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We investigate the validity of the limiting-fragmentation hypothesis in relativistic heavy-ion
collisions at energies reached at the Large Hadron Collider (LHC). A phenomenological analysis
of central AuAu and PbPb collisions based on a three-source relativistic diffusion model is used
to extrapolate the pseudorapidity distributions of produced charged hadrons from RHIC to LHC
energies into the fragmentation region. Data in this region are not yet available at LHC energies,
but our results are compatible with the limiting-fragmentation conjecture in the full energy range√

sNN = 19.6 GeV to 5.02 TeV.
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1. Introduction

The significance of the fragmentation region in relativistic heavy-ion collisions was realized when
data on AuAu collisions in the energy range

√
sNN = 19.6 GeV to 200 GeV became available at the

Brookhaven Relativistic Heavy Ion Collider (RHIC) [1–3]. For a given centrality, the pseudorapidity
distributions of the produced charged particles were found to scale with energy according to the
limiting fragmentation (LF), or extended longitudinal scaling, hypothesis: the charged pseudorapidity
distribution is energy independent over a large range of pseudorapidities η ′ = η − ybeam, with the
beam rapidity ybeam.

The existence of the phenomenon had been predicted for hadron–hadron and electron–proton
collisions by Benecke et al. [4], and it was first shown to be present in pp̄ data, in a range from 53 up
to 900 GeV [5]. The fragmentation region grows in pseudorapidity with increasing collision energy
and can cover more than half of the pseudorapidity range over which particle production occurs.
The approach to a universal limiting curve is a remarkable feature of the particle production process,
especially in relativistic heavy-ion collisions.

It is not currently clear, however, whether limiting fragmentation will persist at the much
higher incident energies that are available at the CERN Large Hadron Collider (LHC), namely√

sNN = 2.76 and 5.02 TeV in PbPb collisions. Although detailed and precise ALICE data for
charged-hadron production at various centralities are available in the midrapidity region [6,7]
for both incident energies, experimental results in the fragmentation region are not available due
to the lack of a dedicated forward spectrometer. This region is, however, most interesting if
one wants to account for the collision dynamics more completely. In this work, we investigate
to what extent limiting fragmentation can be expected to occur in heavy-ion collisions at LHC
energies.
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Given the lack of LHC data in the fragmentation regions, one has to rely on either microscopic
approaches such as the multiphase transport model AMPT by Ko et al. [8] or HIJING [9,10] in order
to assess whether LF is valid at LHC energies, or on phenomenological models. Among these are the
thermal model [11–14], hydrodynamical approaches [15], or the relativistic diffusion model (RDM)
with three sources for particle production: a midrapidity source and two fragmentation sources [16–
21]. Here, the time evolution of the distribution functions is accounted for through solutions of
a Fokker–Planck equation (FPE) for the rapidity variable which are subsequently transformed to
pseudorapidity space through the appropriate Jacobian.

Regarding microscopic approaches, the AMPT code [8] had been tuned for the most central bin
at RHIC and LHC energies in Ref. [22]. There are some disagreements with the LHC data in the
midrapidity region, but AMPT is in accord with longitudinal scaling at LHC energies. In Ref. [23]
it had already been concluded that AMPT and other microscopic codes reproduce LF at RHIC
energies. The same conclusion had been drawn from calculations in the color-glass condensate
framework [24].

The ALICE collaboration has argued in Ref. [25], in accordance with our results in Ref. [26], that
their 2.76 TeV PbPb data are in agreement with the validity of extended longitudinal scaling (within
the uncertainties which arise mainly from the extrapolation of the charged particle pseudorapidity
density from the measured region to the rapidity region of the projectile where no data are available).
In their analysis, the extrapolation into the forward η region was done using the difference of two
Gaussian functions as detailed in Ref. [25]. Both Gaussians are centered at midrapidity, and the second
(subtracted) Gaussian simulates the central dip that is mostly due to the Jacobian transformation
from y- to η-space. The same extrapolation function has recently been used in Ref. [27] at both LHC
energies.

