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We study the transition of non-perturbative to perturbative QCD in situations with possible violations 
of scaling limits. To this end we consider the singly- and doubly-virtual pion transition form factor 
π0 → γ γ at all momentum scales of symmetric and asymmetric photon momenta within the Dyson–
Schwinger/Bethe–Salpeter approach. For the doubly virtual form factor we find good agreement with 
perturbative asymptotic scaling laws. For the singly-virtual form factor our results agree with the Belle 
data. At very large off-shell photon momenta we identify a mechanism that introduces quantitative mod-
ifications to Efremov–Radyushkin–Brodsky–Lepage scaling.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The π0 → γ (∗)γ (∗) transition is among the most elementary 
processes that allow one to study the evolution between the 
non-perturbative and the perturbative momentum regions of QCD 
[1–3]. The transition matrix element reads

�μν(Q , Q ′) = e2 F (Q 2, Q ′2)
4π2 fπ

εμναβ Q ′α Q β , (1)

with incoming and outgoing photon momenta Q ′ and Q , the 
pion’s electroweak decay constant fπ ≈ 92 MeV and the elec-
tromagnetic charge e. The process is described by a single tran-
sition form factor (TFF) F (Q 2, Q ′2), with conventions such that 
F (0, 0) = 1 in the chiral limit due to the Abelian anomaly.

It is a long-standing prediction that for large photon momenta 
factorization into hard scattering processes is at work and the TFF 
reaches the Efremov–Radyushkin–Brodsky–Lepage (ERBL) scaling 
limit [1,2]

F̃ (Q 2, Q ′2) = η+ F (Q 2, Q ′2)
4π2 f 2

π

η+→∞−−−−→ j(ω) , (2)

with η+ = (Q 2 + Q ′2)/2, ω = (Q 2 − Q ′2)/2 and

* Corresponding author.
E-mail addresses: Gernot.Eichmann@tecnico.ulisboa.pt (G. Eichmann), 

Christian.Fischer@physik.uni-giessen.de (C.S. Fischer), 
Esther.D.Weil@physik.uni-giessen.de (E. Weil), 
Richard.Williams@physik.uni-giessen.de (R. Williams).
https://doi.org/10.1016/j.physletb.2017.10.002
0370-2693/© 2017 Published by Elsevier B.V. This is an open access article under the CC
j(ω) = 2

3

1∫
0

dx
η2+

η2+ − ω2(2x − 1)2
ϕπ(x) . (3)

The pion distribution amplitude ϕπ (x) asymptotically approaches 
ϕπ(x) → 6x(1 − x), so that j(0) = 2

3 in the symmetric and 
j(±η+) = 1 in the asymmetric case.

Whereas this prediction seems to stand on firm ground in the 
symmetric limit where both photon momenta are asymptotically 
large, it has been questioned in the asymmetric limit where one 
of the photons is on-shell and nonperturbatively interacts with the 
pion. Current experimental data on the transition form factor [4–7]
indicate that the scale for the onset of the asymptotic behavior 
could be as large as 10–100 GeV2, whereas from a generic factor-
ization picture one would rather expect a scale of order 1 GeV2. 
Indeed, the situation is not very clear. Whereas the data from 
the BaBar collaboration [6] seem to indicate that QCD scaling is 
violated at least for momenta up to Q 2 ≈ 35 GeV2, the Belle re-
sults [7] agree with scaling above 10–15 GeV2. The situation may 
be clarified by upcoming data from BelleII [8].

The potential scaling violations connected to the BaBar data 
have stirred considerable theoretical interest in the TFF, see e.g. 
[9–29] and references therein. The results from various theoretical 
approaches can be classified into three groups [30]: (i) those that 
agree with ERBL scaling; (ii) those that predict a violation of scal-
ing in agreement with the BaBar data; and (iii) those in between 
that agree with scaling in principle but maintain a discrepancy to 
the purely perturbative scaling limit. Theoretical models that pre-
dict scaling deviations typically maintain factorization but employ 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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Fig. 1. Kinematic domains in Q 2 and Q ′2 including the symmetric and asymmetric 
limits. The dotted lines indicate the vector-meson pole locations. The parabola is 
the spacelike region in the case of constant t > 0.

