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1 Introduction

Rare flavor changing neutral current (FCNC) kaon decays [1–7] provide a unique way to
probe the flavor sector of the Standard Model (SM) and, in particular, CP-violating effects.
The program to measure the decay rates of K+ → π+νν̄ [8] and KL → π0νν̄ [9] is aimed
at determining the CKM parameters with very high theoretical precision. In particular,
the KL → π0νν̄ decay rate can be used to extract [10–12]

|VtsVtd sin(β + βs)| ≈ |A2λ5η̄| , (1.1)

where A, λ, and η̄ are the Wolfenstein parameters and β + βs is one of the angles in the
ds unitarity triangle such that [13]

β = arg
(
−VcdV

∗
cb

VtdV
∗
tb

)
, βs = arg

(
−VtsV

∗
tb

VcsV ∗cb

)
, β + βs − π = arg

(
−VtsV

∗
td

VcsV ∗cd

)
. (1.2)
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Experimentally, working with decays that involve charged leptons is much simpler than
the above-mentioned neutrino modes. Nonetheless, the focus of the current kaon program
is on the neutrino final states, primarily because decays to charged leptons are believed not
to be theoretically clean. There are so-called long-distance effects that introduce hadronic
uncertainties, making extractions of clean theory parameters challenging.

In this paper, we show that we can get very clean theoretical information from decays of
kaons into charged leptons. This can be done only for the neutral kaons, by exploiting the
interference effects between KS and KL. We focus on K → µ+µ−, for which the relevant
CKM observable is that of eq. (1.1). The theoretical precision in this case is superb, with
hadronic uncertainties below the 1% level.

The importance of the interference terms in K → µ+µ− was emphasized in ref. [14].
In this paper, we generalize their results and demonstrate that one can get a very clean
determination of the parameter combination in eq. (1.1) by studying the interference terms.

Before we get into the details, below we explain the main idea. We first recall the
situation with KL → π0νν̄. The reason that this decay mode is theoretically clean is
that it is to a very good approximation pure CP-violating. As such, it is all calculable
using perturbation theory and we do not have to worry about non-calculable long-distance
effects, as they are to a very good approximation CP conserving.

The issue with K → µ+µ− is that the final state is a mixture of ` = 0 and ` = 1
partial wave configurations. Thus, both KS and KL decays are not pure CP-violating,
and both decays have non-calculable long distance effects. Yet, if we could experimentally
distinguish between the ` = 0 and ` = 1 final states, the situation would be similar
to KL → π0νν̄, as we could separate the CP-violating part that we can calculate. In
particular, the ` = 0 amplitude has significant CP violation effects in the SM, and the
decay mode KS → (µ+µ−)`=0 is very clean theoretically. What we show in this work is
that under some mild assumptions we can extract the rate, that is, B(KS → (µ+µ−)`=0)
without separating the ` = 0 and ` = 1 final states. This can be done by isolating the
interference terms.

Leptonic kaon decays have been studied for a long time [15–31]. Rare kaon decays
have a lot of potential for the discovery of physics beyond the SM [32–50]. Also on the
experimental side a lot of advances took place in the quest for rare kaon decays [8, 9, 51–57].

The SM predictions for K → µ+µ− [14, 58–60] and the corresponding long-distance
contributions [58, 61–63] have been studied in great detail. The same goes for KS → γγ

and KS → γl+l− [61] as well as kaon decays into four leptons [64]. See also the reviews
refs. [65, 66].

2 Notation and formalism

We use the following standard notation [67], where the two neutral kaon mass eigenstates,
|KS〉 and |KL〉, are linear combinations of the flavor eigenstates:

|KS〉 = p|K0〉+ q|K0〉, |KL〉 = p|K0〉 − q|K0〉. (2.1)
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The mass and width averages and differences are denoted by

m = mL +mS

2 , Γ = ΓL + ΓS
2 , (2.2)

∆m =mL −mS , ∆Γ = ΓL − ΓS .

We define the decay amplitudes of |K0〉 and |K0〉 to a final state f ,

Af = 〈f |H|K0〉, Af = 〈f |H|K0〉, (2.3)

and the parameter λf ,

λf ≡
q

p

Af
Af

. (2.4)

We use an arbitrary normalization, such that Af and Af have the same normalization.
An amplitude is called relatively real if Imλf = 0 and relatively imaginary ifReλf = 0.

Any amplitude can be written as a sum of a relatively real and a relatively imaginary part.
In any neutral meson system, the quantities Af , Af , and q/p depend on the phase

convention. However, |Af |, |Af |, |q/p|, and λf are phase convention independent and are
hence physical.

Consider a beam of neutral kaons. The time dependent decay rate as a function of
proper time is given by [67] (dΓ

dt

)
= Nff(t), (2.5)

where Nf is a time-independent normalization factor and the function f(t) is given as a
sum of four functions

f(t) = CLe
−ΓLt + CS e

−ΓSt + 2 [Csin sin(∆mt) + Ccos cos(∆mt)] e−Γt. (2.6)

The form of eq. (2.6) is valid for any neutral kaon beam (that is, not only for a pure
state) and also for a sum over several final states. We refer to the set of coefficients,
{CL, CS , Csin, Ccos}, as the experimental parameters. Note that CL is the coefficient of the
KL decay term, CS of the KS decay term, while Csin and Ccos come with the interference
terms between KL and KS . For convenience we also define

C2
Int. = C2

cos + C2
sin . (2.7)

The C coefficients implicitly depend on the composition of the beam and on the relevant
final states. The dependence on the final states enters via the parameters

{|Af | , |Af | , |q/p| , arg(λf )}. (2.8)

We denote these as the theory parameters.
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For an initial |K0〉 and |K0〉 beam, respectively, and a single final state, f , the coeffi-
cients are explicitly given by [67]

