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We study latent heat and the pressure gap between the hot and cold phases at the first-order
deconfining phase transition temperature of the SU(3) Yang–Mills theory. Performing simula-
tions on lattices with various spatial volumes and lattice spacings, we calculate the gaps of the
energy density and pressure using the small flow-time expansion (SFtX) method. We find that the
latent heat �ε in the continuum limit is �ε/T 4 = 1.117 ± 0.040 for the aspect ratio Ns/Nt = 8
and 1.349 ± 0.038 for Ns/Nt = 6 at the transition temperature T = Tc. We also confirm that
the pressure gap is consistent with zero, as expected from the dynamical balance of two phases
at Tc. From hysteresis curves of the energy density near Tc, we show that the energy density in
the (metastable) deconfined phase is sensitive to the spatial volume, while that in the confined
phase is insensitive. Furthermore, we examine the effect of alternative procedures in the SFtX
method—the order of the continuum and the vanishing flow-time extrapolations, and also the
renormalization scale and higher-order corrections in the matching coefficients. We confirm that
the final results are all very consistent with each other for these alternatives.
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1. Introduction

First-order phase transitions appear in various important thermodynamic systems including high-
density quantum chromodynamics (QCD) and many-flavor QCD, and are associated with various
phenomena such as phase coexistence and latent heat. It is worth developing numerical tech-
niques to investigate first-order phase transitions. The SU(3) Yang–Mills theory, i.e., the quenched
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approximation of QCD, at finite temperature has a first-order deconfining phase transition and
provides us with a good testing ground for that.

At a first-order phase transition point, metastable states corresponding to two phases coexist at
the same time. To keep a dynamical balance between them, their pressures must be the same.
Therefore, one can check the validity of computational methods by measuring the pressure in each
metastable state. In fact, the problem of the nonvanishing pressure gap has played an important
role in the early development of lattice methods to study thermodynamic quantities [1–6]. On the
other hand, the energy density takes different values in each phase. The difference between them
is the latent heat, which is one of the fundamental observables characterizing the first-order phase
transition.

In Refs. [4,7], we studied the first-order transition of the SU(3) Yang–Mills theory using the
derivative method [1]. We have numerically confirmed that the pressure gap vanishes when we adopt
the nonperturbatively evaluated values of the Karsch coefficients (anisotropy coefficients), and then
computed the latent heat using the nonperturbative Karsch coefficients.

In this paper, we study the first-order phase transition of the SU(3) Yang–Mills theory adopting
a new technique to calculate thermodynamic observables: the small flow-time expansion (SFtX)
method based on the gradient flow [8,9]. The gradient flow is an evolution of the fields in terms
of a fictitious “time” t [10–14]. Fields at positive flow time t > 0 can be viewed as smeared
fields averaged over a mean-square physical radius of

√
8t in four dimensions, and the operators

constructed by flowed fields at t > 0 are shown to be free from the ultraviolet divergences and
short-distance singularities. Making use of this strict finiteness, the SFtX method provides us with a
general method to correctly calculate any renormalized observables on the lattice. The SFtX method
has been successfully applied to the evaluation of thermodynamic quantities in theYang–Mills gauge
theory [15–18] and in QCD with 2+1 flavors of dynamical quarks [19–22]. In the case of the SU(3)
Yang–Mills theory that we study, agreement with other methods has been established within a 1%
level [18]. The method has also been applied recently to study various observables associated with
the energy–momentum tensor [23–28].

We apply the SFtX method to calculate the energy density and pressure separately in hot and cold
phases at the first-order deconfining phase transition temperature of the SU(3) Yang–Mills theory.
We perform simulations on lattices with several lattice spacings and spatial volumes to carry out the
continuum extrapolation and also to study the finite-volume effect. On confirming that the pressure
gap is consistent with zero, we evaluate the latent heat.

We also test several alternative procedures in the SFtX method: To obtain a physical result by the
SFtX method, a double extrapolation to the continuum and vanishing flow-time limits, a → 0 and
t → 0, is required. When a proper fitting range avoiding small t singularities at a > 0 is chosen, the
final results should be insensitive to the order of these limits. We confirm this for the latent heat and
pressure gap in the SU(3) Yang–Mills theory. The second point to be addressed is the quality of the
matching coefficients that relate the physical observables and flowed operators in the SFtX method.
We test the next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) expressions as
well as the dependence on the choice of the renormalization scale for the matching coefficients.
Though the final results should be insensitive to the details of the matching coefficients, the width of
the available fitting range for the extrapolations and thus the numerical quality of the final results are
affected by the choice of them. We show that the final results for the latent heat and pressure gap are
insensitive to the choice of these alternatives. We also show that the NNLO matching coefficients
help to reduce lattice artifacts in the calculation of the latent heat.

2/26



PTEP 2021, 013B08 M. Shirogane et al.

In the next section, we introduce the SFtX method and several details of the method to be discussed
in this paper. Then, our simulations at the first-order transition of SU(3) Yang–Mills theory are
explained in Sect. 3. In Sect. 4, we show the results of the latent heat and pressure gap, mainly using
the NNLO matching coefficients, and test several alternative procedures in the SFtX method. We then
study the hysteresis of the energy density near the phase transition temperature and its spatial volume
dependence in Sect. 5. Our conclusions are given in Sect. 6. Appendix A is devoted to showing the
results of the latent heat and pressure gap with the NLO matching coefficients, with which we study
the effect due to the truncation of the perturbative series for the matching coefficients. InAppendix B,
we discuss the choice of lattice operator for the field strength.

2. Small flow-time expansion method

Our flow equation for the gradient flow is the simplest one proposed in Ref. [12]. The “flowed” gauge
field Ba

μ(t, x) at flow time t is obtained by solving the flow equation

∂tB
a
μ(t, x) = DνGa

νμ(t, x) ≡ ∂νGa
νμ(t, x) + f abcBb

ν(t, x)Gc
νμ(t, x) (1)

with the initial condition Ba
μ(0, x) = Aa

μ(x), where

Ga
μν(t, x) ≡ ∂μBa

ν(t, x) − ∂νBa
μ(t, x) + f abcBb

μ(t, x)Bc
ν(t, x) (2)

is the flowed field strength constructed from Ba
μ(t, x). Because Eq. (1) is a kind of diffusion equation,

we can regard Ba
μ(t, x) as a smeared field of the original gauge field Aa

μ(x) over a physical range of√
8t in four dimensions. It was shown that operators constructed from Ba

μ(t, x) (“flowed operators”)
have no ultraviolet divergences nor short-distance singularities at finite and positive t. Therefore, the
gradient flow defines a kind of renormalization scheme, which is formulated nonperturbatively and
thus can be calculated directly on the lattice.