Fig. 2. π0 → γ γ transition matrix element.

a pion distribution amplitude that (strongly) deviates from its ex-
pected asymptotic behavior [14]. A different perspective has been 
advocated in Ref. [18], where resummed gluon exchange diagrams 
cause violations of scaling of type (ii).

In this work we identify another mechanism which leads to a 
deviation of type (iii) at large momenta. While we exemplify this 
mechanism at the elementary pion–photon transition process, it is 
general to all multi-photon processes with at least one soft pho-
ton. Although we use a specific truncation of Dyson–Schwinger 
equations (DSEs) and Bethe–Salpeter equations (BSEs) in our cal-
culations, we will also argue that the effect is generic in the sense 
that it does not depend on the details of the truncation scheme.

Within the DSE/BSE framework, the large momentum behav-
ior of the TFF has been studied previously in Refs. [27,28]. Here 
we introduce a new technique to compute the TFF on the entire 
domain of spacelike momenta. The key novel element, however, 
that leads to the main result of the present work, is the complete 
numerical treatment of the quark–photon vertex including its dy-
namically generated non-analytic structure associated with vector 
meson poles. As it turns out, this structure has a material impact 
on the large-Q 2 behavior of the singly-virtual form factor, leading 
to quantitative modifications of ERBL scaling for large momenta.

Our domain of interest is the spacelike region where both 
Q 2 > 0 and Q ′2 > 0, as shown in Fig. 1. It contains the doubly-
virtual or symmetric limit Q 2 = Q ′2, whereas in the singly-virtual 
or asymmetric case either Q 2 or Q ′2 vanishes. The timelike region 
contains the physical singularities: vector-meson poles in the com-
plex plane of Q 2 and Q ′2 and the corresponding branch cuts from 
the ππ , K K̄ . . . continua.

In the following it is useful to work with the average pho-
ton momentum �μ = (Q μ + Q ′μ)/2 and the pion momentum 
μ = Q μ − Q ′μ , with 2 = −m2

π for an on-shell pion. The two 
nonperturbative diagrams that constitute the transition matrix el-
ement are derived along the lines of Refs. [31,32] and displayed 
in Fig. 2. For the explicit calculations we employ a rainbow-ladder 
truncation (‘Maris–Tandy-model’) whose details can be found in 
Ref. [33]. In that case diagram (b), which contains the pseudoscalar 
coupling to the qq̄ Bethe–Salpeter kernel and thus to the underly-
Fig. 3. Onshell transition form factor in the asymmetric (solid) and symmetric limit 
(dashed) for spacelike momenta Q 2 > 0 and Q ′2 > 0. The band depicts the form 
factor for all momenta inside the spacelike cone shown in Fig. 4.

ing quark–gluon vertex, does not contribute and only the triangle 
diagram (a) survives:

�μν = 2e2 Tr
∫

d4k

(2π)4
S(k+)�π (k,) S(k−)

× �μ(k−,k + �) S(k + �)�ν(k + �,k+) ,

(4)

where k± = k ± /2 and the color and flavor traces are al-
ready worked out. The expression depends on three nonperturba-
tive ingredients, which we determine from numerical solutions of 
their DSEs and BSEs: the renormalized dressed quark propagator 
S−1(p) = Z−1

f (p2) (i/p + M(p2)), the pion’s Bethe–Salpeter ampli-
tude

�π(k,) = ( f1 + f2 i / + f3 k ·  i /k + f4 [/k, /]) γ5, (5)

and the dressed quark–photon vertex �μ(k′, k). The quark propaga-
tor involves the wave function Z f (p2) and the quark mass function 
M(p2), which encodes effects of dynamical mass generation due 
to the dynamical breaking of chiral symmetry. The pion ampli-
tude has four components f i(k2, k · ), with 2 = −m2

π fixed. The 
quark–photon vertex can be decomposed into twelve tensors; see 
e.g. App. B of Ref. [34] for details. Our numerical solution for the 
vertex from the inhomogeneous Bethe–Salpeter equation [25,33,
35–37] dynamically generates timelike vector-meson poles in its 
transverse part, so the underlying physics of vector-meson domi-
nance is already contained in the form factor without the need for 
further adjustments.

