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Abstract We consider the five-dimensional Einstein–
Gauss–Bonnet gravity, which can be obtained by means of
an appropriate choice of coefficients in the five-dimensional
Lanczos–Lovelock gravity theory. The Einstein–Gauss–
Bonnet field equations for the Friedmann–Lemaître–
Robertson–Walker metric are found as well as some of their
solutions. The hyperbolicity of the corresponding equations
of motion is discussed. A four-dimensional gravity action is
obtained from the Gauss–Bonnet gravity using the Randall–
Sundrum compactification procedure and then it is stud-
ied the implications of the compactification procedure in
the cosmological solutions. The same procedure is used to
obtain gravity in four dimensions from the five-dimensional
AdS–Chern–Simons gravity to then study some cosmologi-
cal solutions. Some aspects of the construction of the four-
dimensional action gravity, as well as a brief review of Love-
lock gravity in 5D are considered in an Appendix.

1 Introduction

The 5-dimensional action for Lanczos–Lovelock gravity the-
ory [1–4], is a polynomial of degree 2 in curvature, which
can be written in terms of the Riemann curvature Rab and
the vielbein ea as

S(5D)
LL = 1

8κ5

∫
εabcde

(
αRabRcdee + 2

3
Rabecedee

+β eaebecedee
)

, (1)
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where (i) α, β are arbitrary constants, (ii) ea = eaμ dxμ,

ωab = ω ab
μ dxμ are the fünfbein fields and spin connec-

tion, respectively, (iii) Rab = dωab + ωa
cω

cb is the 2-form
curvature and κ5 = 12π2G5, where G5 is the 5-dimensional
Newton constant.

Comparing the action (1), when α = 0, with the Einstein–
Hilbert–Cartan action with cosmological constant in 5D

S(5D)
EHC = 1

12κ5

∫
εabcde

(
Rabecedee − �5D

10
eaebecedee

)
,

(2)

we can see that the action (1) matches action (2) only if
β = −�5D/15. With this choice of constant β, the action
(1) takes the form of Einstein–Gauss–Bonnet (EGB) action
with cosmological constant

S(5D)
EGB = 1

8κ5

∫
εabcde

(
αRabRcdee + 2

3
Rabecedee

− �5D

15
eaebecedee

)
. (3)

In presence of matter, the action is given by

S(5D) = S(5D)
EGB + S(5D)

M , (4)

where S(5D)
M = S(5D)

M (ea, ωab) is the matter action whose
variation leads to

δS(5D)
M = δL(5D)

M

δea
δea + δL(5D)

M

δωab
δωab, (5)

where δL(5D)
M /δea and δL(5D)

M /δωab are related to the
anholonomic forms (in an orthonormal frame) of the energy–
momentum tensor Tab and the spin tensor Scab respectively.
This means that the variation of the action (4) leads to the
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following field equations

εabcde

(
αRbcRde + 2Rbcedee − �5D

3
ebecedee

)

= −8κ5
δL(5D)

M

δea
, (6)

2εabcdeT
c
(
αRde + edee

)
= −4κ5

δL(5D)
M

δωab
, (7)

where T a = Dea = dea + ωa
be

b is the 2-form torsion.
When the spin tensor is zero, one solution is the zero torsion
(T a = Dea = 0).

Summarizing, we have considered the 5-dimensional
Lanczos–Lovelock gravity, which for an appropriate choice
of coefficients leads to the EGB gravity action. This work is
organized as follows: In Sect. 2 we find the EGB gravitational
field equations for the Friedmann–Lemaître–Robertson–
Walker (FLRW) metric. A discussion about the hyperbol-
icity of the metric ends this section. Section 3 is devoted to
find a 4-dimensional gravity action from the Gauss–Bonnet
gravity using the Randall–Sundrum compactification proce-
dure and then we study the implications in the cosmological
solutions of the compactification procedure. In Sect. 4 we
use the same procedure to obtain gravity in 4D from the 5-
dimensional AdS–Chern–Simons gravity and then we study
some of its cosmological implications. Finally Concluding
Remarks are presented in Sect. 5. An Appendix is included,
where is considered a brief gravity review of Lovelock grav-
ity in 5D, as well as some aspects of the construction of the
4-dimensional action gravity.