The small flow-time expansion (SFtX) method provides us with a general method to evaluate any
renormalized observables in terms of flowed operators at small and positive flow time t, which are
strictly finite and thus can be calculated on the lattice without further renormalization [8]. In asymp-
totic free theories such as QCD, we can apply the perturbation theory to calculate the coefficients
(“matching coefficients”) relating the renormalized observables to the flowed operators at small flow
time t [13]. Contamination of O(t) terms can be removed by a vanishing flow-time extrapolation
t → 0.

2.1. Energy–momentum tensor

To calculate the energy–momentum tensor by the SFtX method, we consider the following flowed
operators at flow time t, which are gauge-invariant and local:

Uμν(t, x) ≡ Ga
μρ(t, x)Ga

νρ(t, x) − 1

4
δμνGa

ρσ (t, x)Ga
ρσ (t, x), (3)

E(t, x) ≡ 1

4
Ga

μν(t, x)Ga
μν(t, x). (4)

With these dimension-four operators, the correctly renormalized energy–momentum tensor T R
μν is

given by [8]

T R
μν(x) = lim

t→0

{
c1(t) Uμν(t, x) + 4c2(t) δμν [E(t, x) − 〈E(t, x)〉0]

}
, (5)
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where 〈E(t, x)〉0 is the zero-temperature subtraction. Here, the matching coefficients c1(t) and c2(t)
are calculated by the perturbation theory [13] as1

c1(t) = 1

g2

∞∑
	=0

k(	)
1 (μ, t)

[
g2

(4π)2

]	

, c2(t) = 1

g2

∞∑
	=1

k(	)
2 (μ, t)

[
g2

(4π)2

]	

, (6)

where g = g(μ) is the renormalized gauge coupling in the MS scheme at the renormalization scale
μ. Because Fa

μρ(x)Fa
νρ(x) = Ga

μρ(t, x)Ga
νρ(t, x) + O(t) in the tree-level approximation, we have

k(0)
1 = 1. On the other hand, there is no “k(0)

2 ” because the tree-level energy–momentum tensor is
traceless—the trace anomaly emerges from the one-loop order. Therefore, the next-to-leading order
(NLO) expression for c1(t) contains k(0)

1 and k(1)
1 , and that for c2(t) contains k(1)

2 and k(2)
2 , while

the next-to-next-to-leading order (NNLO) expression for c1(t) contains terms up to k(2)
1 , and that

for c2(t) contains terms up to k(3)
2 . We mainly adopt NNLO matching coefficients in this study. To

study the effect due to the truncation of perturbative series, we also perform a calculation using NLO
matching coefficients in Appendix A.

The coefficients k(1)
i in the one-loop level are calculated in Refs. [8,9,30], and k(2)

i in the two-loop
level in Refs. [29]. (See also Ref. [31].) As pointed out in Ref. [8], in pure gaugeYang–Mills theories,
k(	+1)

2 can be deduced by 	-loop coefficients using the trace anomaly. A concrete form of k(3)
2 is

given in Ref. [18]. Collecting these results for the case of pure gauge Yang–Mills theories, we have

k(1)
1 (μ, t) = −β0L(μ, t) − 7

3
CA = CA

(
−11

3
L(μ, t) − 7

3

)
, (7)

k(1)
2 (μ, t) = 1

8
β0 = 11

24
CA, (8)

k(2)
1 (μ, t) = −β1L(μ, t) + C2

A

(
−14 482

405
− 16 546

135
ln 2 + 1187

10
ln 3

)

= C2
A

(
−34

3
L(μ, t) − 14 482

405
− 16 546

135
ln 2 + 1187

10
ln 3

)
, (9)

k(2)
2 (μ, t) = 1

8
β1 − 7

16
β0CA = C2

A

(
− 3

16

)
, (10)

k(3)
2 (μ, t) = 1

8
β2 − 7

16
β1CA + β0C2

A

(
− 3

16
L(μ, t) − 1427

1440
+ 87

40
ln 2 − 27

20
ln 3

)

= C3
A

(
−11

16
L(μ, t) − 2849

1440
+ 319

40
ln 2 − 99

20
ln 3

)
, (11)

where

β0 = 11

3
CA, β1 = 34

3
C2

A, and β2 = 2857

54
C3

A (12)

are the first three coefficients of the beta function in Yang–Mills theories, and

L(μ, t) ≡ ln(2μ2t) + γE (13)

1 Note that our convention for c2(t) differs from that of Ref. [29]. Our c2(t) corresponds to c2(t)+ (1/4)c1(t)
in Ref. [29].
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was introduced in Ref. [29] with γE the Euler–Mascheroni constant. The factor CA is the quadratic
Casimir for the adjoint representation defined by

f acd f bcd = CAδab, (14)

and CA = Nc for the gauge group SU(Nc).

2.2. Latent heat and pressure gap

The energy density and the pressure are obtained from the diagonal elements of the energy–
momentum tensor:

ε = − 〈
T R

00(x)
〉
, p = 1

3

∑
i=1,2,3

〈T R
ii (x)〉. (15)

Separating configurations in the Monte Carlo time history into the hot and cold phases (see Sect. 3.2),
and adopting the multipoint reweighting method [32,33] to fine-tune the coupling parameter to the
critical point, we calculate the energy density and the pressure in each phase just at the transition
temperature, to estimate the latent heat and the pressure gap defined by

�ε = ε(hot) − ε(cold), �p = p(hot) − p(cold), (16)

where ε(hot/cold) and p(hot/cold) indicate ε and p in the hot and cold phases, respectively.
In this paper, we calculate these quantities in the following conventional combinations of the trace

anomaly and the entropy density:

�(ε − 3p)

T 4 and
�(ε + p)

T 4 . (17)

When �p = 0 as expected, �(ε − 3p)/T 4 and �(ε + p)/T 4 should coincide with each other. We
note that �(ε−3p)/T 4 is computed by the operator E(t, x) with the matching coefficient c2(t), while
�(ε + p)/T 4 is computed by the operator Uμν(t, x) with c1(t).

2.3. Renormalization scale

The matching coefficients ci(t) given in the previous subsection are written in terms of the renormal-
ization scale μ. However, because the matching coefficients relate the energy–momentum tensor and
flowed operators, both physical and thus both finite and independent of the renormalization scale μ,
the matching coefficients themselves should also be finite and independent of μ—the explicit μ

dependence from L(μ, t) should be canceled by that of the running coupling g, in principle. In prac-
tice, however, because the perturbative series for the matching coefficients are truncated at a finite
order, the choice of μ may affect the magnitude of systematic errors due to the neglected higher-order
terms.