CK
0

L = 1
2 |Af |

2
(
1 + |λf |2 − 2Reλf

)
, CK

0
L = 1

2 |Af |
2
(
1 + |λf |−2 − 2Reλ−1

f

)
,

CK
0

S = 1
2 |Af |

2
(
1 + |λf |2 + 2Reλf

)
, CK

0
S = 1

2 |Af |
2
(
1 + |λf |−2 + 2Reλ−1

f

)
,

CK
0

sin = −|Af |2Imλf , CK
0

sin = −|Af |2Imλ−1
f ,

CK
0

cos = 1
2 |Af |

2
(
1− |λf |2

)
, CK

0
cos = 1

2 |Af |
2
(
1− |λf |−2

)
. (2.9)

In the following we focus on decays into CP-eigenstate final states. For a given final
state, f , we define ηf = 1 if it is CP-even and ηf = −1 if it is CP-odd. We define the
CP-even and CP-odd amplitudes

ACP-even
f ≡ 1√

2
Af (1 + ηfλf ) , ACP-odd

f ≡ 1√
2
Af (1− ηfλf ) . (2.10)

We make several assumptions and approximations as we go on. Our first approxima-
tion is

(i) CP violation (CPV) in mixing is negligible.
Although our main interest is CP violating physics, CPV in mixing is sub-
dominant in the effects we consider. We therefore neglect it throughout the
paper and work in the limit ∣∣∣∣qp

∣∣∣∣ = 1.

This approximation is known to work to order εK ∼ 10−3 which we neglect from this
point on.

Under the above assumption, the full set of decay-mode-specific independent physical
parameters can be taken to be

{|Af |, |Af |, arg (λf )}. (2.11)

Furthermore, in the limit of no CPV in mixing, the CP amplitudes of eq. (2.10) correspond
to the amplitudes for the decays of KS and KL. For example, for f = π+π−, ηf = 1 and
to a very good approximation λf = 1 and thus ACP-odd

π+π− = 0. In the case of K → πνν̄,
ηf = 1 and λf is to a very good approximation a pure phase, so that the amplitude for
KL → πνν̄ gives sensitivity to the phase arg(λf ) [32].

In the following it will be useful to replace the set of independent physical parameters
of eq. (2.11) with the equivalent set of physical parameters:

{|ACP-even
f |, |ACP-odd

f |, arg
(
ACP-even
f

∗
ACP-odd
f

)
}. (2.12)

In particular, the time dependence for a beam of initial |K0〉 into a CP-even final state is
given by the coefficients

CK
0

L = |ACP-odd
f |2, CK

0
S = |ACP-even

f |2,

CK
0

cos = Re(ACP-odd*
f ACP-even

f ), CK
0

sin = −Im(ACP-odd*
f ACP-even

f ), (2.13)

– 4 –



J
H
E
P
0
7
(
2
0
2
1
)
1
0
3

For a CP-odd final state it is given by

CK
0

L = |ACP-even
f |2, CK

0
S = |ACP-odd

f |2,

CK
0

cos = Re(ACP-odd*
f ACP-even

f ), CK
0

sin = Im(ACP-odd*
f ACP-even

f ). (2.14)

For an initial |K0〉 state the result is obtained by multiplying Ccos and Csin by −1 in
eqs. (2.13) and (2.14).

We also define

ϕf = arg(ACP-odd*
f ACP-even

f ), (2.15)

such that we can write for a CP-even final state

CK
0

cos = |ACP-odd*
f ACP-even

f | cosϕf , CK
0

sin = −|ACP-odd*
f ACP-even

f | sinϕf . (2.16)

For a CP-odd final state we have analogously

CK
0

cos = |ACP-odd*
f ACP-even

f | cosϕf , CK
0

sin = |ACP-odd*
f ACP-even

f | sinϕf . (2.17)

3 The K → µ+µ− decay

In the decay of a neutral kaon into a pair of muons, there are two orthogonal final states
that are allowed by conservation of angular momentum — muons with a symmetric wave
function (` = 0) and muons with an anti-symmetric wave function (` = 1). Note that since
the leptons are fermions, the state with ` = 0 has negative parity and so it is CP odd, and
the state with ` = 1 is CP even. The four relevant amplitudes can be written in terms of
the CP amplitudes of eq. (2.10) as

ACP-even
` = 1√

2
A`
(
1− (−1)`λ`

)
, ACP-odd

` = 1√
2
A`
(
1 + (−1)`λ`

)
, (3.1)

with ` = 0, 1. Note that we keep the normalization arbitrary, but if we want to maintain
the same normalization for both A0 and A1 then we require a relative phase space factor
between them, β2

µ, with

βµ ≡
(

1−
4m2

µ

m2
K

) 1
2

, (3.2)

see for details appendix B.
Note that under the approximation |q/p| = 1, eq. (3.1) allows us to write the CP-even

and -odd amplitudes as amplitudes for the decays of the mass eigenstates |KS〉 and |KL〉:

ACP-odd
0 = A(KS → µ+µ−)`=0 ,

ACP-even
0 = A(KL → µ+µ−)`=0 ,

ACP-odd
1 = A(KL → µ+µ−)`=1 ,

ACP-even
1 = A(KS → µ+µ−)`=1. (3.3)
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When measuring the total time dependent decay rate for K → µ+µ−, the two di-
muon configurations, ` = 0, 1 add incoherently. The form of the function f(t) defined in
eq. (2.6), is unchanged. Theoretically, each of the C’s is given by an implicit sum over
the relevant amplitude expressions for different `’s. Thus we have two sets of decay-mode-
specific physical theory parameters,

{|ACP-even
` |, |ACP-odd

` |, ϕ` ≡ arg
(
ACP-odd*
` ACP-even

`

)
}, (3.4)

with ` = 0, 1, bringing us to a total of six unknown physical parameters.
It is well known that the decay K → µ+µ− receives long-distance and short-distance

contributions [59, 68–70]. The long-distance contribution is dominated by diagrams with
two intermediate on-shell photons, while the short-distance contribution is defined as orig-
inating from the weak effective Hamiltonian. The distinction between long-distance and
short-distance physics is somewhat ambiguous. It is clear that the short-distance physics
is to a good approximation dispersive (real), since it is dominated by heavy particles in
the loops. However, long-distance diagrams contribute both to the absorptive (imaginary)
amplitude and, when taken off-shell, also to the dispersive amplitude.