In Fig. 3 we show the result for the on-shell TFF F (Q 2, Q ′2)
as a function of the variable η+ . The curves for the symmetric 
and asymmetric limits constitute lower and upper bounds for the 
TFF in the region Q 2 > 0 and Q ′2 > 0. Thus, for moderate space-
like momenta η+ � 1 GeV2 the TFF mainly scales with η+ . The 
asymptotic result j(0) = 2

3 in the symmetric limit can be recov-
ered from Eq. (4), as explained in [25], and we reproduce it here 
as well. Moreover, in the chiral limit the Abelian anomaly entails 
F (0, 0) = 1 and our numerical result at the physical pion mass is 
F (0, 0) = 0.996. This actually provides an important consistency 
check: replacing both dressed vertices by bare ones would only 
give F (0, 0) ≈ 0.29; and even a Ball–Chiu vertex [38,39], which 
guarantees charge conservation in the pion’s electromagnetic form 
factor, produces F (0, 0) ≈ 0.86 only. The transverse structure of 
the vertex is therefore crucial for a quantitative description of the 
π0 → γ γ transition. An analytical fit function that reproduces our 
numerical result for the form factor is given elsewhere [40].
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Fig. 4. Three-dimensional view of the π → γ γ phase space in the variables η+ , η−
and ω. The interior of the cone is the spacelike region for t > 0, and the plane in 
front is where the on-shell form factor is defined (t = −m2

π /4) as in Fig. 1.

Theoretically challenging is the singly-virtual form factor
F (Q 2, 0); here an evaluation of Eq. (4) is technically difficult 
because one encounters quark singularities in the integrand for 
Q 2 � 4 GeV2. To overcome the problem, we extract the on-shell 
form factor from off-shell kinematics based on physical constraints. 
These kinematics are important for nucleon Compton scattering or 
hadronic light-by-light contributions to the anomalous magnetic 
moment of the muon. For the off-shell pion we keep the on-shell 
dressing functions f i , so that the 2 dependence is carried by the 
tensor structures alone. Denoting �2 = σ and 2 = 4t , the tran-
sition form factor is then a function of any three of the Lorentz 
invariants {Q 2, Q ′2, Q · Q ′}, {η+, η−, ω} or {σ , t, Z}:

η+ = Q 2 + Q ′2

2
= �2 + 2

4
= σ + t ,

η− = Q · Q ′ = �2 − 2

4
= σ − t ,

ω = Q 2 − Q ′2

2
= � ·  = 2

√
σ t Z ,

(6)

and vice versa: {Q 2, Q ′2} = η+ ± ω = σ + t ± 2
√

σ t Z .
In processes where the photons are also integrated over, �μ

becomes the loop momentum and the spacelike region at fixed t
is defined by σ > 0 and Z ∈ [−1, 1], which describes the parabola 
shown in Fig. 1. The conjunction of these parabolas for all possible 
values of t > 0 generates a cone around the η+ axis, which is illus-
trated in Fig. 4. The on-shell pion transition current defines a plane 
at fixed t = −m2

π/4 which, for asymptotically large η+ 	 m2
π , co-

incides with the cone in the forward limit t = 0.
The interior of the cone is calculable up to arbitrary values of 

η+ without crossing any singularities in the integrand. The same is 
also true in the symmetric limit (ω = 0) for general η− . Consider 
then a horizontal plane at some constant value of η+ (Fig. 5). The 
circle with radius η+ represents the cone. The horizontal line is 
the on-shell pion plane containing the symmetric and asymmetric 
limits. The dashed vertical lines are the nearest vector-meson pole 
locations. Since the interaction generates timelike vector-meson 
poles in the quark–photon vertex and therefore also in the form 
factor, the inverse form factor must vanish along these contours.

At a given η+ we now consider the quantity

R(r) = F (η+, η−,ω)

F (η+, η−,ω = 0)
(7)

along the arc passing through the asymmetric point. We divided 
by the result in the symmetric limit to minimize off-shell mo-
mentum dependencies in η− . The radial variable r is defined by 
Fig. 5. Same as in Fig. 4 but for fixed η+ . The arc connecting the origin with the ρ
pole determines the singly-virtual form factor.