In early studies with the SFtX method [15,16,19,23], the μd scale

μ = μd(t) ≡ 1√
8t

, L(μ, t) = −2 ln 2 + γE (18)

has been adopted because μd is a natural scale of local flowed operators that have a physical smearing
extent of

√
8t. On the other hand, in Ref. [29], it is argued that

μ = μ0(t) ≡ 1√
2t eγE

	 1.499 μd(t), L(μ, t) = 0 (19)

5/26



PTEP 2021, 013B08 M. Shirogane et al.

would be a good choice of μ because it keeps the magnitude of two-loop contributions small. The
μ0 scale was tested in quenched QCD [18] and in 2+1-flavor QCD [21,22], and it was reported that
the μ0 scale may improve the signal when the lattice is not quite fine [21,22].

In this paper, we examine both choices, μ = μ0(t) and μd(t). From the difference in the results
between these two choices, we learn the magnitude of the effect due to truncation of higher-order
terms in the perturbation theory.

2.4. Continuum and vanishing flow-time extrapolations

To obtain a physical result with the SFtX method, the continuum extrapolation a → 0 and the
vanishing flow-time extrapolation t → 0 are both mandatory to remove contamination of unwanted
higher-dimension operators in Eq. (5) as well as errors from the lattice regularization. In Refs. [16–
18,23,24,26], this double extrapolation is carried out by first taking a → 0 at each flow time t, and
then take t → 0 using the continuum-extrapolated results. In Refs. [19–21,25], t → 0 is taken first
at fixed finite a, reserving the continuum extrapolation for a later stage. In the following, we call the
way to first take t → 0 at fixed finite a and then take a → 0 “method 1,” and the way to first take
a → 0 at fixed finite t and then take t → 0 “method 2”.

On finite lattices, additional unwanted operators may contaminate the right-hand side of Eq. (5)
due to the lattice artifacts. To the leading order of the lattice spacing a, we expect that the lattice
operator in the curly bracket of Eq. (5) is expanded as

Tμν(t, x, a) = T R
μν(x) + tSμν(x) + Aμν(x)

a2

t
+ Cμν(x)(aT )2

+ Dμν(x)(aQCD)2 + a2S ′
μν(x) + O(a4, t2), (20)

where T R
μν is the physical energy–momentum tensor, Sμν and S ′

μν are contaminations of dimension-
six operators with the same quantum number, and Aμν , Cμν , and Dμν are those from dimension-four
operators. In higher orders of a, we also have terms proportional to (a2/t)2 etc. [34]. In Eq. (20),
the term proportional to a2/t is singular at t = 0 and thus is problematic when we want to take
t → 0 at finite a in method 1. When we take the a → 0 limit first, the term proportional to a2/t
is removed in principle. However, in practice, the a2/t term is also problematic in method 2 when
we want to take a → 0 at small t where the a2/t term dominates the data—we cannot perform the
a → 0 extrapolation reliably at small t. Therefore, in both methods, we need to find a range of t at
each a where the a2/t and more singular terms are negligible. Let us call the range of t in which the
a2/t and more singular terms as well as the O(t2) terms look negligible the “linear window” [19,21].

On the other hand, when we can find such a range of t and perform t → 0 and a → 0 extrapolations
using data in this range only, because the flowed operator on the lattice will be well approximated as
Tμν(t, a) ≈ T R

μν + tSμν +a2C ′
μν +O(a4, t2) in this range, the final results of method 1 and method 2

for T R
μν should be identical. The consistency of both methods is thus a good test of the SFtX method.

In the following, we adopt both method 1 and method 2 using data in linear windows and perform
extrapolations linear in t and a2. When both methods are consistent with each other, we get strong
support in our identification of the linear windows.

Another issue in the study of thermodynamic properties is the possible dependence on the physical
volume of the system. We have to keep the physical volume fixed in the a → 0 and t → 0
extrapolations to identify finite-volume effects. In our study, T is adjusted to the transition temperature
Tc whose value is a physical constant. On a lattice with the size N 3

s × Nt , the lattice spacing defined
as a = 1/(NtTc) is thus changed by changing Nt , and the spatial volume in physical units, V =
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Table 1. Simulation parameters: the spatial lattice size Ns, the temporal lattice size Nt , coupling parameter
β = 6/g2

0 , and the critical coupling βc. The measurements have been performed Nconf times at intervals of Nsep

sweeps. The data for 483 × 8, 643 × 8, and 643 × 12 are taken from our previous study [7].

Ns Nt β βc Nsep Nconf

48 8 6.056 6.061 60(18) 20 10 000
6.058 10 000
6.060 10 000
6.062 10 000
6.065 11 000
6.067 10 000

64 8 6.0585 6.062 47(14) 20 4750
6.061 103 000
6.063 12 500
6.065 25 500
6.068 81 000

48 12 6.333 6.334 72(13) 50 52 500
6.335 40 000
6.337 52 500

64 12 6.332 6.334 93(17) 50 6000
6.3335 17 500
6.335 5800
6.3375 9600
6.339 8800

72 12 6.334 6.335 31(10) 50 8000
6.335 8000
6.337 8000

96 12 6.334 6.335 32(11) 50 20 550
6.335 12 000
6.336 14 400

96 16 6.543 6.546 67(20) 50 4350
6.545 4800
6.547 4250

128 16 6.544 6.546 16(23) 200 2750
6.545 3000
6.546 3000
6.547 3000
6.548 3000

(Nsa)3 = N 3
s /(NtTc)

3, is fixed when the aspect ratio Ns/Nt is fixed. In this paper, we take the double
extrapolation for the cases of Ns/Nt = 6 and 8 to study the finite-volume effect.

3. Numerical simulations
3.1. Simulation parameters

We perform simulations of the SU(3) Yang–Mills theory with the standard Wilson action at several
inverse gauge couplings β = 6/g2 around the deconfining transition point βc. We have studied
lattices with temporal lattice sizes of Nt = 8, 12, and 16 with several different spatial lattice sizes
Ns. Some of the configurations are taken from Ref. [7]. Although we have studied Nt = 6 lattices
too, we do not use them in this study because the linear window turned out not to be clear enough for
Nt = 6. Our simulation parameters are summarized in Table 1. The configurations are generated by a
pseudo-heat-bath algorithm followed by over-relaxation updates. Each measurement is separated by
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Nsep heat-bath sweeps. Data are taken at 3 to 6 β values for each (Ns, Nt), and are combined using the
multipoint reweighting method [32,33]. The statistical errors are estimated by the jackknife method
with the bin size chosen such that the errors are saturated.

We define the transition point as the peak position of the Polyakov loop susceptibility χ� =
N 3

s (〈�2〉−〈�〉2). The results of the critical point βc determined in this way are also listed in Table 1.
We employ the discretized representation of the flow equation (1) defined from the Wilson gauge

action [12]. The numerical solution of the flow equation is obtained by the third-order Runge–Kutta
method. For the field strength Gμν(t, x) in the observables, several candidates are available for the
lattice operator. From a test of the plaquette and the clover-type representations for Gμν(t, x) given
in Appendix B, we adopt the clover-type representation.

