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The study of heavy quarkonium suppression in heavy-ion collisions represents an important source of
information about the properties of the quark-gluon plasma produced in such collisions. In a previous
paper, we have considered how to model the evolution of a quarkonium in such a way that the solution of
the resulting equations evolves toward the correct thermal equilibrium distribution for a homogeneous and
static medium. We found that it is crucial to take into account the energy gap between singlet and octet
configurations when the temperature is not much greater than this energy gap. In this paper, we explore in
more detail the phenomenological consequences of this observation in the more realistic situation of an
expanding system. We consider two different scenarios, based on the same approximation scheme, but on
different choices of parameters. In the first case, we rely on a Hard Thermal Loop approximation, while the
second case is based on a recent determination of the static potential in lattice QCD. In both cases, we
compute the decay width and the nuclear modification factor, both taking the energy gap into account
and ignoring it. We find that the impact on the predictions is as large in the expanding medium as
it is in the static case. Our conclusion is that this energy gap should be taken into account in
phenomenological studies.
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I. INTRODUCTION

Several physical phenomena are commonly invoked to
explain the production of quarkonia in ultra-relativistic
heavy-ion collisions that are presently intensively studied at
the LHC [1–3]. Aside from the initial suggestion of the
color screening of the binding potential by the quark-gluon
plasma [4], collisions between the plasma constituents and
the quarkonia could also lead to a suppression of the
production rate. Various methods can be used to take these
collisions into account. In the regime in which potential
models are valid, it has been shown that collisions induce
an imaginary part in the potential [5,6] (somewhat analo-
gous to the imaginary potential of the nuclear optical
potential model). In the effective theory picture where
the interactions of quarkonia with the plasma are dominated
by color dipolar interactions, collisions induce singlet to
octet transitions [7]. In addition to these “suppression”

mechanisms, there is also the possibility, when the number
of heavy quarks created in a heavy-ion collision is large
enough, that uncorrelated heavy quarks recombine to form
a bound state inside the medium. This process, usually
called recombination [8,9], appears to be an important
contribution to charmonium production at present collider
energies.
The construction of a robust formalism that takes into

account consistently all three mechanisms is a challenging
task. In recent years, it has been found useful to consider
the various approaches from the perspective of open
quantum systems, the “system” being the quarkonia,
interacting with the quark-gluon plasma considered as
“environment” [10–22]. Recent reviews can be found in
[23,24]. This formalism allows us to compute the evolution
of bound states in a medium, taking into account quantum
mechanical effects. In this way, it has been understood that
quantum coherence [25] is essential at high temperatures
when the binding energy is of the order of the decay width.
At the same time, semiclassical equations can be derived
rigorously from the open quantum system framework in
special limits [13,18,20–22]. This has improved the under-
standing of the validity region of these semiclassical
approaches. The common assumption in most, if not all,
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approaches is that the medium is moderately affected by the
presence of quarkonia. Various types of effective theories
can then be obtained for the heavy quark dynamics, with
further approximations becoming available, depending on
the energy or time scales.
In the limit in which the temperature, T, is much

bigger than the binding energy, E, the interaction between
a quarkonium and the medium is Markovian. In this
case, the dynamics is governed by a Gorini–
Kossakowski–Sudarshan–Lindblad (GKSL) equation
[26,27]. Phenomenological predictions of quarkonium in
heavy-ion collisions using the GKSL equation in the
T ≫ E limit have been discussed in [14,15,28].
However, as was understood in [21], this limit leads to a
maximization of the entropy without taking into account
energy conservation constraints. In other words, this
approximation does not lead to the correct thermalization.
In [21], we showed that, when T ∼ E, the decay width is
modified to include a dependence on the binding energy.
With a slight abuse of language, we can say that the
imaginary part of the potential depends on the energy.
This dependence is a key element which guarantees that
the evolution equation complies with the fluctuation-
dissipation theorem. Phenomenologically, it is important
to take this dependence into account when the temperature is
not much larger than the binding energy, as was shown
numerically in [29].
The aim of this paper is to emphasize the importance of

the energy dependence of the decay width, not only in the
case of a static medium, but also in a more realistic case of
an expanding medium. We do this by computing the
nuclear modification factor, RAA, in different scenarios.
For each scenario, we compare the results obtained with
and without the energy dependence of the imaginary part of
the potential. We observe that, depending on the centrality
of the collision, the productions of ϒð1SÞ and ϒð2SÞ are
significantly less suppressed when we take into account the
energy dependence. We emphasize that our purpose here is
just to obtain an estimate of the effect, and show that it is
indeed quite significant. We shall not go into a detailed
analysis of experimental data.
The manuscript is organized as follows. In Sec. II, we

review the model that we developed in [21] and we discuss
the imaginary part of the potential and its energy depend-
ence. In Sec. III, we use this model to obtain phenomeno-
logical predictions of RAA using two different scenarios,
one based on (resummed) perturbation theory, and another
scenario in which we use lattice QCD inputs. Finally, we
present our conclusions in Sec. IV.