In the following we make one extra simplifying assumption, which results in reducing
the number of unknown parameters for K → µ+µ−. We consider only models where

(ii) The only source of CP violation is in the ` = 0 amplitude.
What we mean by this assumption is that only the ` = 0 amplitude has
Im(λ`) 6= 0.

As we discuss in section 5 and in appendix C, this assumption is fulfilled to a very good
approximation within the SM and in any model in which the leading leptonic operator is
vectorial.

We can then draw an important conclusion from the above assumption:

ACP-odd
1 = 0. (3.5)

This implies that the number of unknown parameters is reduced by two, leaving a single
parameter, |ACP-even

1 |, for the ` = 1 final state. Thus, we are left with the following list of
four unknown physical parameters,

|ACP-odd
0 |, |ACP-even

0 |, |ACP-even
1 |, arg(ACP-odd*

0 ACP-even
0 ). (3.6)

In the rest of the paper we demonstrate how it is possible to extract these parameters, and
specifically |ACP-odd

0 | = A(KS → µ+µ−)`=0, which, as we explain below, is a clean probe
of the SM.

4 Extracting B(KS → µ+µ−)`=0

As portrayed in eq. (2.6), the time-dependent decay rate for an arbitrary neutral kaon
initial state is given in general by the sum of four independent functions of time that
depend on the experimentally extracted parameters

{CL, CS , Ccos, Csin}. (4.1)

– 6 –
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Within our assumptions, these coefficients depend on the following four theory parameters

{|ACP-odd
0 |, |ACP-even

0 |, |ACP-even
1 |, ϕ0 ≡ arg(ACP-odd*

0 ACP-even
0 )}. (4.2)

We consider a case of a beam that at t = 0 was a pure K0 beam (that is, no K0).
Using eq. (2.9) we obtain that the result for this case is given by

CL = |ACP-even
0 |2, (4.3)

CS = |ACP-odd
0 |2 + β2

µ|ACP-even
1 |2,

Ccos = Re(ACP-odd*
0 ACP-even

0 ) = |ACP-odd*
0 ACP-even

0 | cosϕ0,

Csin = Im(ACP-odd*
0 ACP-even

0 ) = |ACP-odd*
0 ACP-even

0 | sinϕ0.

We see that the four experimental parameters can be used to extract the four theory
parameters. In particular, we find

|ACP-odd
0 |2 = C2

cos + C2
sin

CL
= C2

Int.
CL

, (4.4)

where C2
Int. = C2

cos +C2
sin was defined in eq. (2.7). Having the magnitude of the amplitude

we can deduce the branching ratio in terms of other observables,

B(KS → µ+µ−)`=0 = B(KL → µ+µ−)× τS
τL
×
(
Cint
CL

)2
. (4.5)

Eq. (4.5) is our main result. It demonstrates that we can extract B(KS → µ+µ−)`=0 from
the experimental time dependent decay rate.

A few comments are in order regarding eq. (4.5):

1. Our ability to extract B(KS → µ+µ−)`=0 comes from the interference terms. It
cannot be extracted from pure KL or KS terms.

2. A measurement of the interference terms additionally amounts to a measurement of
the phase ϕ0, which is not calculable from short-distance physics.

3. In order to extract B(KS → µ+µ−)`=0 we need only three of the four experimental
parameters. The fourth parameter, CS , can then be used to extract |ACP-even

1 |, or
equivalently B(KS → µ+µ−)`=1. Yet, this is not our main interest, as |ACP-even

1 | is
not calculable from short-distance physics.

4. For a pure K0 beam, CS and CL in eq. (4.3) are unchanged while Ccos and Csin pick
up a minus sign, and eq. (4.5) is unchanged.

While we have only discussed a pure K0 beam in this section, as long as we have
sensitivity to the interference terms, it is possible to determine |ACP-odd

0 |. In particular, as
long as the kaon decays in vacuum, one can write the branching ratio B(KS → µ+µ−)`=0
in terms of B(KL → µ+µ−) in the following way:

B(KS → µ+µ−)`=0 = DF × B(KL → µ+µ−)× τS
τL
×
(
Cint
CL

)2
. (4.6)

where DF is a dilution factor that takes into account the particular composition of the kaon
beam. We discuss two cases, that of a mixed beam, and of a KL beam with regeneration,
in appendix A.

– 7 –
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5 Calculating B(KS → µ+µ−)`=0

We move to discuss the theoretical calculation of B(KS → µ+µ−)`=0.

5.1 General calculation

We define

A` = ASD` +ALD` . (5.1)

The short-distance (SD) amplitude, ASD` , is the one that can be calculated perturbatively
from the effective Hamiltonian of any model. Note that at leading order in the perturbative
calculation it carries no strong phase. By definition, the long-distance (LD) amplitude,
ALD` , is the part that is not captured by that calculation. In general, it carries a strong
phase. We further define

λSD` = q

p

A
SD
`

ASD`
, λLD` = q

p

A
LD
`

ALD`
. (5.2)

Note that since we assume that the SD amplitude carries no strong phase, we have
|λSD` | = 1.

We now adopt one more working assumption, that is, we consider only models where:

(iii) The long-distance physics is CP conserving.
That is, we only consider cases where ALD` is relatively real, that is,
Im

(
λLD`

)
= 0.