3.2. Phase separation around the first-order transition point

To evaluate the latent heat and the pressure gap, we need to separate the configurations around the
first-order transition point into the hot and cold phases. In the left panel of Fig. 1, we show the
histogram of the absolute value of the Polyakov loop |�| obtained on the 963 ×12 lattice, where � is
averaged over the spatial coordinates. The coupling parameter β is adjusted to the transition point βc

using the multipoint reweighting method. The two peaks in Fig. 1 correspond to the hot and cold
phases. As discussed in Ref. [7], though the two peaks of the Polyakov loop histogram are well
separated, the peaks of the plaquette histogram are overlapping. It is thus meaningful to use the
Polyakov loop to classify configurations into the hot and cold phases.

In the right panel of Fig. 1, we show the histogram of the flowed Polyakov loop |�̃|t/a2=2.0, which
is constructed with the flowed gauge field at t/a2 = 2.0, as a typical example. We find that, though
the scale of the horizontal axis is different, its shape is quite similar to that shown in the left panel. The
same similarity is also observed at other values of t/a2. This suggests a strong correlation between
the original Polyakov loop � and the flowed Polyakov loop �̃. In Fig. 2, we show the 2D distribution
of (|�|, |�̃|t/a2=2.0) measured on the 963 × 12 lattice. A darker tone means a higher probability.
We find that � and �̃ have a strong linear correlation with each other. These results show that the
gradient flow does not affect the separation, and thus there is no merit in using the flowed Polyakov
loop for the phase separation.

We thus follow the method of Ref. [7] to classify configurations into the hot and cold phases:
First, we remove short-time-range fluctuations by averaging |�| over several configurations (101
configurations, except for the 1283×16 lattice, for which we use 45 configurations) around the current
configuration. We then classify the configurations into hot, cold, and mixed phases by the value of
this time-smeared Polyakov loop. With this classification, we observe many flip-flops between the
hot and cold phases during our Monte Carlo steps, while mixed configurations in which the two
phases coexist are found to be rare on our lattices. We discard the configurations in the mixed phase
in the following.

After the phase separation, we carry out the gradient flow on each of the configurations to measure
the flowed operators given in Eqs. (3) and (4). We then combine their expectation values in each
phase by the multipoint reweighting method to obtain their values just at the transition point βc.

4. Results of latent heat and pressure gap
4.1. Latent heat and pressure gap on finite lattices

In Figs. 3–5, we show the results of �(ε − 3p)/T 4, �(ε + p)/T 4, and �ε/T 4 as functions of
t/a2, using the NNLO matching coefficients. The blue, green, and red symbols are the results of
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Fig. 1. Histograms of the original Polyakov loop (left) and the flowed Polyakov loop after gradient flow to
t/a2 = 2.0 (right) at the transition point T = Tc on the 963 × 12 lattice.

Fig. 2. Double distribution of the original Polyakov loop |�| and the flowed Polyakov loop |�̃|t/a2=2.0 measured
on the 963 ×12 lattice. The probability observed at each simulation point was translated to that at the transition
point by the multipoint reweighting method.

�(ε − 3p)/T 4, �(ε + p)/T 4, and �ε/T 4, respectively. The plots in the left panels are the results
adopting the renormalization scale μ = μ0 and those in the right panels are those adopting μ = μd .
The rapid decrease of these observables at small t signals the appearance of the O(a2/t) lattice
discretization effect discussed in Sect. 2.4. Similar behavior at similar values of t has been reported
for (ε−3p)/T 4 and (ε+p)/T 4 themselves in previous studies of SU(3)Yang–Mills theory [15,16,18].
We thus disregard the data in this region in the t → 0 and a → 0 extrapolations. We note that the
results behave almost linearly for t/a2 � 1.0, while the O(t) error sometimes starts to contaminate at
large t/a2. We also note that, though the dependence on the renormalization scale μ is small, there is
a general tendency that the μ0 scale (left panels) leads to a slightly smaller slope towards the t → 0
limit than the μd scale (right panels).

It should be noted that, within the statistical errors, the results of �(ε − 3p)/T 4 and �(ε + p)/T 4

are consistent with each other in a wide range of t. This means that the pressure gap between two
phases �p vanishes, which must be satisfied in the final results after the double extrapolation of
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Fig. 3. �(ε−3p)/T 4 (blue), �(ε+p)/T 4 (green), and �ε/T 4 (red) calculated on the 483 ×8 (top) and 643 ×8
(bottom) lattices. The left and right panels show the results obtained with μ = μ0 and μ = μd , respectively.
The horizontal axis is the flow time in lattice units t/a2. The symbols at t/a2 = 0 and the straight lines are the
results of t → 0 linear extrapolation.

t → 0 and a → 0. This suggests that, for these observables, the errors from the lattice discretization
and the small flow-time expansion are well under control in these ranges of t.

To study the influence of the truncation of perturbative series for the matching coefficients, we
repeat the calculation with the NLO matching coefficients following the original procedure of Ref. [8].
The results are summarized in Appendix A. We find that the NNLO matching coefficients drastically
improve the signal over the NLO matching coefficients in the sense that the �p at finite t and a
becomes much smaller and also the observables show a smaller slope in t. As discussed in the next
section, we also confirm that the results of �(ε − 3p)/T 4, �(ε + p)/T 4, and �ε/T 4 extrapolated to
the t → 0 limit are consistent between the NNLO and NLO analyses.

4.2. Method 1: t → 0 followed by a → 0

Let us first analyze the data adopting method 1, i.e., we first take the small flow-time limit t → 0
on each lattice, and then take the continuum limit a → 0. We note that the data shown in Figs. 3–5
are very linear in a wide range of t within the statistical error. In this study, we choose the fit range
as follows: First, we require the fit range to satisfy tT 2

c ≤ 0.025. This value of the upper bound is
determined by consulting the linearity of the data and also from the consistency with the fit range
adopted in method 2 to be discussed in Sect. 4.3. We confirm that this upper bound satisfies the
requirement that the smearing by the gradient flow is not overlapping around the periodic lattice
(t/a2 < t1/2 defined in Ref. [19]). We also require t/a2 ≥ √

2 so that the smearing radius by the
gradient flow well covers the nearest-neighbor lattice sites. For the case of Nt = 8, however, because
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Fig. 4. The same as Fig. 3, but on the 483 × 12, 643 × 12, 723 × 12, 963 × 12 lattices (from top to bottom).

this makes the available range too narrow, we relaxed it to the minimum requirement of t/a2 ≥ 1.
The fit ranges that we adopt as well as the results of linear t → 0 extrapolations are given in Table 2.
Corresponding linear fit lines are shown in Figs. 3–5. In Table 2, we also show the results with the
NLO matching coefficients discussed in Appendix A. The errors in Table 2 are statistical only. We
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Fig. 5. The same as Fig. 3, but on the 963 × 16 (top) and 1283 × 16 (bottom) lattices.