Fig. 6. 1/R(r) at η+ = 2.5 GeV2. The points at r < 1 are calculated and the bands 
are the fits, once with (solid, blue) and once without (dotted, orange) the constraint 
at the vector-meson pole. The intercept at r ≈ √

2 determines the singly-virtual on-
shell transition form factor.

η2− + ω2 = η2+ r2, which for η+ 	 m2
π reduces to r = √

2ω/η+ =√
2η−/η+ along the arc. We calculate R(r) inside the circle (r < 1) 

and employ a fit in the exterior region, which is constrained by 
R(0) = 1 at the center of the circle and R(rv )−1 = 0 at the vector-
meson pole, with rv = √

2 (1 + m2
ρ/η+). The fit is illustrated in 

Fig. 6. The intersection with the on-shell pion plane (r = √
2) then 

determines the transition form factor in the asymmetric limit. In 
practice we employ the sum of a polynomial plus a pole term of 
the form R(r) = c0 +c1 r2 +c2 r4 +c3 (m2

ρ/η+)/(r2
v −r2). The dotted 

band shows the fit without the pole term, indicating that without 
the pole constraint the resulting form factor would be substan-
tially smaller. For Q 2 � 4 GeV2 we confirmed that the fit result 
coincides with the direct calculation for the TFF in the asymmet-
ric limit. The procedure can then be repeated for different arcs 
and different η+ , thus giving a result for F (Q 2, Q ′2) at arbitrary 
Q 2 > 0 and Q ′2 > 0.

The resulting form factor F̃ (Q 2, Q ′2) at large but not asymp-
totically large momenta is displayed in the left panel of Fig. 7 and 
describes the experimental data rather well. It clearly favors the 
Belle data although it is also mostly compatible with the BaBar 
results. We also display the form factor for symmetric photon mo-
menta, which approaches its asymptotic value 2

3 already for small 
values of η+ . For intermediate values of the photon asymmetry ω, 
the TFF is a slowly varying function that monotonically rises from 
the symmetric to the asymmetric case.

In the right panel of Fig. 7 we display the asymmetric form 
factor at very large momenta. Here we observe a continued rise 
beyond the region where experimental data exist. From momenta 
around η+ ∼ 102–103 GeV2 onwards the form factor settles into its 
asymptotic behavior, indicating that non-perturbative effects can 
induce important changes in observables up to momenta of the 
order ∼ 30 GeV. We have explicitly checked that the steep rise in 
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Fig. 7. Weighted on-shell transition form factor defined in Eq. (2) at large η+ . The band shows the result in the asymmetric limit which is compared to experimental 
data [4–7], and the dashed line is the form factor in the symmetric limit. The former should asymptotically approach the value 1 (dotted line) whereas the latter converges 
towards 2/3. Note that Q 2 = η+ and Q 2 = 2η+ in the symmetric and asymmetric case, respectively.
Fig. 8. Leading dressing function f1(k2) of the pion Bethe–Salpeter amplitude, 
Eq. (5). The result can be well parametrized by the sum of an exponential in the 
infrared plus a monopole (with logarithmic corrections) in the UV, as indicated by 
the dashed lines.

this transition region is a consequence of the transition from the 
non-perturbative to the perturbative regime in the leading-order 
pion amplitude f1 displayed in Fig. 8. It is completely independent 
of the details of the quark–photon vertex, i.e., we find a qualita-
tively similar shape of the TFF if we include f1 only, together with 
a tree-level propagator and a tree-level quark–photon vertex.

