Investigating Sterile Neutrino Flux in the Solar Neutrino Data

02 June 2019

Abstract: There are compelling evidences for the existence of a fourth degree of freedom of neutrinos, i.e., sterile neutrino. In the recent studies the role of sterile component of neutrinos has been found to be crucial, not only in particle physics, but also in astrophysics and cosmology. This has been proposed to be one of the potential candidates of dark matter. In this work we investigate the updated solar neutrino data available from all the relevant experiments including Borexino and KamLAND solar phase in a model independent way and obtain bounds on the sterile neutrino component present in the solar neutrino flux. The mystery of the missing neutrinos is further deepening as subsequent experiments are coming up with their results. The energy spectrum of solar neutrinos, as predicted by Standard Solar Models (SSM), is seen by neutrino experiments at different parts as they are sensitive to various neutrino energy ranges. It is interesting to note that more than 98% of the calculated standard model solar neutrino flux lies below 1 MeV. Therefore, the study of low energy neutrinos can give us better understanding and the possibility of knowing about the presence of antineutrino and sterile neutrino components in solar neutrino flux. As such, this work becomes interesting as we include the data from medium energy (~1 MeV) experiments, i.e., Borexino and KamLAND solar phase. In our study we retrieve the bounds existing in literature and rather provide more stringent limits on sterile neutrino ( νs ) flux available in solar neutrino data.

Published in: Advances in High Energy Physics 2019 (2019) 2598953
Published by: Hindawi
DOI: 10.1155/2019/2598953
arXiv: 1812.03634
License: CC-BY-3.0

Back to search

Download fulltextPDF Download fulltextXML Download fulltextPDF (PDFA)