Fig. 6. Spatial volume dependence of �(ε + p)/T 4 (red) and �(ε − 3p)/T 4 (blue) with the NNLO matching
coefficients adopting μ = μ0 on N 3

s × 12 lattices with Ns = 48, 64, 72, and 96.

have also tested different fit ranges, but the variation of the results due to the fit range turned out to
be within the statistical errors given in Table 2.

From Table 2, we note that results of different renormalization scales as well as with NNLO and
NLO matching coefficients are all very consistent with each other. We also find that the differences
between �(ε −3p)/T 4 and �(ε +p)/T 4 are less than about one sigma for all lattices, in accordance
with the expectation that �p should vanish.

In Fig. 6, we plot the results of �(ε − 3p)/T 4 (red) and �(ε + p)/T 4 (blue) at t = 0 measured on
N 3

s × 12 lattices with Ns = 48, 64, 72, and 96 as functions of the inverse spatial volume in lattice
units 1/N 3

s . The lattice spacing a = 1/(NtTc) is the same for all data shown in Fig. 6. We find that
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Fig. 7. �(ε+p)/T 4 (square) and �(ε−3p)/T 4 (circle) at t = 0 for the aspect ratio Ns/Nt = 8. The horizontal
axis is 1/N 2

t = (Tca)2. The open square and open circle at 1/N 2
t = 0 are the results of method 2, first taking

a → 0 and then t → 0. The left and middle panels are the results with NNLO matching coefficients adopting
μ = μ0 and μd , respectively. The right panel is the results with NLO matching coefficients adopting μ = μd .

Fig. 8. The same as Fig. 7, but for the aspect ratio Ns/Nt = 6.

Table 2. The results of t → 0 extrapolation of �(ε − 3p)/T 4 and �(ε + p)/T 4 on each lattice. Errors are
statistical only. Systematic errors due to the choice of the fit range are smaller than the statistical errors.

Ns Nt Fit range NNLO with μ0 NNLO with μd NLO with μd

t/a2 �(ε−3p)

T 4
�(ε+p)

T 4
�(ε−3p)

T 4
�(ε+p)

T 4
�(ε−3p)

T 4
�(ε+p)

T 4

48 8 1.0–1.6 1.256(34) 1.202(26) 1.270(34) 1.205(26) 1.266(34) 1.188(25)
64 8 1.0–1.6 1.171(28) 1.132(20) 1.181(28) 1.135(20) 1.175(28) 1.111(19)
48 12 1.4–3.6 1.449(17) 1.476(19) 1.461(17) 1.480(19) 1.451(18) 1.441(18)
64 12 1.4–2.0 1.347(35) 1.375(40) 1.349(35) 1.379(40) 1.325(35) 1.307(40)
72 12 1.4–3.6 1.222(45) 1.257(46) 1.232(46) 1.260(46) 1.230(46) 1.237(44)
96 12 1.4–3.6 1.083(34) 1.120(34) 1.094(34) 1.123(34) 1.093(34) 1.101(34)
96 16 1.4–6.4 1.283(36) 1.309(45) 1.290(36) 1.311(45) 1.291(37) 1.281(42)
128 16 1.4–6.4 1.092(31) 1.118(41) 1.097(31) 1.121(41) 1.067(33) 1.065(41)

�(ε − 3p)/T 4 and �(ε + p)/T 4 decrease as the spatial volume increases. Therefore, we have to
take the finite-volume effect into account.

We now perform the continuum extrapolation a → 0 using the results shown in Table 2. To study
the finite-volume effect, we perform this on lattices with fixed spatial volume V . As discussed in
Sect. 2.4, this is achieved by fixing the aspect ratio Ns/Nt in our study. In Fig. 7, we plot �(ε−3p)/T 4

and �(ε + p)/T 4 at t = 0 as functions of 1/N 2
t = (Tca)2 for Ns/Nt = 8. The left and middle panels

are the results adopting μ = μ0 and μd , respectively. We also show the results with NLO matching
coefficients adopting μ = μd , discussed in Appendix A. Corresponding results for Ns/Nt = 6 are
shown in Fig. 8.
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Fig. 9. �(ε − 3p)/T 4 (left) and �(ε + p)/T 4 (right) with the NNLO matching coefficients adopting μ = μ0

(top) and μ = μd (bottom) on Ns/Nt = 8 lattices. Three orange curves represent the result in the continuum
limit. (Thick orange curves represent the central values and thin curves represent the range of their errors.)

We do the a → 0 extrapolation by fitting these results by a linear function of (Tca)2 = 1/N 2
t . We

find that the lattice spacing dependence is small in these observables. However, we also note that
the slight slope toward the continuum limit changes its sign between Ns/Nt = 8 and 6. This may
be suggesting that, when we consider various systematic errors, the lattice spacing dependence is
approximately absent within errors. The continuum-extrapolated values by the linear fit are plotted
by the filled square and filled circle at 1/N 2

t = 0 in Figs. 7 and 8. The open square and open circle
at 1/N 2

t ≈ 0 are the results of method 2, discussed in the next subsection.
Our final results of method 1 for the latent heat are summarized in the left columns of Table 3.

We find that the results for �ε/T 4, �(ε − 3p)/T 4, and �(ε + p)/T 4, obtained using the NNLO or
NLO matching coefficients and with the μ0 or μd scale, are all very consistent with each other at
each aspect ratio. From the results of �(ε − 3p)/T 4 and �(ε + p)/T 4 with the NNLO matching
coefficients and the μ0 scale, we find the pressure gaps to be

�p/T 4 = 0.015(17) (Ns/Nt = 8), �p/T 4 = 0.015(14) (Ns/Nt = 6), (21)

which are only about 1% of the latent heat and are consistent with zero.

4.3. Method 2: a → 0 followed by t → 0

Next, we adopt method 2 to take the double limit (t, a) → (0, 0), i.e., we first take the a → 0 limit
at each flow time t in physical units, and then take the t → 0 limit. We do this by fixing the aspect
ratio Ns/Nt to take the finite-size effect into account. In Fig. 9, we plot the results of �(ε − 3p)/T 4

(left) and �(ε + p)/T 4 (right) as functions of the flow time in a physical unit, tT 2
c = t/(aNt)

2, on
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Fig. 10. The same as Fig. 9, but for Ns/Nt = 6.

Table 3. �ε/T 4, �(ε − 3p)/T 4, and �(ε + p)/T 4 in the continuum limit with the NNLO and NLO matching
coefficients adopting the renormalization scale μ0 or μd . The left and right three columns are the results of
method 1 (t → 0 followed by a → 0) and method 2 (a → 0 followed by t → 0), respectively. Errors are
statistical only. Systematic errors due to variation of the fit ranges are smaller than the statistical errors.