In particular, this assumption implies that we can trust the perturbative calculation for
the CP-violating amplitude, using specific operators described by quarks.

We are now ready to discuss the CP-odd amplitudes. Because of assumption (ii) we
have ACP-odd

1 = 0. Thus we only need to consider the ` = 0 CP-odd amplitude. Using
eqs. (2.10) and (3.1) we write it as

ACP-odd
0 = 1√

2
ASD0 (1 + λSD0 ) . (5.3)

Then, using the fact that |λSD0 | = 1, we get

|ACP-odd
0 |2 = |ASD0 |2

[
1 + Re(λSD0 )

]
= |ASD0 |2

[
1− cos

(
2φSD0

)]
= 2|ASD0 |2 sin2 φSD0 , (5.4)

where we define

φSD0 = 1
2arg

(
−λSD0

)
. (5.5)

Note that the result is independent of the way we choose to split the amplitude into long-
and short-distance physics as long as the part we call “long-distance” is relatively real.
Moreover, we can subtract from ASD0 any part that is relatively real without affecting the
result. We use this freedom below when we discuss the SM prediction.

We conclude that in any model that satisfies our assumptions, we need to calculate
|ASD0 |2 and sin2 φSD0 in order to make a prediction for B(KS → µ+µ−)`=0.
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VudV
∗
us

VcdV
∗
cs

VtdV
∗
ts

θuc θut

θct

Figure 1. The “ds” unitarity triangle, see refs. [13, 71]. The plot is not to scale.

5.2 SM calculation

Next we discuss the situation in the SM and remark on more generic models. The SM
short-distance prediction has been discussed in ref. [59]. Here we do not present any
new arguments, but instead we review the results in the literature, explicitly stating the
assumptions made, and present the results in a basis independent way.

In order to discuss the situation in the SM we look at the “ds” unitarity triangle, that
we plot in figure 1. The angles are given as [13]:

θct ≡ arg
(
−VtdV

∗
ts

VcdV ∗cs

)
= π − β − βs ∼ λ0 , (5.6)

θut = arg
(
−VudV

∗
us

VtdV
∗
ts

)
= β + βs − θuc ∼ λ0 , (5.7)

θuc = arg
(
− VcdV

∗
cs

VudV ∗us

)
∼ λ4 . (5.8)

In what follows, when we discuss the SM prediction, we make one more approximation:

(iv) We neglect effects of O(λ4). In particular, we set θuc = 0.

With this approximation we then write

q

p
= −

(
VcdV

∗
cs

V ∗cdVcs

)[
1 +O(λ4)

]
≈ −

(
VcdV

∗
cs

V ∗cdVcs

)
, (5.9)

where in the last step we used θuc = 0.
We are now ready to show that in the SM the long-distance amplitude is CP conserving,

complying with assumption (iii) above. The claim is that the CKM factors in the long-
distance amplitudes are to a good approximation VusV ∗ud. The reason is that rescattering
effects, which are what results in the long-distance contributions, are dominated by tree
level decays followed by QCD rescattering. The most important one is K → γγ, which is
dominated by the π0 poles [59, 62]. We thus have

λLD0 = q

p

A
LD
0

ALD0
= −

(
VcdV

∗
cs

V ∗cdVcs

)(
VudV

∗
us

V ∗udVus

)
⇒ Im(λLD0 ) = 0 , (5.10)

where in the last step we use θuc = 0. The fact that Im(λLD0 ) = 0 implies that the
long-distance amplitude is CP conserving.

– 9 –
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We next discuss working assumption (ii) above, that is, that CP violation enters only
for ` = 0. Within the SM the short-distance effects are due to the following Hamiltonian

Heff = −GF√
2

α

2π sin2 θW
[V ∗csVcdYNL + V ∗tsVtdY (xt)] [(s̄d)V−A(µ̄µ)V−A] + h.c., (5.11)

with xt = m2
t /m

2
W , and the loop function Y (xt) ≈ 0.950± 0.049 and YNL = O(10−4) [60,

72]. Thus the leading SM short-distance physics operator is

(s̄d)V−A(µ̄µ)V−A + h.c. . (5.12)

This operator contributes only to the ` = 0 final state [59]. For completeness, we provide
a short derivation of this known result in appendix C.

A few comments are in order:

1. Scalar operators could also lead to CP violation in the ` = 1 amplitude through short-
distance effects. However, in the SM, the contribution of these operators to the rate
are suppressed with respect to the operator in eq. (5.11) by a factor of (mK/mW )2 ∼
10−5 [73], and can be safely neglected for the extraction of SM parameters.

2. Only the axial-times-axial part of the hadronic times leptonic currents of eq. (5.12)
is relevant for K → µ+µ− (see appendix C).

We conclude that the approximations and assumptions we work under are valid in
the SM up to very small deviations, of order λ4 ∼ εK ∼ 10−3. Thus, within the SM, the
only source of a CP violating phase is the weak effective Hamiltonian given in eq. (5.11).
Moreover, any extension of the SM in which the leptonic operator remains vectorial rather
than a scalar would satisfy our set of assumptions. For example also models with right-
handed currents fall under this category. Thus, within the SM and any such extension it is
straightforward to extract a prediction for B(KS → µ+µ−)`=0 purely from short-distance
physics.