Beyond this transition region the TFF saturates at an asymp-
totic value, which is quantitatively influenced by the presence of 
the ρ pole close to the asymmetric point in Fig. 5 and therefore 
substantially deviates from the perturbative limit. Technically, the 
saturation value is connected to the fit parameter c3, which is al-
most constant in the momentum range η+ = 1 . . . 30 GeV2. Beyond 
this point the reach of the vector-meson pole has escaped from the 
cone and the TFF in its interior is no longer sensitive to it. Hence 
we employ that same value as an additional constraint at large η+; 
its variation by a rather conservative ±40% generates the bands 
in our plots. Without the physical pole term we recover the ERBL 
limit (3) at asymptotically large η+: the fit with a polynomial only 
yields F̃ (ω = ±η+) ≈ 1, cf. the dashed orange band in Fig. 6. Our 
results therefore imply that in the vicinity of Q 2 = 0 and Q ′2 = 0
the TFF is always sensitive to the vector-meson pole, irrespective 
of how large η+ becomes, and this feature would generate correc-
tions to the ERBL prediction.

We note that the quantitative importance of vector-meson poles 
up to very large momenta has been realized previously and imple-
mented in the context of light-cone sum rules, see e.g. [9,14,15,29]. 
There, the fixed-Q 2 dispersion relation for the TFF is supple-
mented with its leading-twist expansion in Q ′2, based on quark–
hadron duality, which predicts a 1/Q 4 suppression of the ρ-meson 
pole contribution at large Q 2 and thus ERBL scaling. The residue of 
the pole is the ργ ∗ → π transition matrix element, which in our 
approach consists of the same diagrams as in Fig. 2 except that 
the quark–photon vertex on the left is replaced by the ρ-meson 
Bethe–Salpeter amplitude. For a direct calculation of that matrix 
element at asymptotic Q 2, however, our present strategy is not ap-
plicable since it relies on the lowest-lying pole in the vertex (which 
is absent from the ρ-meson amplitude) as a constraint for the in-
terpolation. In principle such a suppression could still be enforced 
in our present context, however only by imposing additional con-
straints on the fit procedure at asymptotically large Q 2.

In any case, the mechanism discussed herein is independent 
of the approximations used in our calculation, since any realistic 
truncation of the underlying quark–gluon interaction has to gen-
erate vector-meson poles in the dressed quark–photon vertex. As 
long as one photon is (close to) on-shell, the nearest poles are rel-
evant and contribute to the result for the form factor. The details 
of the pole locations, i.e. the precise value of its real part or the 
presence or absence of a width, do not affect the generic proper-
ties at large η+ . We explicitly checked the quantitative influence of 
a non-zero, realistic vector-meson width on the asymptotic value 
of the form factor and found changes on the level of 1� as com-
pared to the zero-width result.

In general, we have thus identified a process-independent 
mechanism that affects all reactions with one external photon 
(close to) on-shell and large off-shell momenta from other ex-
ternal legs. Whether it truly modifies the ERBL scaling limit or 
not cannot be reliably determined with the numerical methods at 
hand; to further investigate the problem one would need contour-
deformation methods (see e.g. [40]) to directly calculate the rele-
vant integrals at asymptotically large Q 2. This is, however, beyond 
the scope of this article and relegated to future work.

Acknowledgements

We thank the referee for very constructive remarks and crit-
icism that helped improve the manuscript. We are grateful to 
R. Alkofer, V. M. Braun, S. Brodsky, P. Kroll, S. Leupold and 
A. Szczepaniak for enlightening discussions. This work was sup-
ported by the DFG collaborative research centre TR 16, the BMBF 
grant 05H15RGKBA, the DFG Project No. FI 970/11-1, the FCT In-
vestigator Grant IF/00898/2015, the GSI Helmholtzzentrum fuer 



G. Eichmann et al. / Physics Letters B 774 (2017) 425–429 429
Schwerionenforschung, and by the Helmholtz International Cen-
ter for FAIR.

References

[1] G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22 (1980) 2157.
[2] A.V. Efremov, A.V. Radyushkin, Phys. Lett. B 94 (1980) 245.
[3] S.J. Brodsky, G.P. Lepage, Adv. Ser. Dir. High Energy Phys. 5 (1989) 93.
[4] H.J. Behrend, et al., CELLO, Z. Phys. C 49 (1991) 401.
[5] J. Gronberg, et al., CLEO, Phys. Rev. D 57 (1998) 33, arXiv:hep-ex/9707031.
[6] B. Aubert, et al., BaBar, Phys. Rev. D 80 (2009) 052002, arXiv:0905.4778 [hep-

ex].
[7] S. Uehara, et al., Belle, Phys. Rev. D 86 (2012) 092007, arXiv:1205.3249 [hep-

ex].
[8] T. Abe, et al., Belle-II, arXiv:1011.0352 [physics.ins-det], 2010.
[9] A. Khodjamirian, Eur. Phys. J. C 6 (1999) 477, arXiv:hep-ph/9712451.