Method 1 Method 2
Ns
Nt

�ε

T 4
�(ε−3p)

T 4
�(ε+p)

T 4
�ε

T 4
�(ε−3p)

T 4
�(ε+p)

T 4

NNLO μ0 6 1.314(45) 1.269(44) 1.329(50) 1.349(38) 1.282(39) 1.372(43)
NNLO μd 6 1.317(45) 1.274(44) 1.333(50) 1.355(38) 1.294(39) 1.375(43)
NLO μd 6 1.293(43) 1.276(45) 1.301(48) 1.332(37) 1.290(39) 1.346(40)
NNLO μ0 8 1.095(40) 1.051(37) 1.113(42) 1.117(40) 1.061(39) 1.135(43)
NNLO μd 8 1.099(40) 1.057(37) 1.115(42) 1.121(41) 1.072(40) 1.138(43)
NLO μd 8 1.056(40) 1.030(38) 1.068(42) 1.078(40) 1.037(40) 1.091(42)

lattices with Ns/Nt = 8. Figure 10 shows corresponding results for Ns/Nt = 6. For these figures, the
NNLO matching coefficients are used, and the results adopting μ = μ0 and μd are given in the top
and bottom panels of each figure, respectively. The red, green, and blue symbols are for the results of
Nt = 8, 12, and 16. Recall that the lattice spacing a = 1/(NtTc) is varied by Nt . From these figures,
we find that the lattice spacing dependence becomes rapidly smaller as the flow time increases.

We take the a → 0 limit by fitting the data with a linear function of 1/N 2
t at each flow time tT 2

c .
The orange curves in Figs. 9 and 10 are the results in the continuum limit. The center curve represents
the central value, and the upper and lower curves represent the statistical error. For information, we
also show the results obtained outside the linear window in these figures. In Fig. 11, we show the
results of �(ε − 3p)/T 4 (circle) and �(ε + p)/T 4 (square) in the continuum limit as functions of
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Fig. 11. �(ε + p)/T 4 (red square) and �(ε − 3p)/T 4 (blue circle) in the continuum limit with the NNLO
matching coefficients adopting μ = μ0 (top left) and μ = μd (top right), and with the NLO matching
coefficients adopting μ = μd (bottom). The filled symbols are the results of Ns/Nt = 8 and the open symbols
are those of Ns/Nt = 6. The symbols on the vertical axes are the results in the continuum limit.

Fig. 12. Fit range dependence of �ε/T 4 (triangle), �(ε + p)/T 4 (square), �(ε − 3p)/T 4 (circle), and �p/T 4

(diamond), determined in the continuum and t = 0 limits by method 2, with the NNLO matching coefficients
adopting the μ0 scale. The filled symbols are the results of Ns/Nt = 8 and the open symbols are those of
Ns/Nt = 6. The numbers 1–5 on the horizontal axis are for the fit ranges 1–5 explained in the text. For
comparison, the results of method 1 are also shown at the left end of the plot.

tT 2
c for Ns/Nt = 8 (filled symbols) and Ns/Nt = 6 (open symbols). The results adopting μ = μ0

and μd are given in the upper left and upper right panels. We find that the dependence on μ is almost
negligible in these quantities. In the bottom panel of Fig. 11, we also show the results using data
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with NLO matching coefficients with the μd scale given in Appendix A. Comparing the upper and
lower panels, we find that, by adopting the NNLO matching coefficients, the slopes in t are much
reduced and the pressure gap �p/T 4 at finite t is much suppressed.

We then perform t → 0 extrapolation using the continuum-extrapolated results. We avoid the
data in the small-t region where contamination of the O(a2/t) terms is suspected. To estimate a
systematic error due to the t → 0 extrapolation, we test the following five fit ranges: Range 1:
0.010 < tTc < 0.020, Range 2: 0.010 < tTc < 0.025, Range 3: 0.005 < tTc < 0.020, Range 4:
0.015 < tTc < 0.025, and Range 5: 0.005 < tTc < 0.025. In Fig. 12, we show the results of these
liner extrapolations in tT 2

c using data with the NNLO matching coefficients and the μ0 scale. The
triangle, square, and circle symbols are for �ε/T 4, �(ε + p)/T 4, and �(ε − 3p) at t = 0, and the
filled and open symbols are the results of Ns/Nt = 8 and 6, respectively. We find that the results
adopting different fit ranges are very consistent with each other. In Fig. 12, we also show the results
of method 1 obtained in the previous subsection at the left end of the plot, which are also consistent
with the results of method 2 within statistical errors.

We note that �(ε + p)/T 4 and �(ε − 3p)/T 4 at t = 0 are very consistent with each other within
the statistical errors. Similar results are obtained also with the μd scale and the NLO matching
coefficients.

The results of the direct calculation of �p are plotted by the diamond symbols in the bottom panel
of Fig. 12. We find that the values of �p are only about 1% of the latent heat and are consistent
with the results of method 1 given in Eq. (21). We also note that the values of �p are even smaller
than the errors of the latent heat. Due to correlation between �(ε + p)/T 4 and �(ε − 3p)/T 4, the
jackknife statistical errors for �p turned out to be quite small in comparison to the errors by the error
propagation formula using the errors of �(ε + p)/T 4 and �(ε − 3p)/T 4. With the small errors, the
mean values of �p deviate from zero by about 2–3σ statistical errors depending on the fit range. We
find that these nonvanishing values in the t → 0 limit originate solely from the data at Nt = 8 used
in the continuum extrapolation at each fixed flow time t: As seen from Fig. 3, the values of �p for
Nt = 8 clearly deviate from zero, while those for Nt = 12 and 16 are consistent with zero in the
fit range of the t → 0 extrapolation, as shown in Figs. 4 and 5. When we remove the data on the
coarsest lattice Nt = 8, we obtain �p consistent with zero. Thus, taking account of the systematic
error due to the continuum extrapolation, which is larger than the statistical error for the case of �p,
we think that �p is consistent with zero.

Our final results of method 2 for the latent heat are summarized in the right columns of Table 3,
for which we adopt the results with the NNLO matching coefficients and the μ0 scale using the fit
range 2. Errors are statistical only. As shown in Fig. 12, the systematic errors due to the choice of
the fit range are smaller than the statistical errors.

4.4. Results of the SFtX method for the latent heat

Finally, we summarize our results of the SFtX method for the latent heat. From Table 3 and Fig. 12,
we see that the results of method 1 and method 2 agree well with each other. We take our central values
from method 2 with the NNLO matching coefficients and the μ0 scale. We obtain for Ns/Nt = 8

�(ε − 3p)/T 4 = 1.061(39), (22)

�(ε + p)/T 4 = 1.135(43), (23)

�ε/T 4 = 1.117(40), (24)
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and for Ns/Nt = 6

�(ε − 3p)/T 4 = 1.282(39), (25)

�(ε + p)/T 4 = 1.372(43), (26)

�ε/T 4 = 1.349(38). (27)

Systematic errors estimated from the differences between method 1 and method 2 as well as among
different fit ranges are smaller than the statistical errors quoted in these equations. Performing
heuristic extrapolations of these two data points to the thermodynamic limit, we find �ε/T 4 ∼
0.95 ± 0.07 by a 1/V linear fit and �ε/T 4 ∼ 1.23 ± 0.03 by a constant fit.