We are now ready to discuss the SM prediction for B(KS → µ+µ−)`=0. We recover the
result, given in ref. [59], using phase convention independent expressions (see appendix B).
We first redefine ASD0 by subtracting the charm contribution, which is relatively real under
the approximation θuc = 0. Then we can write

λSD0 = q

p

A
SD
0

ASD0
= −

(
VcdV

∗
cs

V ∗cdVcs

)(
V ∗tdVts
VtdV

∗
ts

)
= −e−2iθct ⇒ sin2 φSD0 = sin2 θct. (5.13)

The calculation of |ASD0 |2 and the phase space integral is reviewed in appendix B. The
result is given in eq. (B.8):

B(KS → µ+µ−)`=0 = βµ τS
16πmK

∣∣∣∣GF√2
2αem

π sin2 θW
mKmµ × Y (xt) × fK × VtsVtd sin θct

∣∣∣∣2
≈ 1.64 · 10−13 ×

∣∣∣∣ VtsVtd sin θct
(A2λ5η̄)best fit

∣∣∣∣2 , (5.14)
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where we use

(A2λ5η̄)best fit = 1.33 · 10−4. (5.15)

Eq. (5.14) is very precise. There are a few sources of uncertainties that enter here.
They are all under control:

1. The only hadronic parameter is the kaon decay constant, which is well known from
charged kaon decays. Isospin breaking effects can also be incorporated in lattice QCD
if needed [74], reducing the ultimate hadronic uncertainties below the 1% level.

2. We have neglected subleading terms, that is, we neglected the term proportional to
YNL ∼ 10−4 from eq. (5.11), as well as CPV effects of order εK .

3. Parametric errors, including the dependence of the loop function Y (xt) on mt/mW ,
are small, as the errors on the top and W masses are below the 1% level.

4. Only leading order results in the loop expansion are used. Higher order terms are
expected to be suppressed by a loop factor, which is of order 1%. If needed, higher
orders in the loop function can be incorporated in order to reduce this uncertainty.

5. We only consider the leading SM operator, which is vectorial. At higher order scalar
operators are also present, but these effects are suppressed by O(m2

K/m
2
W ) [73].

We conclude that a measurement of B(KS → µ+µ−)`=0 would be a very clean independent
measurement of the following combination of CKM elements

|VtsVtd sin θct| = |VtsVtd sin(β + βs)| ≈ A2λ5η̄ , (5.16)

which coincides with eq. (1.1).
A similar analysis can be done in any model that satisfies the assumptions we have

made. In particular, these results hold in any model that generates the same operator as in
the SM. In such a model the prediction would be amended by replacing the SM values for
the CKM parameters and the loop function with the respective values in the model under
consideration.

We end this section with two remarks

1. There are models where we can have a significant contribution to the CP-odd ampli-
tude from scalar operators [37], in which case our assumption (ii) is not satisfied.

2. In addition to our quantity of interest, B(KS → µ+µ−)`=0, under the same set of
assumptions it is also possible to calculate the short-distance contribution to ACP-even

0 ,
that is, A(KL → µ+µ−)SD`=0. Then, assuming given values for the CKM parameters,
the measurement of the interference terms is also a measurement of the long-distance
amplitude A(KL → µ+µ−)LD`=0, and in particular of its unknown sign [14].

– 11 –
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6 Experimental considerations

We now turn to discuss the feasibility of the extraction of B(KS → µ+µ−)`=0. As is
apparent from eq. (4.5) we need to experimentally extract CInt. and CL. Of these, CL has
already been measured, and we can expect that in the future it will be measured with even
higher precision. The question is how well can CInt. be extracted.

Below we estimate the number of kaons that is needed to perform the measurement
assuming the SM. For that we need the values in the SM of the relevant amplitudes. While
the method we discuss does not require any estimation of the amplitudes, we use these
estimates to illustrate the expected magnitude of the interference terms, and to estimate
the needed statistics to perform the measurements. Of the three amplitudes, |ACP-odd

0 |
can be calculated perturbatively, |ACP-even

0 | can be extracted directly from the measured
value of B(KL → µ+µ−), and |ACP-even

1 | can only be estimated a priori by relying on non-
perturbative calculations from the literature, that suffer from large hadronic uncertainties.
We provide the details of these estimations in appendix B. They result in the following
values for the experimental parameters:

(CK0
L )SM = |ACP-even

0 |2 ≡ 1, (6.1)

(CK0
S )SM = |ACP-odd

0 |2 + β2
µ|ACP-even

1 |2 ≈ 0.43,

(CK0
Int.)SM = |ACP-even

0 ||ACP-odd
0 | ≈ 0.12,

where we have used a normalization such that the coefficient (CK0
L )SM is set to be unity.

Using these estimates, we plot the time dependence of the rate in figure 2, for two values
of the unknown phase, ϕ0 = arg(ACP-odd

0
∗
ACP-even

0 ). For illustration, we also plot the time
dependence excluding the interference terms (see caption). We use the range t . 6τS
as for larger times the beam is almost a pure KL beam. The relative magnitude of the
interference terms is apparent in the difference between the two plotted curves. We find
the relative integrated effect to be of order 3% to 6%, depending on the value of ϕ0.

Based on the above, we can roughly estimate the number of required kaons. We have
B(KL → µ+µ−) = (6.84 ± 0.11) · 10−9 [67], and only about 1% of the KL particles decay
inside our region of interest, t . 6τS . Since the coefficients in eq. (6.1) are not very small,
we can use this to estimate that the number of useful events is roughly a fraction of 10−10

out of the kaons. Thus, for example, in order to get O(1000) events in the interesting
region we need O(1013) K0 particles to start with. We do not expect this preliminary
estimate to be strongly affected by backgrounds or reconstruction efficiencies.

Experimentally, it is not easy to produce a pure neutral kaon beam. Experiments
currently running enjoy a very high luminosity of kaons of order 1014 kaons a year (see
ref. [75] for NA62, ref. [9] for KOTO, and ref. [76] for LHCb). However, these kaons are
either charged (NA62), or to a good approximation a pure KL (KOTO), or come with an
almost equal mix of K0 and K0 (LHCb).