This procedure leads ALICE to conclude that the 2.76 TeV PbPb data are consistent with the LF
hypothesis. Related, but different, extrapolation schemes give similar conclusions. As an exam-
ple, we have fitted the ALICE midrapidity data with a sum of two Gaussians that are peaked
at the experimental maxima, used the proper Jacobian transformation from y- to η-space, and
determined the corresponding parameters for PbPb collisions in a χ2 minimization. Again, the
resulting pseudorapidity distribution functions fulfill the LF hypothesis at both LHC energies, 2.76
and 5.02 TeV. However, such an extrapolation procedure is a rather arbitrary scheme without any
physical basis. In contrast, the thermal model [11–14] has a macroscopic physical basis, which is
appropriate to predict particle production rates at midrapidity, but it is questionable whether it is
suited to predict distribution functions, in particular at forward rapidity. Still, it has been used in
Ref. [28] in the forward region, with the conclusion that limiting fragmentation should be violated at
LHC energies.

In this work, we investigate whether limiting fragmentation in heavy-ion collisions at LHC energies
can be expected to be fulfilled in yet another phenomenological model, the three-source relativis-
tic diffusion model (RDM) [16,20,21]. We briefly summarise the basic formulation in the next
section. In Sect. 3, we apply the model both in its analytically solvable version with linear drift,
and with a sinh-drift term that requires a numerical solution, to calculate net-proton rapidity dis-
tributions at RHIC energies. Here, only the fragmentation sources contribute, and thus can be
directly compared to data. In Sect. 4 we apply the model, including a central source, to charged-
hadron production in central AuAu and PbPb collisions at RHIC and LHC energies, in order to
test whether limiting fragmentation is fulfilled at LHC energies. The conclusions are drawn in
Sect. 5.
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2. A phenomenological three-source model

In relativistic heavy-ion collisions, the relevant observable in stopping and particle production is the
Lorentz-invariant cross section

E
d3N

dp3 = d2N

2πp⊥ dp⊥ dy
= d2N

2πm⊥ dm⊥ dy
(1)

with the energy E = m⊥ cosh(y), the transverse momentum p⊥ =
√

p2
x + p2

y , the transverse mass

m⊥ =
√

m2 + p2⊥, and the rapidity y.
We shall first investigate rapidity distributions of protons minus produced antiprotons, which

are indicative of the stopping process as described phenomenologically in a relativistic two-source
diffusion model (RDM) [16,29] or in a QCD-based approach [30]. This motivates the relevance of the
fragmentation sources not only in stopping, but also in particle production at relativistic energies.
Subsequently, we switch to a three-source model for particle production, with the importance of
the fireball source rising with energy, and yielding most of the produced charged hadrons at LHC
energies when compared to the fragmentation sources. This central source does not contribute to
stopping because particles and antiparticles are produced in equal amounts. The three-source model
is visualized schematically in Fig. 1 for a symmetric system such as AuAu or PbPb.

The rapidity distributions for all three sources k = 1, 2, 3 are obtained by integrating over the
transverse mass

dNk

dy
(y, t) = c k

∫
m⊥E

d3Nk

dp3 dm⊥, (2)

Fig. 1. Schematic representation of the three-source model for particle production in relativistic heavy-ion
collisions at RHIC and LHC energies in the center-of-mass system. Following the collision of the two
Lorentz-contracted slabs (blue), the fireball region (center, yellow) expands anisotropically in longitudinal
and transverse direction. At midrapidity, it represents the main source of particle production. The two frag-
mentation sources (red) contribute to particle production, albeit mostly in the forward and backward rapidity
regions.
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with normalization constants ck that depend on centrality. The experimentally observable distri-
bution dN/dy is evaluated in the time-dependent model at the freeze-out time, t = τ f. The latter
can be identified with the interaction time τint of Refs. [16,29]: the time during which the system
interacts strongly. The full rapidity distribution function for produced charged hadrons is obtained
by weighting the three partial distribution functions with the respective numbers of particles, and
adding them incoherently:

dNch

dy
(y, t = τf) = N 1

chR1(y, τf) + N 2
chR2(y, τf) + N gg

ch Rgg(y, τf), (3)

where the index 3 ≡ gg is meant to emphasize that the fireball source mostly arises microscopically
from low-x gluon–gluon collisions.

The incoherent addition of the three sources also applies to the model with sinh drift that we
consider in this work, because the FPE is a linear partial differential equation, allowing for linear
superposition of independent solutions. For a symmetric system, one can further simplify the problem
by only considering the solution for the positive rapidity region and mirroring the result at y < 0.