II. DISCUSSION OF THE MODEL

The model that we consider in the present paper is an
extension of that introduced in the last section of [21]. Let
us recall briefly its origin. One starts from the evolution
equation for the reduced density matrix DQ of a pair of

heavy quarks in a quark-gluon plasma, the interaction of
the heavy quarks with the plasma, supposed to be weak,
being limited to a one-gluon exchange. The plasma is
assumed to be in thermal equilibrium at a temperature T.
This equation reads [21]

dDQ

dt
þi½HQ;DQðtÞ�

¼−g2
Z
xx0

Z
t−t0

0

dτ½nAx ;UQðτÞnAx0U†
QðτÞDQðtÞ�Δ>ðτ;x−x0ÞÞ

−g2
Z
xx0

Z
t−t0

0

dτ½DQðtÞUQðτÞnAx0U†
QðτÞ;nAx �Δ<ðτ;x−x0Þ:

ð1Þ

Here,HQ is theHamiltonian that governs the dynamics of the
heavy quark pair in vacuum, with the corresponding evolu-
tion operator given by UQðtÞ ¼ e−iHQt. nAx is the temporal
component of the color current, whose explicit expression
can be found in [20]. The interaction between the heavy
quarks and the surrounding medium is captured by the
correlators of thermal fluctuations of the gluon fields aA0 ,

Trpl½aA0 ðt;xÞaB0 ðt0; yÞDpl� ¼ δABΔ>ðt − t0;x − yÞ;
Trpl½aB0 ðt0; yÞaA0 ðt;xÞDpl� ¼ δABΔ<ðt − t0;x − yÞ; ð2Þ

where Dpl is the density matrix of the plasma, and A, B are
color indices of the adjoint representation.We ignore here the
color magnetic interactions, which are subleading for heavy
quarks.
As was shown in detail in [21] this general equation can

be simplified through a number of steps:
(i) A part of the right-hand side of Eq. (1), which is

hermitian, can be absorbed in a redefinition of HQ.
This can be done by adding to both sides of Eq. (1)

g2

2

Z
xx0

Z
t−t0

0

dτ½nAxnAx0 ;DQðtÞ�ðΔ>ðτ; x − x0Þ

− Δ<ðτ; x − x0ÞÞ: ð3Þ
In the left-hand side, this is considered to be a
correction to the real part of the potential, while in
the right-hand side, it remains a compensating
correction. From now on, HQ denotes the heavy
quark hamiltonian after this redefinition.

(ii) By projecting Eq. (1) on the eigenstates of HQ, with
HQjii ¼ Eijii, one gets

dDij

dt
þ iEijDij ¼ Lij;klDkl; ð4Þ

where Dij ¼ hijDQjji, Eij ¼ Ei − Ej, and Lij;klDkl

are a rewriting of the right-hand side of Eq. (1) from
which the hermitian contribution to HQ has been
subtracted.
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(iii) When the typical time between collisions of the
quarkonium with plasma constituents is much bigger
than the inverse of the binding energy, which we
shall assume to be the case, Lij;kl can be treated as a
perturbation. The multiple-scale analysis described
in Appendix B of [21] provides a way to handle the
secular terms which appear in the perturbative
expansion. Assuming for simplicity that there are
no degenerate states, we obtain then an equation for
the diagonal part of the density matrix, namely for
the probabilities pi ¼ Dii:

dpi

dt
¼ Lii;kkpk: ð5Þ

(iv) A final simplification arises from the analysis of the
color degrees of freedom. We are interested in the
probability to find the quarkonium in a singlet state
at the end of the evolution. By emitting or absorbing
gluons, a color singlet can decay into an octet, and
vice versa a singlet can emerge from an octet. We
shall restrict ourselves to the dilute limit where there
are only a few heavy quarks in the medium. This
situation is appropriate for bottomonium production
at the LHC. The study of charmonium would
concern the dense limit with a large number of
heavy quarks present in the medium. This is a much
more difficult problem, which has only been ad-
dressed so far in special limits [20] (see also [13] for
the analogous Abelian case), or using the Boltzmann
equation [18,19]. In the case of bottomonium, we
have checked numerically that the contribution from
octet decays is tiny. The reason is that octets are
unbound and may occupy all the volume of the
medium, while a bound color singlet occupies a
small volume. Therefore, in the dilute limit, the rate
of the octet to singlet transitions decreases as the
volume of the medium increases. Besides, this
transition is also suppressed in the large Nc limit
[30]. Finally, we arrive at a simple rate equation,

dps

dt
¼ −Γsps; ð6Þ

for the probability ps of finding the quarkonium in a
singlet state. In the next subsection we analyze the
properties of the decay rate Γs.

A. Properties of Γs

The decaywidthΓs is given by the following formula [21]:

Γs ¼ 8παsCF

Z
p
e−

Eop−E
s

T

Z
q
Δ>ðEo

p − Es;qÞ

×

����hsj sin
�
q · r̂
2

�
jo;pi

����
2

; ð7Þ

where the operator, sinðq·r̂
2
Þ, with r̂ (an operator acting on the

heavy quark relative coordinates) describes the interaction of
the quarkoniumwith thegluons of theplasma, after the center
ofmass of thequarkoniumhas been integrated out [21]. In the
limit of small momentum transfer q, it reduces to a dipolar
interaction, as we shall discuss shortly. In Eq. (7), jsi is the
wave function of the singlet and Es its binding energy. The
ket jo;pi is the state of a heavy quark pair in an octet state

with energy Eo
p ¼ p2

M. In the large Nc limit the octet potential
is zero; therefore, the wave function of an octet can be
approximated by a plane wave. As a consequence, the
expectation value hsj sinðqr̂

2
Þjo;pi is easily obtained as a

Fourier transform of the wave function of the singlet bound
state. The last ingredient needed to compute the decay width
is the correlator Δ>ðw;qÞ [see Eq. (2)]. We shall estimate it
using theHardThermalLoop (HTL) approximation [32–34].

Δ>ðw;qÞ ¼ ew=T

ew=T − 1
σðw;qÞ; ð8Þ

where

σðω;qÞ ¼ 2ImΠLðω;qÞ
ðq2 þ ReΠLðω;qÞÞ2 þ ðImΠLðω;qÞÞ2

ð9Þ

and

ΠLðω;qÞ ¼ m2
DðTÞ

�
1 −

ω

2q
ln

�
ωþ qþ iϵ
ω − qþ iϵ

��
ð10Þ

is the longitudinal component of the gluon polarization
tensor. It is proportional to the Debye mass mD, given in
leading order perturbation theory by

mDðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παsðNc þ TFNFÞ

3

r
T; ð11Þ

whereNc ¼ 3, TF ¼ 1
2
, and NF is the number of flavors that

can be considered light when computing mD (we take
NF ¼ 3). A plot of this Debye mass as a function of the
temperature, as obtained with different scales for the running
coupling constant αs, is given in Fig. 1. One can see that (for
this range of temperatures) mD ≃ 2.5T, a result that is not
truly in the perturbative regime. Thus we should regard our
use of the HTL result as a convenient phenomenological
guide, providing us with a reasonable approximation for the
overall momentum and frequency dependence of the longi-
tudinal tensor, whilemD, towhich it is proportional, could be
viewed as a phenomenological parameter.
If one ignores the gap between singlets and octets, which

may be legitimate when the temperature is high enough,
one obtains the simpler expression
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Γ0
s ¼ 8παsCF

Z
q
Δ>ð0;qÞhsjsin2

�
qr̂
2

�
jsi; ð12Þ

which we refer to as the static limit [35]. This expression
(12) can be read as twice the imaginary part of the potential,
as originally computed in [5]. One may then interpret
Eq. (7) in similar terms, as an energy dependent imaginary
potential. This energy dependence, present in the expo-
nential factor as well as in the correlator, plays a crucial role
at low temperature since it ensures that the fluctuation-
dissipation theorem is fulfilled. The impact of this energy
dependence of the imaginary potential was studied numeri-
cally in [21], and is illustrated in Fig. 2. One can see that
ignoring this energy dependence typically increases the
decay width by a factor of 2. The purpose of this note is to
quantify this effect in the more realistic situation of an
expanding plasma. We note that the importance of the
energy gap was recognized in early studies of quarkonium
interactions with matter [36,37].
Before closing this subsection, we note that the energy

dependence in Eq. (7) originates from the energy gap
between singlets and octets. We determine the singlet
binding energy by solving the Schrödinger equation

