repre-
sentation of special conformal generators can be deduced in a 
similar way as in Ref. [14]. We find

K0 = [
∂z∂z̄ + (z∂z + 2h − 1)(z̄∂z̄ + 2h̄ − 1)

]
e−(∂h+∂h̄)/2

K1 = [
(z∂z + 2h − 1)∂z̄ + (z̄∂z̄ + 2h̄ − 1)∂z

]
e−(∂h+∂h̄)/2

K2 = −i
[
(z∂z + 2h − 1)∂z̄ − (z̄∂z̄ + 2h̄ − 1)∂z

]
e−(∂h+∂h̄)/2

K3 = [
∂z∂z̄ − (z∂z + 2h − 1)(z̄∂z̄ + 2h̄ − 1)

]
e−(∂h+∂h̄)/2 .

(13)

After computing all commutators one finds that indeed, the opera-
tors LI , L̄ I , Pμ, Kμ of Eqs. (4), (7) and (13), supplemented by the 
dilatation generator

D = −i(h + h̄ − 1) , (14)

generate full conformal group [10]. The simplest way of verifying 
Eq. (14) is by computing [K1, P1] = 2iD .
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Due to the complicated structure of the special conformal gen-
erators, cf. Eq. (13), it is a tedious, although straightforward, exer-
cise to show that the tree-level Yang-Mills amplitudes possess the 
symmetry

KÃYM = 0 , K = Kμ,1 + Kμ,2 −
N∑

n=3

Kμ,l . (15)

On the other hand, it is trivial to see that they are dilatation in-
variant. Since � = 1 + iλ,

DÃYM = 0 , D =
N∑

n=1

λn , (16)

due to the universal delta function (9) present in all tree-level 
Yang-Mills amplitudes [5–7].

In this work, we explained how Poincaré and conformal sym-
metries are realized in celestial amplitudes. In this formalism, grav-
itational amplitudes appear from space-time translations of pure 
gauge amplitudes, indicating that celestial CFT will be helpful in 
studying connections between gauge theories and gravity.
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Appendix A

We wish to expand the argument why celestial amplitudes are 
invariant under translations generated by the momentum opera-
tors (7). To that end, we consider one particular generator,

P+ = 1

2
(P0 + P3) = e(∂h+∂h̄)/2 ,

P+ = P+,1 + P+,2 −
N∑

n=3

P+,n .

(17)

The net effect of P+ is to shift the conformal dimension � →
� + 1 or equivalently iλ → iλ + 1. Formally, P+ acting on the am-
plitude (3), introduces the factor (ω1 + ω2 − ∑N

k=3 ωk) under the 
Mellin integral. This factor is annihilated by the energy-conserving 
delta function, therefore P+Ã = 0. More caution should be exer-
cised however because of possible convergence problems of Mellin 
transforms, therefore it is a good idea to have a closer look at some 
specific examples.2 One such example is the tree-level, four-gluon 
Yang-Mills MHV amplitude that was Mellin-transformed into a ce-
lestial form in Refs. [5–7]. In the notation of Ref. [7], it reads

Ã(−,−,+,+) = A(z, z̄, λ) J0(γ ) , γ = i
4∑

n=1

λn , (18)

where

2 We are grateful to Andy Strominger for suggesting this Appendix.
A(z, z̄, λ) = δ(r − r̄)

(
z24

z̄13

)iλ1( z̄24

z13

)iλ3 (
z̄34

z12

)i(λ1+λ2)

×
(

z14

z̄32

)i(λ2+λ3) 4r3

z̄2
12 z2

34

,

(19)

with zi j ≡ zi − z j and the real cross-ratio

r = r̄ = z12z34

z23z41
(20)

constrained to the kinematic domain of r > 1. In Eq. (18),

J0(γ ) =
∞∫

0

ωγ −1dω , (21)

see also Eq. (9). Acting on the amplitude (18), each momentum 
generator P+ shifts γ → γ + 1 and yields a factor rational in the 
z-coordinates. As a result,

P+Ã(−,−,+,+) =
[

z24 z̄34

z12 z̄13
+ z14 z̄34

z12 z̄32
− z14 z̄24

z13 z̄32
− 1

]
× A(z, z̄, λ) J0(γ + 1) .

(22)

After simple algebraic manipulations using the reality constraint 
r = r̄, one finds that the expression inside the square bracket is 
zero. A similar argument can be repeated for the remaining mo-
mentum components, thus demonstrating translational invariance 
of the celestial MHV amplitude. Furthermore, it was shown in 
Ref. [7] that full-fledged superstring amplitudes describing four 
gluons in Type I and heterotic theories are given by expressions 
similar to (18), with J0 replaced by some more complicated func-
tions of γ and r. It is clear that the precise form of these functions 
does not affect Eq. (22), therefore superstring amplitudes are also 
translationally invariant.
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