The parameters of the three-source model, which will be detailed in the following, are then deter-
mined via χ2 minimization with respect to the available data, and can be used in extrapolations and
predictions [21]. In stopping, the relevant distribution function is given by the incoherent sum of the
fragmentation sources only,

dNp−p̄

dy
(y, t = τf) = N 1

p−p̄R1(y, τf) + N 2
p−p̄R2(y, τf). (4)

We rely on Boltzmann–Gibbs statistics and hence adopt the Maxwell–Jüttner distribution as the
thermodynamic equilibrium distribution for t → ∞:

E
d3N

dp3

∣∣∣∣
eq

∝ E exp (−E/T ) = m⊥ cosh (y) exp (−m⊥ cosh(y)/T ) . (5)

The nonequilibrium evolution of all three partial distribution functions Rk(y, t) (k = 1, 2, gg) toward
this thermodynamic equilibrium distribution is accounted for in the relativistic diffusion model
[16,17,20,29] through solutions of the Fokker–Planck equation

∂

∂t
Rk(y, t) = − ∂

∂y
[Jk(y, t)Rk(y, t)] + ∂2

∂y2
[Dk(y, t)Rk(y, t)] (6)

with suitably chosen drift functions Jk(y, t) and diffusion functions Dk(y, t). If the latter is taken as
a constant diffusion coefficient Dk , and the drift function assumed to be linearly dependent on the
rapidity variable y, the FPE has the Ornstein–Uhlenbeck form [31] and can be solved analytically
[16]. For t → ∞ all three subdistributions approach a single Gaussian in rapidity space which is
centered at midrapidity y = 0 for symmetric systems, or at the appropriate equilibrium value y = yeq

for asymmetric systems. In case of stopping, only the two fragmentation distributions contribute,
approaching the thermal equilibrium distribution for t → ∞, as will be shown in the next section.

It should be noted that interpenetration and stopping (or more precisely, slowing down) of the
Lorentz-contracted, highly transparent nuclei occurs before the quark–gluon plasma medium with
quarks and gluons in the fireball is fully formed. Hence, there exists no medium or heat bath that
could act as a solvent providing friction and noise due to thermal fluctuations, as is the case in the
diffusion model for Brownian motion, or for heavy quarks in a quark–gluon plasma. Instead, the
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incident baryons lose their momentum (rapidity) without any globally static medium, but through
random partonic two-body collisions between valence quarks and low-x gluons in the respective
other nucleus. These provide the fluctuating environment necessary for the formulation of a Langevin
equation, or equivalently, the corresponding Fokker–Planck equation for the relativistic system.

The FPE in Eq. (6) in the context of relativistic heavy-ion collisions can be derived from a theory
for non-Markovian processes in spacetime, which are equivalent to relativistic Markov processes in
phasespace (RMPP)—see Refs. [32,33]. It is shown in these works that such Markovian processes
in phasespace are accounted for through a generalized FPE. The basic equation in Eq. (6) in rapidity
space that we are using in the present work is a special case in the context of such a more general
RMPP formalism.

The equilibrium limit of the FPE solution for constant diffusion and linear drift is, however, found
to deviate slightly from the Maxwell–Jüttner distribution. Although the discrepancies are small and
become visible only for sufficiently large times, we use the RDM with the sinh drift,

Jk(y, t) = −Ak sinh(y), (7)

which ensures that the solution for t → ∞ yields the Maxwell–Jüttner distribution in Eq. (5), as
discussed in Refs. [34,35]. This induces a special form of the fluctuation dissipation theorem (FDT)
that connects diffusive and dissipative phenomena in the collision, namely

Ak = m⊥Dk/T . (8)

The strength of the drift force in the fragmentation sources k = 1, 2 depends on the distance in
y-space from the beam rapidity, which enters through the initial conditions. With Eqs. (2) and (5),
the rapidity distribution at thermal equilibrium can then be derived [29] as

dNeq

dy
= C

(
m2⊥T + 2m⊥T 2

cosh y
+ 2T 3

cosh2 y

)
exp

(
−m⊥ cosh y

T

)
, (9)

where C is proportional to the overall number of produced charged hadrons N tot
ch , or, in the case of

stopping, to the number of net baryons (protons) in the respective centrality bin. Since the actual dis-
tribution functions remain far from thermal equilibrium, the total particle number is evaluated based
on the nonequilibrium solutions of the FPE, which are adjusted to the data in χ2 minimizations. In
particular, one can determine the drift amplitudes Ak from the position of the fragmentation peaks as
inferred from the data, and then calculate theoretical diffusion coefficients as Dk = AkT/m⊥. How-
ever, these refer only to the diffusive processes, and since the fireball source and both fragmentation
sources also expand collectively, the actual distribution functions will be much broader than what is
obtained from Eq. (8). Hence, we shall use values for the diffusion coefficients (or the widths of the
partial distributions) that are adapted to the data in both stopping and particle production. The total
particle number is then obtained from the integral of the overall distribution function.