HQjsi ¼ Esjsi; HQ ¼ p2

M
þ VsðrÞ: ð13Þ

The potential Vs is a screened potential which will be
specified shortly. At this point we will just comment on the
interplay between screening and decay rate:

(i) For simplicity, we set the origin of energies as that of
the lowest energy octet state. Then the absolute value
of the gap between a singlet state and the octet is
equal to the binding energy of the singlet. Then, for
the model to be valid, the condition jEsj ≫ Γs must
be fulfilled. This is equivalent to saying that the time
scale for which thermal effects become important

must be much larger than the inverse of typical
energy difference between states. If this is not so, we
cannot consider thermal effects as a perturbation
using multiple-scale analysis [see the discussion
before Eq. (5)], which is crucial to get to the simple
form of Eq. (6).

(ii) The decay width increases rapidly as the gap
decreases. Therefore, the phenomena of screening
and decay due to the collisions influence each other.
As the temperature increases, so does screening.
Screening reduces the energy gap between singlets
and octets, and this results in an increase of the
decay width.

Because of this strong interplay, it is important to have a
consistent and simultaneous treatment of both phenomena.

B. Relation with the dipole approach

At this point we wish to make a comment on the dipole
approximation used in most effective field theory calcula-
tions based on the assumption of a clean separation of scales.
In the (strict) limit 1

r ≫ mD ≫ ΔE, Eq. (12) reduces to

Γ0
s ∼ 2παsðμTÞCF

Z
q
qiqjΔ>ð0;qÞhsjrirjjsi: ð14Þ

This expression is plagued by an ultraviolet divergence
whose origin can be found in the HTL approximation used
for the gluon propagator. This approximation is only valid
for q ≲mD, which is in principle compatible with our
assumption. However, in expanding the sine function,
assuming that qr ≪ 1, we have produced a factor qiqj

whose magnitude is not controlled anymore by any factor.

FIG. 1. Perturbative Debye mass as a function of the temper-
ature, estimated from Eq. (11) with the running coupling constant
αs evaluated at different values of the scale μT .

FIG. 2. Comparison between the imaginary part of the potential
at T ¼ 250 MeV obtained from Eq. (7) (with energy dependency)
or from Eq. (12) (without energy dependency). Note that the
effect of energy dependence is sizeable and amounts to typically a
factor 2 reduction. Picture taken from [21].
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The HTL correlator results then integrated over momenta
where it is not valid. This is the origin of the divergence. This
divergence can be coped with by introducing a cutoff Λ in
the q-integration, using the HTL approximation of the
correlator for q < Λ and the full one-loop correlator for
q > Λ. Since the divergence is logarithmic, the dependence
on the cutoff eventually disappears, leaving contributions
proportional to lnðT=mDÞ. We should note however that
such a logarithm, while positive in the strict perturbative
regimewhere T ≫ mD, may turn negative in the temperature
range probed by present experiments (where the coupling
constant may remain of order unity), leading to unphysical
values for the decay rate.
An alternative to the procedure outlined above is to use a

better approximation for the correlator Δ>ð0;qÞ in
Eq. (14). We can rewrite this equation as [14,15]

Γ0
s ∼

παsðμTÞ
3Nc

Z
dth∇iAA

0 ðt; 0Þ∇iAA
0 ð0; 0Þihsjr2jsi

∼ hsjr2jsiκ; ð15Þ

with κ being a momentum diffusion coefficient [38]. This
formula relates this diffusion coefficient to the correlator of
electric field fluctuations, and this can be calculated beyond
the HTL approximation, including possibly nonperturba-
tive effects [39]. A detailed discussion of these issues can
be found in [23]. Here we note that in the important regime
where the various scales are overlapping, a static diffusion
constant is in any case not enough, since it ignores the
frequency dependence which we claim is important.
We now present details of the implementations of the

model and examine two scenarios to fix the parameters. For
lack of better terminology, we shall refer to these scenarios
as the perturbative scenario and the lattice scenario. It
should be understood however that the perturbative sce-
nario departs from strict perturbation theory (as we have
already alluded to) and the lattice scenario is not a lattice
calculation.