Thus, for the purpose of the analysis we are considering, we need to turn to a mixed
beam or a regenerated beam. As discussed in appendix A, in the case of a mixed beam with
non-zero production asymmetry, the sensitivity to the interference terms is diluted by a
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Figure 2. The expected approximate time dependence within the SM, using the coefficients of
eq. (6.1), for two values of ϕ0 = arg(ACP-odd

0
∗
ACP-even

0 ). The difference between the dashed magenta
curve and the solid black one is a measure of interference effects.

factor of D. The use of matter effects, for example in the case of a KL beam going through
a regenerator, introduces suppression that is proportional to the regeneration parameter,
r. Thus, the number of kaons that are needed in these cases compared to the pure kaon
beam, are larger by roughly 1/D or 1/r as we need to overcome these suppression effects.

Several approaches that could be useful in acquiring the needed sensitivity to the
interference terms appear in the literature:

1. There are cases with QCD production where both K0 and K0 are produced, but
there is an asymmetry, that is D 6= 0. One example is the “high intensity KS-run”
at the NA48 experiment, which reported 1010 KS decays with D ∼ 0.3 [77].

2. Regeneration in KL beams [78–81]. Numerically, typical values for r range from
O(10−2) to a few times 10−1, depending on the material and on the relevant kaon
momentum.

3. The use of a charge exchange target in order to generate pure K0 beams from K+

beams [82, 83].

4. Post-selection using tagging in high energy production, for example, by looking at
the charge of the pion in K∗ decays, or by tagging Λ0 and K− in pp→ K0K−X and
pp→ K0Λ0X decays [14].

We do not discuss these options in any detail. The high yields of currently running
experiments is encouraging in terms of the ability of future endeavors to reach the desired
sensitivity, should some of these methods be implemented. Clearly, a detailed study of
the experimental requirements is needed in order to arrive at a reliable estimate for the
expected sensitivity.

We close this section with a remark about the time dependence. A measurement of
the full time dependence would result in the best sensitivity. However, in principle, a
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measurement of the integral over four different time intervals suffices to get the needed
information. In practice, CL is already known, CS can be extracted from a beam with
D = 0, and then we would need two time intervals using a beam with D 6= 0 or r 6= 0.

7 Conclusion and outlook

We have demonstrated how, under well-motivated approximations and assumptions, it is
possible to cleanly test the SM using a measurement of the time-dependent decay rate of
K → µ+µ−. A necessary ingredient is sensitivity to the interference between the KL and
KS amplitudes, as can be seen from eq. (4.5), which is our main result. The relevant SM
parameter of interest is

|VtsVtd sin(β + βs)| , (7.1)

which is exactly the CKM parameter combination that appears in KL → π0νν̄ . Thus,
our proposal is to use K → µ+µ− as an additional independent measurement of the same
SM quantity.

As we discuss in detail, the point to emphasize is that the extraction is theoretically
very clean. There are several assumptions that were made in setting up the method, as
well as in the calculation within the SM. All of these are valid within the SM to a few
per-mill, giving a total uncertainty below the 1% level. This is comparable to the best
probing methods for the angle β and related quantities, that is, the CP asymmetries in
B → ψKS and the decay rate of KL → π0νν̄. The assumptions we rely on are additionally
respected by any extension of the SM in which the relevant leptonic current is vectorial.

The approach we discuss can in principle be extended to other decay modes. Most
promising are the decays K → πe+e− and K → πµ+µ−. The generalization is not trivial
as these decays involve more partial waves beyond ` = 0, 1. We plan to discuss these modes
in a future publication.

Our very preliminary estimates indicate that these measurements can be carried out
in next generation kaon experiments. This is encouraging, and more detailed feasibility
studies are called for.
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A Extracting B(KS → µ+µ−)`=0 without a pure kaon beam

In the main text, we demonstrated how we can determine B(KS → µ+µ−)`=0 for the case
of a pure K0 beam in empty space. Here we present a discussion on two other cases which
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are more related to realistic experimental situations. The first case is when we have a
beam with unequal initial number of K0 and K0. The second case is when we have a pure
KL beam going via a regenerator before the kaons decay. In both cases, it is possible to
extract the branching ratio B(KS → µ+µ−)`=0 cleanly as in eq. (4.5), with the addition of
a dilution factor as in eq. (4.6).

A.1 A mixed beam of K0 and K0

Consider a beam which initially consists of an incoherent mixture of kaons and anti-kaons.
We define the production asymmetry,

D =
NK0 −NK0

NK0 +NK0
. (A.1)

such that the fractions of K0 and K0 particles are given respectively by

NK0

NK0 +NK0
= 1 +D

2 ,
NK0

NK0 +NK0
= 1−D

2 . (A.2)

Note that D = 1 corresponds to a pure K0 beam, while D = −1 corresponds to a pure K0

beam.
The decay rate to a final state f is given by the incoherent sum

dΓ
dt = 1 +D

2

(dΓK0

dt

)
+ 1−D

2

(dΓK0

dt

)
, (A.3)

such that its form is given by eq. (2.6) with the following coefficients:

CL = |ACP-even
0 |2, (A.4)

CS = |ACP-odd
0 |2 + β2

µ|ACP-even
1 |2,

Ccos = D |ACP-odd*
0 ACP-even

0 | cosϕ0,

Csin = D |ACP-odd*
0 ACP-even

0 | sinϕ0.

It is then straightforward to extract our parameter of interest. For D 6= 0 we obtain

|ACP-odd
0 |2 = DF

Ccos
2 + Csin

2

CL
, DF = 1

D2 . (A.5)

In terms of the branching ratios we have

B(KS → µ+µ−)`=0 = DF × B(KL → µ+µ−)× τS
τL
×
(
Cint
CL

)2
. (A.6)

We learn that the beam asymmetry serves as a dilution factor compared to the case of
a pure K0 or K0 beam. Note that if D = 0 (which means that the beam is an equal
admixture of K0 and K0), one cannot use the beam to measure B(KS → µ+µ−)`=0.