2 Cosmology in Einstein–Gauss–Bonnet gravity
without cosmological constant

Consider the action (4) without cosmological constant, which
means that the lagrangian is given by

L(5D) = L(5)
EGB |�5=0 + L(5D)

M , (8)

with

L(5)
EGB (e, ω) |�5=0 = 2

3
εabcde R

abecedee

+αεabcde R
abRcdee, (9)

being α = |α| sgn (α) a constant and L(5D)
M represents a mat-

ter lagrangian. Later we show two cosmological scenarios
associated with sgn (α).

The variation of the action S(5D) with respect to the viel-
bein ea and the spin connection ωab leads to the equations

εabcde

(
2Rbcedee + |α| sgn (α) RbcRde

)
= −8κ5

δL(5D)
M

δea
,

(10)

εabcde

(
T cedee + |α| sgn (α) RcdT e

)
= −4κ5

δL(5D)
M

δωab
.

(11)

If the matter under consideration has no spin, then

δLM

δωab
= 0 and T a = 0. (12)

Since

δLM

δea
= 1

4!T
μ

a εμbcdee
becedee, (13)

where Tμν is the energy–momentum tensor, we have that
Eq. (10) takes the form

εabcde

(
2Rbcedee + |α| sgn (α) RbcRde

)

= −κ5

3
T μ
a εμbcdee

becedee. (14)

2.1 Field equations and cosmology

We consider a flat FLRW metric

ds2 = −dt2 + a2(t)δi j dx
i dx j , (15)

where a(t) is the cosmic scale factor and i, j = 1, 2, 3, 4.
After some calculations, the 2-form curvature turns out to be

R0p = ä

a
e0ep =

(
Ḣ + H2

)
e0ep = −qH2e0ep, (16)

Rpq = H2epeq , (17)

where p, q = 1, 2, 3, 4, H = ȧ/a is the Hubble parameter,
Ḣ = dH/dt = ä/a − H2 and q = − (

1 + Ḣ/H2
)

is the
deceleration parameter. From here, it is direct to see that when
q < 0 we have ä > 0 and if q > 0 then ä < 0.

We further consider an energy–momentum tensor corre-
sponding to a perfect fluid

T ν
μ = diag(−ρ, p, p, p, p). (18)

After replacing (16) and (18) in (14) we obtain the Friedmann
constraint and the conservation equation, respectively,

6H2 + 3 |α| sgn (α) H4 = κ5ρ, (19)

(1 + z)
dρ

dz
= 4(ρ + p), (20)

where we have introduced the redshift parameter defined as
1 + z = a0/a and a0 = a (t0). Choosing κ5 = 1 unities and
using the barotropic equation of state p = ωρ, we write the
Eqs. (19) and (20) in the form

6H2
(

1 + 1

2
|α| sgn (α) H2

)
= ρ, (21)

ρ (z) = ρ (0) (1 + z)4(1+ω) , (22)

such that

sgn (α) = 1 �⇒ H2 (z)
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= 1

|α|

(√
1 + |α|

3
ρ (z) − 1

)
, (23)

sgn (α) = −1 �⇒ H2± (z)

= 1

|α|

(
1 ±

√
1 − |α|

3
ρ (z)

)
. (24)

The last case shows an upper bound for ρ, that is, ρ (zs) =
3/ |α| and so

H± (zs) =
√

1

|α| , (25)

being

zs = −1 +
(

3

|α| ρ (0)

)1/4(1+ω)

. (26)

Replacing (26) into (24), we write

H2± (z) = 1

|α|

⎛
⎝1 ±

√
1 −

(
1 + z

1 + zs

)4(1+ω)

⎞
⎠ , (27)

so that we have a solution for H± (z) if z ≤ zs . According to
(26) and (27) and considering ω = 0 (cold dark matter), we
have

zs = −1 +
(

3

|α| ρ (0)

)1/4

� 0. (28)

If −1 < zs < 0, we have ρ (z → zs) → 3/ |α| �⇒
H± (z → zs) → √

1/ |α|, i.e., a future de Sitter evolution,
unlike in 4D-�CDM where a de Sitter evolution is reached
when z → −1.