C. The perturbative scenario

We obtain the binding energy and the wave functions
needed to compute Γs and Γ0

s by solving numerically the
Schrödinger equation, using the algorithm described in
[40]. We focus on ϒð1SÞ because it is only for this state
that, within this scenario, the condition that the binding
energy is much bigger than the decay width is fulfilled.
This condition is needed for Eq. (6) to be valid. In the case
of ϒð2SÞ, the decay width is of the same magnitude as the
binding energy at the lowest temperature that we consider.
We need to specify first the hamiltonianHQ in Eq. (13). For
M, we take as definition a naive version of the 1S of mass

[41], which consists in settingM ¼ Mϒð1SÞ
2

∼ 4730 MeV.We
think that, given the accuracy we are aiming at, this is a
reasonable option.

For the real part of the potential, we use a screened
Yukawa potential,

VsðrÞ ¼ −
CFαsðμrÞe−mDðT;μTÞr

r
; ð16Þ

where μr and μT are (independent) subtraction points. The
scale μr is related to the exchange of gluons between the
heavy quark and the antiquark and enters the running
coupling αs in Eqs. (7) and (16). A natural choice would be
μr ∼ 1

r, but this would lead to difficulties at large distance r
in the numerical implementation of the running coupling.
Therefore we fix μr ∼ 1

a0
, where a0 is the Bohr radius, which

we define with the following self-consistent equation:

1

a0
¼ MCFαsð1=a0Þ

2
; a0 ¼ 0.149 fm: ð17Þ

The scale μT is the scale at which αs is evaluated when
computing the Debye mass using Eq. (11). The Debye mass
encodes the influence of the particles with a typical energy
of order πT, which is therefore a natural choice for the value
of μT . Finally, we use the leading order β-function for the
running of the coupling constant, with ΛQCD ¼ 250 MeV
and NF ¼ 3.
Figure 3 illustrates various criteria that are often con-

sidered for the melting of the quarkonia. The one based on
screening states that the bound state disappears when hri,
the average size of the bound state, becomes comparable to
the Debye screening length ∼1=mD. Thus one expects
screening alone to affect the survival of bound states when
hrmDi becomes of order unity. The other criterion focuses
on collisions and considers that the bound state disappears
when the decay width Γs becomes of comparable magni-
tude as the binding energy Es, that is when Γs=Es becomes

FIG. 3. Comparison of the dimensionless quantities hrmDi, Γs
E ,

and Γ0
s
E . The subtraction points are μr ¼ 1

a0
and μT ¼ 2πT.
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of order unity. We note that both hrmDi and Γs=Es are
increasing functions of the temperature. Figure 3 also
illustrates the influence of the gap by comparing the ratios
Γs=E and Γ0

s=Es. We remind that the model is valid as long
as this ratio is well below 1.
Consider now the uncertainty that results from the

choices of μr and μT in the computation of the decay
width. We only computed Γs and Γ0

s for a finite set of
temperatures (increasing T from 200 to 450 MeV by steps
of 50 MeV) to save on computational cost. However, we
have observed that the following function provides a good
fit of our results:

Γs ∼ aT þ bT2: ð18Þ

There is no theoretical reason for choosing this fit function
apart from the fact that at very high energies one expects the
decay to grow linearly with the temperature (neglecting the
running of the coupling). This fit function will be used later
when we calculate the RAA for the expanding system. Here
this is used as an interpolation formula to estimate the error
associated with the choices of the various subtraction

scales. Figures 4 and 5 illustrate the sensitivity of, respec-
tively, Γs and Γ0

s to variations of μr and μT around nominal
values, chosen to be 1=a0 and 2πT, respectively. Clearly the
uncertainty associated with variations of μT is bigger than
that associated to changes in μr. Overall, we observe that
Γ0
s > Γs, as expected.

D. The lattice scenario

Asan alternative possibility for fixing thebasic ingredients
of the model, we shall rely on the lattice data from a recent
computation [42]. We refer to this second strategy as the
“lattice scenario.”As in the perturbative scenario, the binding
energy and the wave function of the quarkonia are obtained
by solving a Schrödinger equation. However, nowwe take as
the heavy quark mass the same as in [42],M ¼ 4882 MeV,
slightly larger than that of the perturbative scenario. As for
the real part of the potential, it is given by

VsðrÞ ¼ −
αe−mDr

r
− σre−mDr

�
1þ 2

mDr

�
; ð19Þ

FIG. 4. These plots illustrate the influence of μT (left) and μr (right) on Γs. In the left plot, μr ¼ 1
a0
while μT ¼ πT, 2πT, 4πT. In the

right plot μT ¼ 2πT, and μr ¼ 1
2a0

; 1
a0
; 2
a0
.