4.5. Comparison with the derivative method

Finally, we compare our results of the SFtX method with those obtained by the derivative method [7].
The computational cost for the SFtX method is much smaller than that for the derivative method,
since the nonperturbative calculation of the Karsch coefficients needed in the derivative method
requires a large systematic study with high statistics. We note that the statistical errors are reduced
with the SFtX method thanks to the smearing nature of the gradient flow and also the avoidance of
the nonperturbative Karsch coefficients.

In Ref. [7], using the derivative method, a rather low value of �ε/T 4 = 0.75 ± 0.17 was obtained
for the latent heat in the continuum limit using data at Nt = 6, 8, and 12. In Ref. [7], because the
spatial volume dependence in the latent heat was found to be small in comparison with the statistical
errors, which are much larger than the errors in the current study mainly due to the error from the
nonperturbative Karsch coefficients, spatial volume dependence was assumed to be absent.

To avoid uncertainties due to the continuum and infinite spatial volume extrapolations, we directly
compare the results of �(ε − 3p)/T 4 and �(ε + p)/T 4 at finite lattice spacings and spatial volumes
in Fig. 13. The horizontal axis is Ns/Nt = 3

√
V Tc. The filled symbols are the results of the SFtX

method in the t → 0 limit with the NNLO matching coefficients and the μ0 scale, obtained on the
lattices with Nt = 8 (red diamond), 12 (green circle), and 16 (blue triangle), respectively (Table 2).
The magenta square symbols are for the results in the continuum limit at Ns/Nt = 6 and 8 by method
2. The open symbols are the results of the derivative method obtained on the lattices with Nt = 6
(black pentagon), 8 (red diamond), and 12 (green circle), respectively [7]. The large statistical errors
for �(ε +p)/T 4 with the derivative method are caused by the large errors of nonperturbative Karsch
coefficients, which increase rapidly with Nt . From these plots, we find that the SFtX method and the
derivative method lead to quite similar results at each Ns/Nt .

As discussed in Sect. 4.3, the lattice spacing dependence of the latent heat by the SFtX method is
small for Nt = 8, 12, 16. The lattice spacing dependence in the results by the derivative method is
also small for Nt = 8 and 12. The left and right panels of Fig. 14 are the results of �(ε −3p)/T 4 and
�(ε + p)/T 4 as functions of 1/N 2

t = a2T 2
c , i.e., the lattice spacing squared normalized by Tc. The

filled and open symbols are the results by the SFtX method and the derivative method, respectively.
The red diamonds and green circles are for Ns/Nt = 6 and 8, respectively. We note that the data
at Nt = 6 with the derivative method, shown at the right end of these plots, show deviation from
the general tendency of data on finer lattices, suggesting a large discretization error at Nt = 6. As
suggested from Fig. 9 of Ref. [7], by removing the data at Nt = 6, the derivative method may also
lead to a larger latent heat in the continuum, though a reliable extrapolation is not possible with only
two data points.
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Fig. 13. Comparison of �(ε −3p)/T 4 (left) and �(ε +p)/T 4 (right) between the derivative method and SFtX
method as functions of Ns/Nt = 3

√
V Tc computed by the NNLO calculation with μ = μ0. The open symbols

are the result of the derivative method [7]. We shifted the value of Ns/Nt to avoid overlapping symbols. The
original values of Ns/Nt are 4, 16/3, 6, 8, and 32/3.

Fig. 14. Comparison of �(ε − 3p)/T 4 (left) and �(ε + p)/T 4 (right) between the SFtX method and the
derivative method as functions of 1/N 2

t = a2T 2
c . Filled symbols are the results of the SFtX method with the

NNLO matching coefficients and the μ0 scale, and open symbols are the results of the derivative method given
in Ref. [7].

Fig. 15. (ε + p)/T 4 by the SFtX method calculated using configurations in the hot phase (red), the cold phase
(blue), and all configurations (green) with the NNLO matching coefficients and the μ0 scale, obtained on the
483 × 8 (cross) and 643 × 8 (circle) lattices.

19/26



PTEP 2021, 013B08 M. Shirogane et al.

Fig. 16. The same as Fig. 15, but by the derivative method.

5. Hysteresis of the energy density near Tc

In Sect. 4, we found that the latent heat is clearly dependent on the spatial volume of the system.
At a first-order phase transition point, however, because the correlation length does not diverge, the
spatial volume dependence should be mild when the volume is sufficiently large. To find the origin
of the spatial volume dependence in our latent heat, we study (ε + p)/T 4 separately in the hot and
cold phases at temperatures near Tc using the multipoint reweighting method.

The results obtained on 483 × 8 and 643 × 8 lattices are plotted by the cross and circle symbols
in Fig. 15. The flow time is t/a2 = 1.4—as shown in Sect. 4.2, the result is about the same as that
in the t → 0 limit at this value of t. The NNLO matching coefficients with the μ0 scale are used.
The red symbols are for the results obtained in the hot phase and the blue symbols are for the cold
phase, while the green symbols show the results without the phase separation. The horizontal axis is
the temperature T = 1/(Nta) normalized by the critical temperature Tc, where the relation between
the lattice spacing a and β is determined by the critical point βc as a function of Nt [7]. The results
for the hot phase below Tc and for the cold phase above Tc are those obtained in the corresponding
metastable states. We find that the spatial volume dependence appears only in the (metastable) hot
phase around Tc, while no apparent volume dependence is visible in the (metastable) cold phase. We
thus conclude that the spatial volume dependence of the latent heat is due to that in the contribution
of the hot phase. From this figure, we also note that latent heat is sensitive to the value of the critical
point βc. A careful determination is required for βc.

In Fig. 16, we show the corresponding plot by the derivative method, obtained on the 483×8 (cross)
and 643 × 8 (circle) lattices [4,7]. In this calculation, because our nonperturbative determination of
the Karsch coefficients is possible only at βc [4,7], we also use the Karsch coefficients obtained at
βc at other values of β around βc. We see similar spatial volume dependence of the results in the
(metastable) hot phase, though the statistical errors are large.

To draw a definite statement about the nature of the metastable state, we need more statistics,
because the effective number of configurations for the metastable states after the phase separa-
tion is not large in the reweighting calculation when T is not sufficiently close to Tc. Further
study with higher statistics is needed to precisely determine the volume dependence of the hot
phase, and thus to carry out a reliable extrapolation of the latent heat to the thermodynamic
limit.
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6. Conclusions

To study the latent heat and the pressure gap at the first-order deconfining phase transition temperature
in the SU(3) Yang–Mills theory, we performed simulations on lattices with various spatial volumes
and lattice spacings around the phase transition temperature Tc. Separating generated configurations
into hot and cold phases using the value of the Polyakov loop and adjusting the temperature to Tc by
the multipoint reweighting method, we calculated the energy density and the pressure gap in each
phase at Tc using the small flow-time expansion (SFtX) method based on the gradient flow.