If zs > 0, we have an unrealistic situation given that
ρ (z → zs) → 3/ |α| �⇒ H± (z → zs) → √

1/ |α|, that
is, a past de Sitter evolution.

If zs = 0, we write

H2± (z) = ρ (0)

3

(
1 ±

√
1 − (1 + z)4

)
, (29)

so that, H2± (0) = ρ (0) /3 and H2+ (z → −1) → 2ρ (0) /3.
Recalling that in the present discussion, see (9), there is not
cosmological constant (thinking in a de Sitter evolution).

In the absence of ρ, from (24) we obtain a self-accelerating
solution given by

H+ =
√

2

|α| . (30)

Substituting (22) into (23), it is straightforward to show that

ω > −1 �⇒ ρ (z → −1) → 0 and H (z → −1) → 0,

(31)

typical behavior of cosmic components not associated with
dark energy.

We end this section by highlighting what is shown in
(24), that is, an upper bound for the present energy density
ρ (zs) = 3/ |α| ←→ H± (zs) = √

1/ |α|. For comparison,
in 4D, the �CDM model tell us that ρ (z → −1) → 0 �⇒
H (z → −1) → √

�/3. We also highlight what is shown in
(30), a self-accelerating solution.

The deceleration parameter can be written as

q = −1 + 1

2
(1 + z)

dH2

H2dz
, (32)

that after using (21)–(22), it is straightforward to obtain

q (z) = −1 + 2 (1 + ω) f (z) , (33)

where we have defined

f (z) = 1

1 + αH2 (z)

(
1 + 1

2
αH2 (z)

)
, (34)

and f (z) < 1. The Friedmann constraint tells us that, regard-
less of sgn (α), the following inequality must be satisfied

1 + 1

2
αH2 (z) > 0, (35)

so that

q (z) < 0 �⇒ 2 (1 + ω) <
1

f (z)
. (36)

Considering ω ≥ 0 (fluids that by themselves generate decel-
eration, q = 1 + 2ω > 0), it is evident that 2 (1 + ω) > 1,
so that the inequality given in (36) is satisfied.

In good accounts, it is perfectly possible to satisfy q (z) <

0 (36) so that we have consistency with the so-called
Lorentzian metric condition. In fact, according to Ref. [5],
(see also [6–11]), “a necessary condition for hyperbolic EOM
is that effective metric be Lorentzian” and that the conditions
for said metric to be Lorentzian is that

sgn
(

1 + 4λ2H
2
)

= sgn
(

1 − 4λ2qH
2
)

, (37)

where now λ2 = α/4l3p (see Appendix), as can be seen from
equations (3.11) and (3.12) of the aforementioned Ref. [5].
In this same reference it is established that if this equality
is not fulfilled, then the aforementioned metric will not be
Lorentzian. This means that if λ2 > 0 and 4λ2qH2 > 1, we
have a non-Lorentzian metric. However, if q < 0 the metric
is Lorentzian.

3 Gravity in 4D from Einstein–Gauss–Bonnet gravity

The existence of new dimensions may have non trivial effects
in our understanding of the cosmology of the early Universe,
among many other issues. By convention, it has always been
assumed that such extra dimensions should be compactified
to manifolds of small radii with sizes of the order of the
Planck length.
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It was only in the last years of the twentieth century when
people started to ask the question of how large could these
extra dimensions be without getting into conflict with obser-
vations. In this context, of particular interest are the Randall
and Sundrum models [12,13] for warped backgrounds, with
compact or even infinite extra dimensions. Randall and Sun-
drum proposed that the metric of the spacetime is given by

ds2 = e−2krcημνdx
μdxν + r2

c dφ2, (38)

i.e. a 4-dimensional metric multiplied by a “warp factor”
which is a rapidly changing function of an additional dimen-
sion, k is a scale of the order of Planck scale, xμ are coordi-
nates for the familiar 4-dimensions, while 0 ≤ φ ≤ π is the
coordinate for an extra dimension, which is a finite interval
whose size is set by rc, known as “compactification radius”.
Randall and Sundrum showed that this metric is a solution
to Einstein’s equations.