FIG. 5. Same as Fig. 4 but for Γ0
s.
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where α, σ, and mD are obtained from the fit performed in
[42]. The values of mD differ from those in the perturbative
scenario, and they are given at a different set of temperatures.
These values are listed in Table I together with the corre-
sponding temperatures at which they are determined. The
definition of the potential is such that Vsð∞Þ ¼ 0, i.e., states
become unbound atE ¼ 0.We identify therefore−E1S as the
energy gap between the 1S state and the octets, with E1S
the binding energy. It may happen that, at low temperature,
the solution of the Schrödinger equation with the potential
(19) yields a binding energy larger than that obtained at
T ¼ 0 and computed as2MB −Mϒ, whereMB is themass of
a B meson andMϒ the mass of the ϒð1SÞ. We discard such
cases as unphysical. This is somewhat similar towhat is done
in Eq. (3.5) of [43]. This is why no result is given in Fig. 6 for
T ¼ 184.5 MeV and the lowest value of mD.
The decay width is obtained from Eq. (7), with the values

of mD now listed in Table I, and αs ¼ α=CF with α taken
from [42]. With these parameters, it becomes possible to
study both ϒð1SÞ and ϒð2SÞ since for both states the
condition Es > Γs is fulfilled. The results of the calculation
are displayed in Fig. 6 for the binding energy and in Figs. 7
and 8 for the decay widths Γs and Γ0

s , respectively.
In the case of theϒð1SÞ, the decay width is well fitted by

the formula

Γs ∼ ãTe−
b̃
T ; ð20Þ

motivated in part by the fact that at high temperatures the
decay width is linear with the temperature while at small
temperatures we expect an exponential suppression due to
the gap. For the case of ϒð2SÞ, however, we found that
Eq. (18) works better as a fit function. These formulae are
used in the analysis presented in Figs. 7 and 8. We note that
the fact that we use the same fit function for ϒð2SÞ as we
did for ϒð1SÞ in the perturbative scenario does not imply
that our computation for ϒð2SÞ is perturbative.
The biggest source of error in this lattice scenario comes

from the value of mD. We consider three cases, referred to
as S1, S2, and S3. The case S1 uses the central value ofmD.
The cases S2 and S3 correspond respectively to the lowest
(S2) or the largest (S3) values of mD that are compatible
with the error given in [42]. The resulting fit parameters are
given in Table II. Using these parameters we obtain the
decay widths of ϒð1SÞ and ϒð2SÞ shown in Fig. 7. Note
that these figures contain an extrapolation to temperatures
that are larger than those available in the lattice calculations
(which are limited to T ≤ 260 MeV).
The results we have obtained for the binding energy and

the decay width can be compared to recent results in the
literature. The binding energies that we have obtained for
ϒð1SÞ and ϒð2SÞ are shown in Fig. 6. For ϒð1SÞ these are
qualitatively similar and of the same order of magnitude as
those in [44–48]. For ϒð2SÞ, our results are qualitatively
similar to those in [44,45] but about five times smaller than
those found in [47], in which the decay width is not based
in the HTL model but rather on the computation in [49].
Concerning the decay width, we note that, in general, we
obtain results for the ϒð1SÞ that are of the same order of
magnitude as those in [44–48], however, the qualitative
behavior is different since our results are more suppressed
at small temperatures. The reason is that we take into
account the suppression due to the energy gap between
singlet and octet states, which was not taken into account in
the other studies. We observe a similar behavior in the case

FIG. 6. Binding energy of ϒð1SÞ (left) and ϒð2SÞ (right) in the strongly coupled scenario.

TABLE I. Debye mass as a function of temperature as extracted
from the fit in [42].

T (MeV) mD (MeV)

184.5 317� 25
208 437.5� 29.5
219 445� 30
257 534� 33
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of ϒð2SÞ, with the difference that the effect of the gap is
much less pronounced here.
We have repeated the analysis for Γ0

s (Fig. 8). The values
that we obtained for Γ0

s are substantially larger than those of
Γs, as it should, as long as we remain in the temperature
region used in [42]. We observe, however, that at large
temperatures Γs in Fig. 7 is actually larger than Γ0

s in Fig. 8.
We view this as an artifact of extrapolating the results using
Eq. (20) far beyond the region in which we performed the
fit. This indicates that we have to be cautious when

interpreting our results in the lattice scenario for collisions
that probe high temperatures.