Whereas the RDM with linear drift has analytical solutions that can be used directly in χ2 min-
imizations with respect to the data numerical solutions of the FPE are required for the sinh drift,
as described in Refs. [29,35]. To arrive at a computationally tractable form, transform the equa-
tion for R(y, t) into a dimensionless version for f (y, τ) by introducing a timescale tc, defining the
dimensionless time variable τ = t/tc. It follows that ∂

∂t = ∂
∂τ

t−1
c , and hence

∂f

∂τ
(y, τ) = tc A

∂

∂y
[sinh(y) f (y, τ)] + tc D

∂2

∂y2 f (y, τ). (10)
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Since A = m⊥D/T , we set tc = T/(m⊥D) = A−1. The result is the dimensionless Eq. (11),
depending only on the ratio γ = T/m⊥ of the temperature T and transverse mass m⊥, which is a
measure of the strength of the diffusion:

∂f

∂τ
(y, τ) = ∂

∂y
[sinh(y) f (y, τ)] + γ

∂2

∂y2 f (y, τ). (11)

To recover the drift and diffusion coefficients, one has to specify a time scale (or the other way
round). Considering that it is only the drift term that is responsible for determining the peak position,
we choose the time-like variable τ such that the peak position of the experimental data is reproduced.
This leaves the diffusion strength γ as a free parameter. In the case of three partial distributions,
there are three free parameters γk . Here, the two values for the fragmentation sources are identical
for symmetric systems such as PbPb, but differ for asymmetric systems like pPb.

We calculate the numerical solution using matlab’s integration routine pdepe for solving
parabolic-elliptic partial differential equations. It was shown in Ref. [29] that this method is very
accurate when compared to results of finite-element methods such as DUNE [36] or FEniCS [37].

To compare the simulation to experimental data, we have to insert relevant values for T , m⊥, and the
initial conditions. The beam rapidity ybeam is determined by the center-of-mass energy per nucleon
pair as ybeam = ± ln(

√
sNN/mp). Two Gaussian distributions centered at the beam rapidities with a

small width that corresponds to the Fermi motion represent the incoming ions before the collision.
The exact width of the initial distribution does not have a large effect on the time evolution [29]; here
we use σ = 0.1. The same standard deviation is taken for the initial condition of the midrapidity
source, which is centered at y = 0 for a symmetric system, and at y = yeq for asymmetric systems.

For the temperature, we take the critical value T = Tcr = 160 MeV for the crossover transition
between hadronic matter and quark–gluon plasma. Regarding the transverse mass, experimental
values are deduced from measured transverse momentum distributions.

The results are then transformed to rapidity distributions [29]. Rewriting Eq. (2) and replacing
d3N/dp3 with the computed distribution f (y, τ), we obtain

dN

dy
(y, τ) = C

∫
m2⊥f (y, τ)dm⊥. (12)

The constant C is chosen in the case of stopping such that the total number of particles corresponds
to the number of participant protons in the respective centrality bin. In particle production, C is
adjusted to the total number of produced particles for a given centrality.

3. Fragmentation sources in stopping

To emphasize the relevance of the fragmentation sources, we first investigate stopping and calculate
net-proton rapidity distributions in central AuAu collisions at RHIC energies of 200 GeV, where
data are available from Ref. [38]. Theoretical calculations are usually performed for net-baryon
distributions [30] because the total baryon number is a conserved quantity, but since experimentally
only net-proton distributions are available, we convert to net-protons via Z/A = 79/197 = 0.40.
As discussed, the central source cancels out in stopping, because particles and antiparticles are
produced in equal numbers. Rather precise net-proton results have been obtained at SPS energies for
central PbPb at