[10] I.V. Anikin, A.E. Dorokhov, L. Tomio, Phys. Lett. B 475 (2000) 361, arXiv:hep-
ph/9909368.

[11] B. Melic, D. Mueller, K. Passek-Kumericki, Phys. Rev. D 68 (2003) 014013, arXiv:
hep-ph/0212346.

[12] A.V. Radyushkin, Phys. Rev. D 80 (2009) 094009, arXiv:0906.0323 [hep-ph].
[13] M.V. Polyakov, JETP Lett. 90 (2009) 228, arXiv:0906.0538 [hep-ph].
[14] S.S. Agaev, V.M. Braun, N. Offen, F.A. Porkert, Phys. Rev. D 83 (2011) 054020, 

arXiv:1012.4671 [hep-ph].
[15] S.S. Agaev, V.M. Braun, N. Offen, F.A. Porkert, Phys. Rev. D 86 (2012) 077504, 

arXiv:1206.3968 [hep-ph].
[16] E. Ruiz Arriola, W. Broniowski, Phys. Rev. D 81 (2010) 094021, arXiv:1004.0837 

[hep-ph].
[17] P. Kroll, Eur. Phys. J. C 71 (2011) 1623, arXiv:1012.3542 [hep-ph].
[18] M. Gorchtein, P. Guo, A.P. Szczepaniak, Phys. Rev. C 86 (2012) 015205, arXiv:

1102.5558 [nucl-th].
[19] S.J. Brodsky, F.-G. Cao, G.F. de Teramond, Phys. Rev. D 84 (2011) 033001, arXiv:

1104.3364 [hep-ph].
[20] S.J. Brodsky, F.-G. Cao, G.F. de Teramond, Phys. Rev. D 84 (2011) 075012, arXiv:

1105.3999 [hep-ph].
[21] S. Noguera, V. Vento, Eur. Phys. J. A 48 (2012) 143, arXiv:1205.4598 [hep-ph].
[22] B. El-Bennich, J.P.B.C. de Melo, T. Frederico, Few-Body Syst. 54 (2013) 1851, 

arXiv:1211.2829 [nucl-th].
[23] A.E. Dorokhov, E.A. Kuraev, Phys. Rev. D 88 (2013) 014038, arXiv:1305.0888 

[hep-ph].
[24] A.E. Dorokhov, JETP Lett. 92 (2010) 707.
[25] P. Maris, P.C. Tandy, Phys. Rev. C 65 (2002) 045211, arXiv:nucl-th/0201017.
[26] A. Holl, A. Krassnigg, P. Maris, C.D. Roberts, S.V. Wright, Phys. Rev. C 71 (2005) 

065204, arXiv:nucl-th/0503043.
[27] K. Raya, L. Chang, A. Bashir, J.J. Cobos-Martinez, L.X. Gutierrez-Guerrero, C.D. 

Roberts, P.C. Tandy, Phys. Rev. D 93 (2016) 074017, arXiv:1510.02799 [nucl-th].
[28] K. Raya, M. Ding, A. Bashir, L. Chang, C.D. Roberts, arXiv:1610.06575 [nucl-th], 

2016.
[29] S.V. Mikhailov, A.V. Pimikov, N.G. Stefanis, Phys. Rev. D 93 (2016) 114018, 

arXiv:1604.06391 [hep-ph].
[30] A.P. Bakulev, S.V. Mikhailov, A.V. Pimikov, N.G. Stefanis, Phys. Rev. D 86 (2012) 

031501, arXiv:1205.3770 [hep-ph].
[31] G. Eichmann, C.S. Fischer, Phys. Rev. D 85 (2012) 034015, arXiv:1111.0197 [hep-

ph].
[32] G. Eichmann, C.S. Fischer, Phys. Rev. D 87 (2013) 036006, arXiv:1212.1761 [hep-

ph].
[33] P. Maris, P.C. Tandy, Phys. Rev. C 61 (2000) 045202, arXiv:nucl-th/9910033.
[34] G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Prog. Part. 