III. PHENOMENOLOGICAL IMPLICATIONS

We turn now to the main objective of this paper, which is
to estimate the quantitative impact of the expansion on the
previous results. To do so, we shall provide a crude estimate
of the observable RAA. We assume that the quarkonium
state, initially in a state n, starts interacting with the plasma
at some (small) finite time which we choose to be t0 ¼
0.6 fm (value taken from [50]). The survival probability is
then obtained from the rate equation [see Eq. (6)]

dpn

dt
¼ −ΓðTðtÞÞpnðtÞ; ð21Þ

with the initial condition pnðt0Þ ¼ 1. The survival proba-
bility of a given quarkonium state is S ¼ pnðtfÞ, where tf is
the time spent by the quarkonium in the plasma. Its value
depends on the scenario considered and it will be specified
shortly. The above calculation assumes that the temperature
evolves slowly with time so that the interaction with the
plasma can be treated in an adiabatic approximation. That

FIG. 7. The decay width Γs of ϒð1SÞ (left) and ϒð2SÞ (right) in the lattice scenario.

FIG. 8. The decay width Γ0
s of ϒð1SÞ (left) and ϒð2SÞ (right) in the lattice scenario.

TABLE II. Parameters obtained by fitting the decay width in the
three cases (from S1 to S3) described in the text. The parameters
ã and b̃ correspond to the fit of the function of Eq. (20) for the
case ofϒð1SÞ. The parameters a and b correspond to the fit of the
function of Eq. (18) for the case of ϒð2SÞ.
Label ã b̃ðMeVÞ a bðMeVÞ−1
S1 22.9 217 × 10 −0.285 0.00160
S2 36.9 237 × 10 −0.258 0.00142
S3 15.3 199 × 10 −0.309 0.00178
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is, one assumes that the quarkonium interacts with the
medium as in the static case, with the medium characterized
by its instantaneous temperature TðtÞ.
For simplicity, we assume that the center of mass of the

quarkonium does not move in the transverse plane. Thus
the survival probability depends only on the time spent in
the plasma, and on the local conditions in which it evolves
[51]. These depend on the impact parameter, b, and on the
point in the transverse plane, s, (with respect to the collision
axis) in which the quarkonium is produced.We set the origin
of coordinates in the transverse plane to coincide with the
center of one of the nucleus. The initial temperature of the
medium, denoted by T0ðb; sÞ, is related to the local energy
density ε by the standard relation ε ∼ T4. The energy density
itself is taken to be proportional to the surface density of
participants, whichwe estimate as a function of b and s using
a Glauber model [52]. Thus we write

T0ðb; sÞ ¼ T0ð0; 0Þ
�
TAðsÞ½1 − ð1 − σTAðs−bÞ

A ÞA�
TAð0Þ½1 − ð1 − σTAð0Þ

A ÞA�

�1=4

; ð22Þ

where TA is the overlap function in the Glauber model,
A ¼ 207, and (in the type of collisions considered here) σ ¼
70 mb [53]. We take T0ð0; 0Þ ¼ 475 × 1.05 TeV for

ffiffiffi
s

p ¼
5.02 TeV collisions at the LHC. This number is obtained by
using the standard value of [50] and taking into account that
the temperature increases by about 5% when going from
2.76TeVcollisions to 5.02TeVcollisions [54]. Regarding the
time dependence of the temperature, we use Bjorken hydro-
dynamics, and ignore the transverse expansion,

Tðt; b; sÞ ¼ T0ðb; sÞ
�
t0
t

�1
3

: ð23Þ

Now we have all the ingredients to compute RAA.
According to the optical Glauber model, RAA for a given
impact parameter is computed as

RAAðbÞ ¼
R
d2sTAðsÞTAðs − bÞSðb; sÞR

d2sTAðsÞTAðs − bÞ ; ð24Þ

where Sðb; sÞ is the survival probability.