We close with a remark regarding the LHCb search for the KS rate [51]. To a very
good approximation at LHCb we have D = 0. In that case the interference terms cancel
and we are left with just CL and CS . Thus, without any further analysis to tag the flavor
of the kaon, LHCb is working on extracting the CS term that includes the decay to both
the ` = 0 and ` = 1 states.
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A.2 KL propagating through a slab of matter

When kaons travel through matter, the time dependence of the kaon wave function is mod-
ified via the inclusion of the momentum dependent regeneration parameter [78–81, 84, 85].

We define

reiα = −πN
m

(∆f
∆λ

)
, (A.7)

where r and α are real, and

∆f ≡ f − f̄ , ∆λ ≡ ∆m− i

2∆Γ. (A.8)

Here, f (f̄) is the difference of forward scattering amplitudes for kaons (anti-kaons), and
N is the density of scattering centers in the regenerator. Note that r and α are physical
and can be determined from experiment.

Let us consider a pure KL beam, which is produced by letting the KS (and interfer-
ences) terms decay away. Then we put a regenerator of length L in the path of the beam.
Let tL be the time taken by the kaon to travel through the regenerator. We define t = 0 to
be the time the kaon emerges from the regenerator. We then study the time dependence
of the kaon wave function at later times. For simplicity, in the following we present the
result to leading order in r.

The normalized decay rate is given by eq. (2.6), with the coefficients:

CL = |ACP-even
0 |2,

CS = 0,
Csin = −r |ACP-even

0 ACP-odd
0 |

(
sin(α− ϕ0)− etL∆Γ/2 sin(α− ϕ0 + ∆mtL)

)
,

Ccos = r |ACP-even
0 ACP-odd

0 |
(
cos(α− ϕ0)− etL∆Γ/2 cos(α− ϕ0 + ∆mtL)

)
. (A.9)

We can check that for tL = 0 (which means that the regenerator thickness is negligible) or
r = 0 (the regenerator material is just vacuum), the interference terms vanish as it should.

Using the above, we find the dilution factor DF , for tL 6= 0 and r 6= 0 to be

DF = 1
2r2

(cosh(∆ΓtL/2)− sinh(∆ΓtL/2)
cosh(∆ΓtL/2)− cos(∆mtL)

)
. (A.10)

We learn that the dilution parameter depends on both r and tL. The extraction of the rate
is given by eq. (A.6).

We close with two remarks

1. As we already emphasized, the interference terms are the key to the extraction of
B(KS → µ+µ−)`=0. Having D 6= 0 or r 6= 0 are some of the ways of obtaining
interference terms in the time dependence of the kaon beam.

2. More generally one may also have combinations with both non-zero D and r, as well
as a general initial state. The calculation is straightforward, though tedious and does
not provide much further insight, and so we do not show it here.
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B SM calculations

In the following we first derive the SM prediction for B(KS → µ+µ−)`=0, and then derive
approximate numerical estimates for the experimental parameters within the SM.

B.1 SM calculation

Using the standard formula for two body decays [67], as well as the results of eqs. (5.13)
and (5.4), we write

B(KS → (µ+µ−)`=0) = βµτS
16πmK

× 2
∑
|MSD(KS → (µ+µ−)`=0)|2 × sin2 θct, (B.1)

where the sum is over the outgoing spin, as usual. Note thatM is proportional to A, defined
in eq. (2.3) but it uses the standard normalization that is used when making calculations.

We write the matrix element for the short-distance contribution as

MSD = gSM〈µµ̄|O`|0〉 × 〈0|OH |K〉, (B.2)

where

O` = (µ̄LγρµL), 〈0|OH |K〉 ≡ −i pρK fK . (B.3)

For the kaon decay constant we employ here the convention

〈0|s̄γµγ5d|K0(p)〉 = ipµfK0 . (B.4)

The coupling, gSM, can be read from eq. (5.11) (note that (µ̄µ)V−A = 2(µ̄LγρµL))

gSM = −GF√
2

αem
π sin2 θW

[V ∗csVcdYNL + V ∗tsVtdY (xt)] . (B.5)

Since under our assumption of θuc = 0 the part proportional to V ∗csVcd is relatively real, we
can further define

g̃SM = −GF√
2

αem
π sin2 θW

V ∗tsVtdY (xt). (B.6)

As long as what we are after is the CP violating decay rate, we can use g̃SM.
Squaring the amplitude and summing over spins, we find

∑
|MSD

K→µµ|2 =
[
− pρKp

σ
Kf

2
K

]
|gSM|2 Tr

[
ū(k1)γρPLv(k2)v̄(k2)PLγσu(k1)

]
(B.7)

= −|gSM|2 f2
Kp

ρ
Kp

σ
KTr

[
γρPL(/k2 −mµ)PLγσ(/k1 +mµ)

]
= |gSM|2 f2

Km
2
µp

ρ
Kp

σ
KTr

[
γρ

1
2(1− γ5)γσ

]
= 2|gSM|2f2

Km
2
µm

2
K .
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Using eq. (B.1) we find

B(KS → (µ+µ−)`=0) = βµτS
16πmK

4|g̃SM|2f2
Km

2
µm

2
K sin2 θct (B.8)

= βµ τS
16πmK

∣∣∣∣GF√2
2αem

π sin2 θW
mKmµ × Y (xt) × fK × VtsVtd sin θct

∣∣∣∣2 ,
in agreement with eqs. (37) and (39) of ref. [59].