We confirmed that the pressure gap between the hot and cold phases is consistent with zero, as
expected from the dynamical balance of two phases at Tc. Our results for the latent heat in the
continuum limit are summarized in Sect. 4.4. We obtained �ε/T 4 = 1.117 ± 0.040 for the spatial
volume corresponding to the aspect ratio Ns/Nt = 8, and 1.349 ± 0.038 for Ns/Nt = 6. From a
study of hysteresis curves for (ε + p)/T 4 around Tc, we note that (ε + p)/T 4 in the (metastable)
deconfined phase is sensitive to the spatial volume, while that in the confined phase is insensitive.
The value of (ε + p)/T 4 decreases as the volume increases in the (metastable) deconfined phase.
Study with higher statistics is needed to precisely determine the latent heat in the thermodynamic
limit.

Furthermore, using the systematic data at various lattice spacings, we examined the effect of
alternative procedures in the SFtX method. We compared two orders of the double extrapolation
(a, t) → (0, 0)—method 1 (first t → 0 and then a → 0) and method 2 (first a → 0 and then t → 0).
We also studied the effects of the renormalization scale and the truncation of higher-order terms
in the matching coefficients. We confirmed that the final results with alternative procedures are all
consistent with each other. We also found that the use of NNLO matching coefficients improves the
signal of the latent heat with the SFtX method.
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Appendix A. Energy–momentum tensor with NLO matching coefficients

In this appendix, we calculate the energy–momentum tensor using the NLO matching coefficients,
following the original paper of the SFtX method [8]:

T R
μν(x) = lim

t→0

{
1

αU (t)
Uμν(t, x) + δμν

4αE(t)
[E(t, x) − 〈E(t, x)〉0]

}
, (A.1)
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Fig.A.1. �(ε −3p)/T 4 (blue), �(ε +p)/T 4 (green), and �ε/T 4 (red) calculated on 483 ×8 (left) and 643 ×8
(right) lattices with the NLO matching coefficients. The horizontal axis is flow time in a lattice unit t/a2. The
straight lines are the results of t → 0 linear extrapolation.

Fig.A.2. The same as Fig. A.1, but on the 483 × 12 (top left), 643 × 12 (top right), 723 × 12 (bottom left), and
963 × 12 (bottom right) lattices.

where

αU (t) = 1

c1(t)
= g2

[
1 + 2

β0

(4π)2 s̄1g2 + O(g4)

]
(A.2)

αE(t) = 1

c2(t)
= (4π)2

2β0

[
1 + 2

β0

(4π)2 s̄2g2 + O(g4)

]
. (A.3)
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Fig.A.3. The same as Fig. A.1, but on the 963 × 16 (left) and 1283 × 16 (right) lattices.

Fig.A.4. �(ε − 3p)/T 4 (left) and �(ε + p)/T 4 (right) with the NLO matching coefficients, obtained on the
Ns/Nt = 8 lattices. Three orange curves represent the result in the continuum limit. (Thick orange curves
represent the central values and thin curves represent the range of their errors.)

Fig.A.5. The same as Fig. A.4, but on the Ns/Nt = 6 lattices.

For the NLO calculation in this appendix, following Ref. [8], we keep terms up to the next-to-leading
order only in αU (t) and αE(t) and adopt the μd scale. We then have

s̄1 = 7

22
+ 1

2
γE − ln 2 	 −0.086 357 529 93, (A.4)

s̄2 = 21

44
− β1

2β2
0

= 27

484
	 0.055 785 123 97. (A.5)
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Fig.A.6. �(ε − 3p)/T 4 using a clover-shaped operator (red) and a plaquette (blue) in the continuum limit for
Ns/Nt = 8 (upper) and 6 (lower) by the NNLO calculation with μ = μ0, respectively.

The details of the simulations are the same as the NNLO calculations given in Sect. 3.1. The results
of �(ε − 3p)/T 4, �(ε + p)/T 4, and �ε/T 4 are plotted as functions of flow time t/a2 in Figs. A.1,
A.2, and A.3. The blue, green, and red symbols are the results of �(ε − 3p)/T 4, �(ε + p)/T 4, and
�ε/T 4, respectively.

Method 1: t → 0 followed by a → 0 The results of the t → 0 extrapolation on each finite lattice
are shown in Figs. A.1, A.2, and A.3 by the lines, and the results in the t → 0 limit are summarized
in Table 2. Continuum extrapolation of the results given in Table 2 is discussed in Sect. 4.2.

Method 2: a → 0 followed by t → 0 To carry out the continuum extrapolation at each t in physi-
cal units, we replot the data shown in Figs. A.1, A.2, and A.3 as a function of tT 2

c . For the aspect ratio
Ns/Nt = 8 and 6, we obtain Figs. A.4 and A.5. The red, green, and blue symbols are the results of
Nt = 8, 12, and 16. These figures correspond to Figs. 9 and 10 with the NNLO matching coefficients.
We find that the difference between the results with different lattice spacings becomes smaller as the
flow time t increases. Repeating the analyses of Sect. 4.3, we obtain the continuum limit shown by
the orange curves in Figs. A.4 and A.5. These results of �(ε + p)/T 4 and �(ε − 3p)/T 4 in the con-
tinuum limit are summarized in Fig. 11 as functions of t, and the results of the t → 0 extrapolation
are given in Table 3.

Appendix B. Choice of lattice field strength operator

In this appendix, we test the influence of lattice operators for the field strength Gμν(t, x) to define the
operators Uμν(t, x) and E(t, x) in Eqs. (3) and (4). Two major choices for Gμν(t, x) are the plaquette
and clover-shaped lattice operators.
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In the left and right panels of Fig. A.6, we compare the results of �(ε − 3p)/T 4 and �(ε + p)/T 4

in the continuum limit obtained by the clover-shaped and plaquette operators adopting method 2
discussed in Sect. 2.4. The upper and lower panels are the results for Ns/Nt = 8 and 6, respectively.
The blue and red symbols are for results with the clover-shaped and plaquette operators, respectively.
The two results agree well with each other at sufficiently large t. The disagreement at tT 2

c
<∼ 0.01

is caused by the lattice discretization error, and the data there should be removed in the t → 0
extrapolation needed in the SFtX method. Because we have a wider range of t for the linear t → 0
extrapolation with the clover-shaped operator, we use that for the calculation of Uμν(t, x) and E(t, x)
in this study. With the clover-shaped operator, we may use data down to tT 2

c ∼ 0.005.
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