√
sNN = 17.3 GeV, where the NA49 collaboration succeeded in measuring across

the fragmentation peak in a fixed-target experiment [39]. These results can be reproduced well in
the linear RDM [40], and also in a QCD-based approach [30], but here we are interested in higher
energies, namely the RHIC and LHC region.
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Fig. 2. The fragmentation sources are visible in net-proton (proton minus antiproton, or stopping) rapidity
density functions for central AuAu collisions at

√
sNN = 200 GeV. The BRAHMS data at forward rapidities

(filled circles, from Ref. [38]) have been symmetrized (open circles at backward rapidities). The solid curves
correspond to the numerical model with sinh drift for γ ≡ γ1,2 = 33 and τ = 0.08, with stopping peaks at
y = ± 3.1. The dashed curves are also calculated in the sinh-drift model, but with γ = 0.139 as predicted
by the fluctuation dissipation relation in Eq. (8), ignoring collective expansion. The dot-dashed curve in the
midrapidity region represents the equilibrium limit in the sinh model with τ → ∞ and γ = 0.139. It agrees
with the Maxwell–Jüttner distribution for m⊥ = 1.15 GeV and T = 160 MeV (crosses). The equilibrium limit
of the analytical linear-drift model for t → ∞ (triangles) deviates only slightly from the Maxwell–Jüttner
distribution. The fireball source does not contribute to stopping.

For AuAu at an RHIC energy of 200 GeV it was not possible to measure the fragmentation peaks
because the forward spectrometer hit the beam pipe at large rapidities. At LHC energies, a forward
spectrometer with particle identification in the region of the expected fragmentation peaks [30] is
not available. Still, the BRAHMS stopping data of Ref. [38] shown in Fig. 2 indicate the rise toward
the fragmentation peaks, which was later corroborated by more recent, albeit preliminary, data near
the peak region [42].

We now compare these AuAu RHIC data with the fragmentation distributions that arise from the
three-source model with both linear and sinh drift. In the case of a linear drift, the average positions
of the fragmentation peaks agree with the maximum-value positions, ypeak = 〈y1,2〉, whereas these
differ when the drift is nonlinear. For AuAu the transverse mass m⊥ is obtained from the p⊥ spectra

using m⊥ =
√

m2
p + p2⊥ and Eq. (1) for the yields. As proposed in Ref. [38], Gaussians are fitted to

the invariant yields [29]. The results for protons and antiprotons are averaged to obtain

〈m⊥〉 = 1.15 ± 0.20 GeV, (13)

which we use in the forthcoming stopping calculations. The theoretical value for the diffusion strength
becomes γ = T/m⊥ = 0.139.

The results of the RDM calculation with the sinh drift are shown as dashed curves in Fig. 2.
The dimensionless time parameter has been adjusted as τ = 0.08 with the above value of the
diffusion strength γ to yield a fragmentation peak position of y = ±3.1, in accordance with the
data of Refs. [38,42] (only the final data of Ref. [38] are shown here). The calculated distribution
function is, however, far too narrow, because the theoretical expression from Eq. (8) does not account
for collective expansion. In Ref. [43], the longitudinal expansion velocity v|| had actually been
calculated from the difference between the theoretical distribution function and the data. The solid
curve represents a numerical solution of the FPE with adapted diffusion strength γ = 33; it clearly
shows the fragmentation peaks.
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In Fig. 2 we also display the corresponding equilibrium solutions, which are centered at midrapidity
for symmetric systems. We use the theoretical FDT value γ = 0.139, and display the numerical
solution of the FPE with sinh drift for τ → ∞ as a dot-dashed curve. It agrees with the Maxwell–
Jüttner distribution in Eq. (5) for m⊥ = 1.15 GeV and T = 160 MeV (crosses). For comparison, the
equilibrium result of the RDM with linear drift is also shown (triangles). It is a Gaussian,

Req(y) = C√
2πσeq

exp
(

− y2

2σ 2
eq

)
, (14)

with variance σ 2
eq = γ = tcD = A−1D = T/m⊥ = 0.139 corresponding to a width of 	FWHM =√

8γ ln 2 = 0.88. The normalization C is such that the integral of the total distribution yields
the number of participant protons in 0%–5% central AuAu collisions, Np = NBZ/A = 357 ×
79/197 � 143, with the number of participant baryons NB = 357 ± 8 from a Glauber calculation
[38]. The resulting distribution function deviates only slightly from the Maxwell–Jüttner equilibrium
distribution.