We next get numerical estimates. We use the lattice QCD result [74] for the hadronic
parameter, assuming isospin symmetry:

fK = 155.7± 0.3 MeV . (B.9)

We use the following values for the measured parameters [67],

mK = 497.61 MeV, mµ = 105.658 MeV, (B.10)
GF = 1.166378× 10−5 GeV−2, αem = 1/129,

sin2 θW = 0.23, Y (xt) = 0.95,
τL = 5.116× 10−8 s, τS = 8.95× 10−11 s,

and for the CKM values we use

|VtsVtd sin θct| = A2λ5η̄, with A = 0.79, λ = 0.2265, η̄ = 0.357, (B.11)

to arrive at the prediction

B(KS → (µ+µ−)`=0) ≈ 1.64 · 10−13 ×
∣∣∣∣ VtsVtd sin θct
(A2λ5η̄)best fit

∣∣∣∣2 , (B.12)

with

(A2λ5η̄)best fit = 1.33 · 10−4. (B.13)

B.2 SM approximate values for the experimental parameters

In order to estimate the magnitude of the effect we are after and to illustrate the expected
time dependence, we require approximate values for the remaining two branching ratios
within the SM. First, we use the measured branching ratio,

B(KL → µ+µ−)exp. = B(KL → (µ+µ−)`=0)exp. = (6.84± 0.11) · 10−9, (B.14)

which sets the value of the parameter CL.
The remaining branching ratio, B(KS → µ+µ−)`=1, can only be estimated a priori by

relying on non-perturbative calculations from the literature that suffer from large hadronic
uncertainties. Nonetheless, we use these results to get an estimate for its magnitude. Below
we use the prediction for the long-distance contribution, [14]

B(KS → µ+µ−)LDSM = B(KS → µ+µ−)`=1 ≈ 4.99 · 10−12. (B.15)
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Note that while we quote results to three significant digits, the theoretical uncertainties
are much larger. Altogether we have

B(KS → µ+µ−)`=0 ≈ 1.64 · 10−13, (B.16)
B(KL → µ+µ−)`=0 ≈ 6.84 · 10−9,

B(KS → µ+µ−)`=1 ≈ 4.99 · 10−12.

The first is the result of the calculation from the SM effective Hamiltonian, the second
is the experimental measured value, and the third uses the non-perturbative estimation
together with the calculated SM short-distance contribution.

For illustration of the time dependence, we choose to normalize the C coefficients such
that CL = 1. The numerical values for the coefficients, as defined in eqs. (2.6) and (2.7),
for the case of a pure K0 or K0 beam, are then given by:

(CL)SM ≡ 1, (B.17)

(CS)SM = τL
τS

B(KS → µ+µ−)`=0 + B(KS → µ+µ−)`=1
B(KL → µ+µ−)`=0

≈ 0.43,

(CInt.)SM =
√
τL B(KS → µ+µ−)`=0
τS B(KL → µ+µ−)`=0

≈ 0.12 .

There is one more experimental parameter, the phase ϕ0. It is related to the strong
phase and we do not provide any estimate for it.

C The short-distance operator

For completeness, we explain below the well-known results that the short-distance SM
amplitude cannot generate an ` = 1 state, and that only the axial parts of both the
hadronic and leptonic currents contribute in two-body pseudo-scalar decays.

Our starting point is the factorization of the matrix element

M = 〈µ+µ−|OµLOHµ|K〉 = 〈µ+µ−|OµL|0〉 × 〈0|OHµ|K〉, (C.1)

where

OµH = (s̄d)V−A, OµL = (µ̄µ)V−A. (C.2)

The leading breaking of this factorization is from the photon loop, and thus it is suppressed
by roughly O(αEM/4π) ∼ 10−3.

Considering the leptonic part is sufficient to explain why short-distance physics does
not contribute to the K → (µ+µ−)`=1 amplitude. For two spinors ψ and χ, we recall the
transformation of the V −A operator under CPT [86]:

Θψ̄γµ(1− γ5)χΘ† = −χ̄γµ(1− γ5)ψ , (C.3)

where Θ = CPT is the CPT operator. This implies

ΘOµLΘ† = −OµL. (C.4)
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Using

Θ|µ+µ−〉` = (−1)`+1|µ+µ−〉`, Θ|0〉 = |0〉, (C.5)

we conclude

〈(µ+µ−)`|OµL|0〉 = 〈(µ+µ−)`|ΘΘ†OµLΘΘ†|0〉 = (−1)`〈(µ+µ−)`|OµL|0〉. (C.6)

From the above we see thatM, defined in eq. (C.1), vanishes when ` is odd.
As for the axial part of the hadronic current, the argument is the same as the well-

known one for charged pion decay, that we recall below. Consider

〈0|V µ −Aµ|K(pK)〉. (C.7)

The kaon is a pseudo-scalar and the vacuum is parity-even. Thus, the matrix element of
V µ must transform as a pseudovector, and the matrix element of Aµ must transform as
a vector. The only available physical observable is the kaon momentum, pK , which is a
vector. It is impossible to construct a product of any number of pµK that transforms like
as a pseudovector. We conclude that

〈0|V µ|K〉 = 0. (C.8)

In order to see that also for the leptonic current only the axial part is relevant, we write
the matrix element in the following form, leaving the vector and axial-vector components
of the leptonic operator general:

M∼ pαK ū(k2)γα(B +Aγ5)v(k1) (C.9)

Then,∑
|M|2 ∝ Tr

[
(/k2 +mµ)/pK(B +Aγ5)(/k1 −mµ)(B∗ +A∗γ5)/pK

]
(C.10)

= 4
(
|B|2 − |A|2

)[
2(k1 · pK)(k2 · pK)−m2

K(k1 · k2)
]
− 4

(
|B|2 + |A|2

)
m2
µm

2
K

Using two-body kinematics, we have

(k1 · pK) = (k2 · pK) = 1
2m

2
K , (C.11)

(k1 · k2) = 1
2m

2
K −m2

µ.

Plugging this in to eq. (C.10), the |B|2 terms drop out and we are left only with the terms
proportional to |A|2, ∑

|M|2 ∝ |A|2m2
µm

2
K , (C.12)

i.e., only the axial-vector part of the operator is relevant.
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