3.1 4-dimensional gravity from the
Einstein–Gauss–Bonnet gravity

From Eq. (3) we can see that the Lagrangian contains the
Gauss–Bonnet term, the Einstein–Hilbert term and a cosmo-
logical term. Following the procedure given in the Appendix,
we find that the 5-dimensional action gravity compactified
to 4-dimensions is given by

S̃[ẽ] = 1

8κ5

∫
�4

ε̃mnpq

(
AR̃mn R̃ pq

+ B R̃mnẽ pẽq + C ẽmẽnẽ pẽq
)

, (39)

where

A = rc

∫ 2π

0
dφ (40)

B = 2rc

∫ 2π

0
dφe2 f (φ)

(
1 − α

r2
c

(
3 f ′2 + 2 f ′′))

, (41)

and

C = rc

∫ 2π

0
dφe4 f (φ)

(
α

r4
c
f ′2 (

5 f ′2 + 4 f ′′)

− 2

3r2
c

(
5 f ′2 + 2 f ′′) − �5D

3

)
. (42)

Since f (φ) is arbitrary and continuously differentiable func-
tion, and since we are working with a cylindrical variety, we
find that (40), (41) lead to

A = 2πrc (43)

B = 2πrc

(
1 + α

r2
c

)
, (44)

and

B = − π

4rc

(
α

r2
c

− 2 + �5Dr
2
c

)
, (45)

were we have choose f (φ) = ln (sin φ).
Note that in the action (39) there is a quadratic term in the

curvature given by Aε̃mnpq R̃mn R̃ pq , which represents the 4-
dimensional Gauss–Bonnet term. This term is a topological
one, so that it does not contribute to the dynamics and it can
be eliminated. This means that compactification avoids the
problems cited in Ref. [14] (see also [15–18]). Equation (1)

of this reference agrees with the Lagrangian (39), except for
the cosmological term, when λ1 = α, λ2/λ1 = −4 and
λ3/λ1 = 1.

Taking into account that the action (39) should lead to the
four-dimensional Einstein–Hilbert–Cartan action, namely

S̃(4D)
EHC = 1

4κ4

∫
�4

ε̃mnpq

(
R̃mnẽ pẽq − �4D

6
ẽm ẽnẽ pẽq

)
,

(46)

where κ4 = 8πG, it is direct to see that this occurs when

B = 3π
G5

G
, C = −π

2
�4D

G5

G
. (47)

On the other hand we know that if GD is Newton’s constant
in D-dimensions and if G is the usual Newton’s constant,
then

GD = (lC )D−4 G,

where lC is the length of the extra compact dimension [19]. In
our particular case, D = 5 and then lC = 2πrc. This means
that G5 = 2πrcG. So that (47) takes the form

B = 6π2rc, C = −π2�4Drc. (48)

Now, from (43), (45) and (48), it is direct to see that
α

r2
c

= 3π − 1, (49)

and then

�4D = �4D (rc,�5D) = 1

4π

(
�5D + 3(π − 1)

r2
c

)
. (50)

Introducing (48) into (39) we obtain the action (46) where
now �4D is given by (50).

In tensor language the two terms in (39) can be written as

ε̃mnpq R̃
mnẽ pẽq = −2

∫
d4 x̃

√−g̃ R̃,

ε̃mnpq ẽ
mẽnẽ pẽq = −24

∫
d4 x̃

√−g̃, (51)

where g̃ is the determinant of the 4-dimensional metric tensor
g̃μν and R̃ is the Ricci scalar. Thus, the action (39) is now
written as

S̃[g̃] =
∫

d4 x̃
√−g̃

(
R̃ + 2�4D

)
, (52)

whose field equations are

Gμν = �4Dgμν, (53)
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and �4D = �4D (rc,�5D).
According to (40), we can say little or nothing about the

presence of rc. The only thing we can “speculate” is to say
that �4D originates from the compactification radius and the
5-dimensional cosmological constant , and nothing else.