Equilibrium distributions with physical values for the diffusion strengths that include collective
expansion would be much broader, but they do not exhibit fragmentation peaks with a midrapidity
valley, and hence equilibrium models are not suited to describing stopping distributions.

4. Particle production and limiting fragmentation

In charged-hadron production, we consider the sum of produced charged particles and antiparticles.
Hence, the fireball source has to be added, and yields the essential contribution to charged-hadron
production in heavy-ion collisions at LHC energies. Particles that are produced from the fragmen-
tation sources are not directly distinguishable from those originating from the fireball, but still the
fragmentation sources are relevant and must be included in a phenomenological model. In particu-
lar, when regarding the limiting-fragmentation conjecture, the role of the fragmentation distributions
will turn out to be decisive since they determine the behavior of the rapidity distribution functions
at large values of rapidity.

For unidentified charged particles, we first have to transform from rapidity to pseudorapidity space
in order to directly compare to data. The pseudorapidity variable η is uniquely determined by the
scattering angle θ ,

η = 1

2
ln

|p| + p||
|p| − p||

= − ln [tan (θ/2)] , (15)

and the pseudorapidity distribution function dN
dη

is obtained from the rapidity distribution dN
dy through

the transformation

dN

dη
= dy

dη

dN

dy
= J

(
η,

m

p⊥

)
dN

dy
, (16)

with the Jacobian

J
(

η,
m

p⊥

)
= cosh(η)√

1 +
(

m
p⊥

)2 + sinh2(η)

(17)

for produced particles with mass m and transverse momentum p⊥. The transformation depends on
the squared ratio (m/p⊥)2 of the mass and transverse momentum of the produced particles. Hence, its
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Fig. 3. Pseudorapidity density distribution in the three-source RDM with linear drift (solid curve, top) resulting
from a χ 2 minimization with respect to the ALICE data [6] for produced charged hadrons in central (0%–5%)
PbPb collisions at

√
sNN = 2.76 TeV. The distributions are displayed as functions of η − ybeam. Central AuAu

collision data at
√

sNN = 19.6 GeV (lower data points, [41]) are consistent with the limiting-fragmentation
hypothesis. The total density distribution can be separated into three parts, one resulting from the midrapidity
source (dashed curve) and two from the fragmentation sources (dot-dashed curves).

effect increases with the mass of the particles and is most pronounced at small transverse momenta.
In principle, one has to consider the full p⊥ distributions, which are, however, not available for all
particle species that are included in the pseudorapidity measurements. In Ref. [26], we determined the
Jacobian J0 at η = y = 0 in central 2.76 TeV PbPb collisions for identified π−, K−, and antiprotons
from the experimental values dN

dη
|exp and dN

dy |exp as J0 = 0.856. Solving Eq. (17) for p⊥ ≡ 〈peff⊥ 〉
yields

〈peff⊥ 〉 = 〈m〉J0√
1 − J2

0

(18)

with a mean mass 〈m〉 which may be calculated from the abundancies of pions, protons, and kaons.
With the introduction of J0, the Jacobian can then be written independently from the values of 〈m〉
and 〈peff⊥ 〉 as

J (η, J0) = cosh(η)√
1 + 1−J2

0
J2
0

+ sinh2(η)

, (19)

which results in J(η) = cosh(η)[1.365 + sinh2(η)]−1/2 for central 2.76 TeV PbPb collisions. The
effect of the Jacobian is most pronounced near midrapidity, where it is essential to generate the
dip in the pseudorapidity distributions, as is obvious from Fig. 3. Here, a calculation in the RDM
with linear drift [21] is compared with ALICE data for central PbPb at 2.76 TeV [6], with the five
parameters and χ2 values from Table 1. The optimization is done using Python.