Nucl. Phys. 91 (2016) 1, arXiv:1606.09602 [hep-ph].
[35] P. Maris, P.C. Tandy, Nucl. Phys. A 663 (2000) 401, arXiv:nucl-th/9908045.
[36] M.S. Bhagwat, P. Maris, Phys. Rev. C 77 (2008) 025203, arXiv:nucl-th/0612069.
[37] T. Goecke, C.S. Fischer, R. Williams, Phys. Rev. D 83 (2011) 094006;

T. Goecke, C.S. Fischer, R. Williams, Phys. Rev. D 86 (2012) 099901 (Erratum), 
arXiv:1012.3886 [hep-ph].

[38] J.S. Ball, T.-W. Chiu, Phys. Rev. D 22 (1980) 2542.
[39] J.S. Ball, T.-W. Chiu, Phys. Rev. D 22 (1980) 2550;

J.S. Ball, T.-W. Chiu, Phys. Rev. D 23 (1981) 3085 (Erratum).
[40] E. Weil, G. Eichmann, C.S. Fischer, R. Williams, Phys. Rev. D 96 (2017) 014021, 

arXiv:1704.06046 [hep-ph].

http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4C65706167653A31393830666As1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib456672656D6F763A31393739716Bs1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42726F64736B793A313938397076s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42656872656E643A313939307372s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib47726F6E626572673A31393937666As1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4175626572743A323030396D63s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4175626572743A323030396D63s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib5565686172613A323031326167s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib5565686172613A323031326167s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4162653A32303130677861s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4B686F646A616D697269616E3A31393937746Bs1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib416E696B696E3A313939396378s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib416E696B696E3A313939396378s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4D656C69633A32303032696As1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4D656C69633A32303032696As1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib526164797573686B696E3A323030397A67s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib506F6C79616B6F763A323030396A65s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib41676165763A323031306171s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib41676165763A323031306171s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib41676165763A32303132746Ds1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib41676165763A32303132746Ds1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib417272696F6C613A323031306171s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib417272696F6C613A323031306171s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4B726F6C6C3A323031306266s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib476F7263687465696E3A323031317666s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib476F7263687465696E3A323031317666s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42726F64736B793A323031317976s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42726F64736B793A323031317976s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42726F64736B793A323031317878s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42726F64736B793A323031317878s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4E6F67756572613A323031326177s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib456C42656E6E6963683A32303132696As1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib456C42656E6E6963683A32303132696As1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib446F726F6B686F763A32303133787061s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib446F726F6B686F763A32303133787061s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib446F726F6B686F763A323031307A7A62s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4D617269733A323030326D7As1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib486F6C6C3A323030357675s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib486F6C6C3A323030357675s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib526179613A32303135677661s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib526179613A32303135677661s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib526179613A3230313679756As1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib526179613A3230313679756As1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4D696B6861696C6F763A323031366B6C67s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4D696B6861696C6F763A323031366B6C67s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42616B756C65763A323031326E68s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42616B756C65763A323031326E68s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib456963686D616E6E3A323031316563s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib456963686D616E6E3A323031316563s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib456963686D616E6E3A323031326D70s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib456963686D616E6E3A323031326D70s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4D617269733A313939396268s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib456963686D616E6E3A32303136796974s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib456963686D616E6E3A32303136796974s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib4D617269733A313939397461s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib426861677761743A323030367075s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib476F65636B653A323031306966s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib476F65636B653A323031306966s2
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib476F65636B653A323031306966s2
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42616C6C3A313938306179s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42616C6C3A313938306178s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib42616C6C3A313938306178s2
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib5765696C3A323031376B6E74s1
http://refhub.elsevier.com/S0370-2693(17)30804-3/bib5765696C3A323031376B6E74s1

	On the large-Q2 behavior of the pion transition form factor
	Acknowledgements
	References