4 Cosmology in AdS Chern–Simons gravity
compactified to 4-dimensions

Consider again the EGB action (3). Choosing α = l2 and
� = −3/ l2 in (3), we see that the EGB action takes the
form

SEGB = l2

8κ5

∫
εabcde

(
RabRcdee + 2

3l2
Rabecedee

+ 1

5l4
eaebecedee

)
, (54)

where it is straightforward to see that this particular choice
for α and � in the EGB action leads to the 5-dimensional
Chern–Simons gravity action for the AdS algebra, with l
interpreted as the radius of the universe.

4.1 4-dimensional gravity from the AdS Chern–Simons
gravity

From Eq. (54) we can see that the Lagrangian contains the
Gauss–Bonnet term LGB , the Einstein–Hilbert term LEH

and a cosmological term L�. Replacing (72), (73) and (74)
in (54) we find

S̃[ẽ] = 1

8κ5

∫
�4

ε̃mnpq

(
Ã R̃mnẽ pẽq + B̃ ẽm ẽnẽ pẽq

)
, (55)

where

Ã = 2πl2

rc

(
1 + r2

c

l2

)
, (56)

and

B̃ = − π

4rc

(
l2

r2
c

− 2 − 3
r2
c

l2

)
. (57)

It is direct to see that the action (55) lead to the Einstein–
Hilbert–Cartan action when

Ã = 6π2rc and B̃ = −π2�4Drc. (58)

From (56), (57) and (58) we have

r2
c

l2
= 1

3π − 1
, (59)

and then

�4D = �4D (rc) =
(

3π − 4

3π − 1

)
3

4r2
c
. (60)

The introduction of (58) into the action (55) leads to the
action (46) where now �4D is given by (60).

Introducing (51) in (55) we obtain

S̃[g̃] =
∫

d4 x̃
√−g̃

(
R̃ − 2�4D

)
, (61)

whose field equations are

Gμν = −�4Dgμν. (62)

In order to have a feeling on rc, from (60) we obtain rc ≈
�

−1/2
4D . Using �4D ∼ 10−52[m−2] ∼ 3 ∗ 10−122[l−2

Planck]
we have rc ∼ 1061[lPlanck] ≈ 1026[m], we recalling that
a0 ≈ 1026[m] (current causal size of the universe).

According to (58), we obtain rc/ l ≈ 0.34, i.e., l ≈ 3rc.
So, interpreting l as the size of the universe appears to be
reasonable.

5 Concluding remarks

We have considered the 5-dimensional Lanczos–Lovelock
gravity, which for an appropriate choice of coefficients gives
the EGB gravity action. It is found the EGB gravitational field
equations for the FLRW metric together with some cosmo-
logical solutions. And if the deceleration parameter is neg-
ative, the so-called Lorentzian metric condition is satisfied
(see [5]).

The main purpose of this article was to make the 5-
dimensional EGB gravity theory, as well as the 5-dimensional
AdS–Chern–Simons, consistent with the idea of a 4-
dimensional spacetime, through the replacement of a Randall–
Sundrum type metric in the Lagrangian (3), and then to get
an interpretation of the 4-dimensional effective cosmological
constant.

We have evaluated a 5-dimensional Randall–Sundrum
type metric in the Lagrangians (3) and (54), and then we
derive an action for a 4-dimensional spacetime embedded in
the 5-dimensional spacetime. We have obtained the actions in
tensorial language and then we find the corresponding Fried-
mann equations for homogeneous and isotropic cosmology.