The Jacobian has almost no effect in the fragmentation region, which we are emphasizing in this
work. In Fig. 3 we also compare the RDM solution for 2.76 TeV PbPb with central AuAu data [41]
at

√
sNN = 19.6 GeV from the PHOBOS collaboration at RHIC. In earlier work, we had shown that

three-source RDM solutions with linear drift agree with the PHOBOS data at the RHIC energies of√
sNN = 19.6, 62.4, 130, and 200 GeV [19,44].
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Table 1. Parameters in the RDM with linear drift for central (0%–5%) PbPb collisions at 2.76 TeV and
5.02 TeV: particle content N1,2 and Ngg of the fragmentation and fireball sources, mean rapidities 〈y1,2〉 of the
fragmentation sources, widths 	1,2,gg, χ 2 and χ 2/ndf values.
√

sNN (TeV) ybeam N1,2 Ngg 〈y1,2〉 	1,2 	gg χ 2 χ 2/ndf

2.76 ±7.987 3505 10681 ±3.64 4.98 6.38 2.44 0.07
5.02 ±8.586 4113 14326 ±4.67 4.99 6.38 1.17 0.04

Table 2. Parameters in the RDM with sinh drift for central (0%–5%) PbPb collisions at 2.76 TeV and 5.02 TeV:
particle content N1,2 and Ngg of the fragmentation and fireball sources, peak-value rapidities ypeak, mean
rapidities 〈y1,2〉 of the fragmentation sources, diffusion strengths γ1,2,gg, corresponding χ 2 and χ 2/ndf values.

√
sNN (TeV) ybeam N1,2 Ngg ypeak 〈y1,2〉 γ1,2 γgg χ 2 χ 2/ndf

2.76 ±7.987 2700 12000 ±3.88 ±0.56 1000 115 5.89 0.16
5.02 ±8.586 2800 15800 ±4.43 ±0.61 2000 205 7.50 0.26

When plotted as function of η−ybeam, limiting fragmentation is obviously fulfilled in the relativistic
diffusion model with linear drift. This would not be the case if just the central fireball source was
considered, as limiting fragmentation is a consequence of the appearance of the fragmentation
sources. This result indicates that limiting fragmentation can be fulfilled from RHIC to low LHC
energies in the relativistic diffusion model.

We now proceed to investigate the consequences of the model with sinh drift, with emphasis on the
fragmentation region. We solve Eq. (11) for central PbPb collisions at

√
sNN = 2.76 and 5.02 TeV

using Dirichlet boundary conditions, with the parameters given in Table 2, and the same Jacobian for
both energies. The resulting charged-hadron pseudorapidity distributions are shown in Fig. 4, again
plotted as functions of η−ybeam, together with central AuAu data [41] at

√
sNN = 19.6 GeV from the

PHOBOS collaboration at RHIC. As a consequence of the sinh drift, the fragmentation distributions
are now much less confined to the fragmentation region, but extend into the whole pseudorapidity
range that is accessible for produced charged hadrons. Hence, the Jacobian also deforms the frag-
mentation distributions in the midrapidity region. In the fragmentation region, limiting fragmentation
is very well fulfilled when comparing the results at LHC energies to the 19.6 GeV AuAu data.

To confirm that the RDM with sinh drift is consistent with the observed LF at the available RHIC
energies, we compare the PHOBOS AuAu data [41] with the numerical results of our model in
Fig. 5. At all four energies

√
sNN = 200 GeV, 130 GeV, 62.4 GeV, and 19.6 GeV we find agreement

between the data and the model results with the parameters listed in Table 3. For the RDM with
linear drift, agreement with RHIC data had already been confirmed in our earlier work [19]. In both
cases, the midrapity source is found to be negligible at 19.6 GeV— the produced particle yields arise
essentially from the fragmentation sources because gluon–gluon collisions are not relevant at this
low energy. In the sinh model, however, the fragmentation sources are not Gaussian in rapidity space
but asymmetric, and extend over a larger rapidity range. This is indicated by the partial distribution
functions shown in Fig. 5 at this energy. The significance of the midrapidity source rises gradually
with increasing energy; see the corresponding particle numbers in Table 3.

Interestingly, the value for the diffusion strength γ1,2 = 52 in the fragmentation sources for
200 GeV AuAu (see Table 3) is somewhat larger than the value of γ1,2 = 33 that we had extracted
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Fig. 4. Pseudorapidity density distribution of produced charged hadrons for central (0%–5%) 2.76 TeV (top)
and 5.02 TeV PbPb (bottom) in the three-source RDM with sinh drift (solid curves) from χ 2 minimizations
with respect to the ALICE data [6,7]. The midrapidity sources (dashed curves) remain symmetric, but the
fragmentation sources (dotted and dot-dashed curves) are asymmetric due to the sinh drift. Comparison with
central 19.6 GeV AuAu RHIC data [41] confirms the consistency with the limiting-fragmentation hypothesis
in both cases.