A. Perturbative scenario

The survival probability can be computed analytically if
we use for the decay width the approximate expression
(18). One then gets

Sð1SÞðb;sÞ¼ e
−1.5aT0ðb;sÞt0ððT0ðb;sÞTf

Þ2−1Þ−3bT0ðb;sÞ2t0ðT0ðb;sÞTf
−1Þ

: ð25Þ

We can use this formula to compute RAA. In this case, we
set Tf ¼ 200 MeV, arguing that a perturbative computa-
tion is only valid for temperatures above that of the phase
transition. We are aware that physics at lower temperatures
might modify the survival probability. However, we ignore
those effects. At the moment, our aim is not to obtain a
state-of-the-art phenomenological prediction, but to high-
light the importance of the energy gap between singlets and
octets.
In Fig. 9 we plot the results obtained by applying this

formula, taking the dependence on μT as a measure of our
theoretical uncertainty. Although the uncertainty due to μT
is quite significant, we can clearly see the difference
between Γs and Γ0

s . We see that taking into account the
gap increases RAA by typically the same factor of ∼2 as in
the nonexpanding case. We note that in Fig. 9, and in the
rest of the figures, we have plotted our results in the full
range of centralities although our model is only valid
when E ≫ Γs.

B. The lattice scenario

The computation is completely analogous to what was
already explained in the perturbative scenario. The only
difference is that in the case of ϒð1SÞ we used a fitting

FIG. 9. RAA of ϒð1SÞ obtained with the perturbative scenario against the number of participants, with (left) and without (right) the
energy dependence of the decay rate. The error quoted is due to Monte Carlo integration.
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function of the type of Eq. (20) instead of Eq. (18). In the
case of a decay width which follows Eq. (20) we can also
obtain an analytic solution for S,

Sðb; sÞ ¼ e
−3ãT0ðb;sÞ3t0

b̃2
ðe−

b̃
T0ðb;sÞð1þ b̃

T0ðb;sÞÞ−e
− b̃
Tf ð1þ b̃

Tf
ÞÞ
: ð26Þ

In the case of ϒð2SÞ, we can also apply Eq. (25). Another
difference with respect to the perturbative scenario is that
now we use Tf ¼ 180 MeV. As we explained before, for
temperatures smaller than this value, the fit obtained in [42]
gives values for the energy gap between ϒð1SÞ and
unbound states that are bigger than the experimental value
of the difference between the mass of ϒð1SÞ and two B
mesons. Therefore, we assume that at such small temper-
atures there are no sizeable thermal effects.
Knowing this, we obtain theRAA results shown in Fig. 10.

In the case ofϒð1SÞ, the condition that the binding energy is
much bigger than the decaywidth is fulfilled for awide range

of centralities.However, forϒð2SÞ this is not the case. In fact,
the validity range of our approximations for ϒð2SÞ in the
lattice scenario is similar to the one of ϒð1SÞ in the
perturbative case. In Fig. 11 we do the same but ignore
the gap. As in the perturbative case, we see that the difference
is quite substantial (again a factor of∼2). ComparingFigs. 11
and 10 one can see that this factor can be essential to bringing
the RAA in agreement with its experimental value. This is
approximately the case in Fig. 10, although no strong
conclusion can be drawn from this remark, given the
simplifications made in the present analysis. In fact, the
results in Fig. 10 slightly underpredict the experimentally
observed suppression, but this includes, among other things,
a sizeable contribution from cold nuclear matter effects that
are ignored in the present analysis.

IV. CONCLUSIONS

In this work, we have explored the phenomenological
consequences of the observations made in [21], where we

FIG. 10. Prediction for RAA of ϒð1SÞ (left) and ϒð2SÞ (right) in the lattice scenario. The different symbols correspond to different
parameters shown in Table II. The blue, orange, and green points correspond respectively to the S1, S2, and S3 set of parameters.
Physically, the three scenarios correspond to considering the central value of mD or the lower (larger) value of mD compatible with
the error.

FIG. 11. Same as Fig. 10 but using Γ0
s instead of Γs.
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highlighted the importance of taking into account the
energy gap between singlet and octet states when comput-
ing the decay width of a quarkonium bound state in a
medium. The role of this energy gap can be understood as
an energy dependence in the imaginary potential used to
determine the bound state properties. The discussion in [21]
was limited to the case of a static medium. In the present
study, we have extended the analysis to the case of an
expanding medium, and explored the predictions of a
simple model in two different scenarios, one based on
perturbative formulae, and a scenario based on the lattice
QCD data of [42]. Our results have corroborated our initial
findings, and indicate that the role of the energy depend-
ence of the imaginary potential is as important in the
expanding case as it is in the static medium: the value of
RAA is significantly lower when the energy dependence is

ignored. The effect is sizeable, the energy dependence
reducing the expected suppression by typically a factor of 2
for bottomonium at present LHC energies.
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