Fig. 5. Three-source RDM distributions with sinh drift compared to central (0%–3%) PHOBOS AuAu data
[41] at four RHIC energies,

√
sNN = 200 GeV, 130 GeV, 62.4 GeV, and 19.6 GeV (from top to bottom). The zoom

into the fragmentation region shows that the PHOBOS data and the RDM with sinh drift are consistent with
limiting-fragmentation scaling at RHIC energies. The corresponding model parameters are given in Table 3.
RDM subdistributions are shown at the lowest energy.
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Table 3. Parameters in the RDM with sinh drift for central (0%–3%) AuAu collisions at 19.6 GeV to 200 GeV:
particle content N1,2 and Ngg of the fragmentation and fireball sources, peak-value rapidities ypeak, mean
rapidities 〈y1,2〉 of the fragmentation sources, diffusion strengths γ1,2,gg, corresponding χ 2 and χ 2/ndf values.
√

sNN (GeV) ybeam N1,2 Ngg ypeak 〈y1,2〉 γ1,2 γgg χ 2 χ 2/ndf

19.6 ±3.037 870 60 ±0.86 ±0.42 6 1 157.07 3.02
62.4 ±4.197 1280 540 ±1.94 ±1.11 18 4 18.11 0.37
130 ±4.931 1350 1800 ±2.30 ±1.08 42 13 4.07 0.08
200 ±5.362 1400 2650 ±2.78 ±1.64 52 24 3.39 0.07

Fig. 6. Comparison of the three-source RDM distributions with linear and sinh drift, ALICE data [6,7], and
PHOBOS data [41]. From top to bottom: central PbPb at

√
sNN = 5.02 TeV and 2.76 TeV (LHC), AuAu at√

sNN = 200 GeV, 130 GeV, 62.4 GeV, and 19.6 GeV. The difference between the model with sinh drift (solid
curves) and the one with linear drift (dot-dashed and dashed curves) is small but visible in the fragmentation
region. The zoom into this region shows that the RDM with sinh drift is consistent with limiting fragmentation
at RHIC and LHC energies.

from the BRAHMS stopping data at this energy in the model with nonlinear drift—see Fig. 1. The
difference in the two values underlines the fact that the fragmentation peaks in stopping are always
closer to the beam rapidity than the corresponding peaks in particle production. This is expressed
by the larger value of gamma (smaller rapidity relaxation time) in particle production. The result
is physically reasonable, because the fragmentation sources in stopping define the mean y-position
from which lighter hadrons are produced at lower rapidity.

Our overall results from the relativistic diffusion model with linear and sinh drift are summarized in
Fig. 6. We compare data from the fragmentation regions in central AuAu collisions at RHIC energies
of 19.6 GeV, 62.4 GeV, 130 GeV, and 200 GeV [41] with ALICE data [6,7] and our results for central
PbPb at LHC energies of 2.76 and 5.02 TeV from the relativistic diffusion model with both linear
and sinh drift. The parameters are summarized in Tables 1 and 2. As expected, the RDM with sinh
drift (solid curves) gives a better representation of the data in the fragmentation region compared
to the analytical linear model (dashed and dot-dashed curves). The inset shows that the RDM with
sinh drift is in agreement with the limiting-fragmentation conjecture at the available RHIC and LHC
energies.
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5. Conclusion

We have investigated charged-hadron pseudorapidity distributions in central PbPb collisions
within a three-source relativistic diffusion model with nonlinear drift, which ensures the correct
Maxwell–Jüttner equilibrium distribution. Our analysis indicates that the phenomenon of limiting-
fragmentation scaling can be expected to hold at RHIC and LHC energies, spanning a factor of almost
260 in collision energy. This conclusion is in line with results from microscopic numerical models
such as AMPT, but it disagrees with expectations from simple parametrizations of the rapidity distri-
butions such as the difference of two Gaussians, and also with predictions from the thermal model.
The latter does not explicitly treat the fragmentation sources, it refers only to particles produced
from the hot fireball. In contrast, the fragmentation sources play an essential role in our approach.
It remains to be seen whether future upgrades of the detectors will make it possible to actually test
the limiting-fragmentation conjecture experimentally at LHC energies.
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