The quadratic term in the curvature of the action (39) given
by Aε̃mnpq R̃mn R̃ pq represents the 4-dimensional Gauss–
Bonnet term. This term is a topological one, so that it does
not contribute to the dynamics. This means that compactifi-
cation avoids the problems cited in Ref. [14]. Equation (1)
of this last reference agrees with the Lagrangian (39), except
for the cosmological term, when λ1 = α, λ2/λ1 = −4 and
λ3/λ1 = 1.

Finally, it is important to note that the equations of motion
corresponding both the action (9) and the action (39) are sec-
ond order, so they do not experience instabilities (see details
in Ref. [14]).
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6 Appendix: A briefly review the of derivation of the
action (39) and of Lovelock gravity in 5D

6.1 Gravity in 4D from EGB gravity

In order to find (39), we will first consider the following
5-dimensional Randall–Sundrum type metric [20]

ds2 = e2 f (φ)g̃μν(x̃)dx̃
μdx̃ν + r2

c dφ2,

= ηabe
aeb,

= e2 f (φ)η̃mnẽ
mẽn + r2

c dφ2, (63)

where e2 f (φ) is the so-called “warp factor”, and rc is the
so-called “compactification radius” of the extra dimension,
which is associated with the coordinate 0 � φ < 2π . The
symbol ∼ denotes 4-dimensional quantities. We will use the
usual notation [20,21]

xα = (
x̃μ, φ

) ; α, β = 0, . . . , 4; a, b = 0, . . . , 4;
μ, ν = 0, . . . , 3; m, n = 0, . . . , 3;
ηab = diag(−1, 1, 1, 1, 1); η̃mn = diag(−1, 1, 1, 1),

(64)

which allows us to write the vielbein

em(φ, x̃) = e f (φ)ẽm(x̃)

= e f (φ)ẽmμ(x̃)dx̃μ; e4(φ) = rcdφ, (65)

where ẽm is the vierbein.
From the vanishing torsion condition

T a = dea + ωa
be

b = 0, (66)

we obtain the connections

ωa
bα = −eβ

b

(
∂αe

a
β − �

γ
αβe

a
γ

)
, (67)

where �
γ
αβ is the Christoffel symbol.

From Eqs. (65) and (66) we find

ωm
4 = e f f ′

rc
ẽm, (68)

and the 4-dimensional vanishing torsion condition

T̃ m = d̃ ẽm + ω̃m
nẽ

n = 0, (69)

where f ′ = ∂ f/∂φ, ω̃m
n = ωm

n and d̃ = dx̃μ∂/∂ x̃μ.
From (68), (69) and the Cartan’s second structural equa-

tion, Rab = dωab + ωa
cω

cb, we obtain the components of
the 2-form curvature [20,21]

Rm4 = e f

rc

(
f ′2 + f ′′) dφẽm, Rmn

= R̃mn −
(
e f f ′

rc

)2

ẽm ẽn, (70)

where the 4-dimensional 2-form curvature is given by

R̃mn = d̃ω̃mn + ω̃m
pω̃

pn . (71)

These results allow us to obtain an action for a 4-dimensional
gravity from the 5-dimensional EGB action with cosmolog-
ical constant, whose action is given by (3).

From (3) we can see that the Lagrangian contains the
Gauss–Bonnet term LGB , the Einstein–Hilbert term LEH

and a cosmological term L�. In fact, replacing (65) and (70)
in LGB, LEH , L� and using ε̃mnpq = εmnpq4, we obtain

LGB = εabcde R
abRcdee,

= rcdφ

{
ε̃mnpq R̃

mn R̃ pq −
(

2e2 f

r2
c

)

×
(

3 f ′2 + 2 f ′′) ε̃mnpq R̃
mnẽ pẽq

+
(
e4 f

r4
c

f ′2
) (

5 f ′2 + 4 f ′′) ε̃mnpq ẽ
mẽnẽ pẽq

}
,

(72)

LEH = εabcde R
abecedee,

= rcdφ

{(
3e2 f

)
ε̃mnpq R̃

mnẽ pẽq

−
(
e4 f

r2
c

) (
5 f ′2 + 2 f ′′) ε̃mnpq ẽ

mẽnẽ pẽq
}

, (73)

and

L� = εabcdee
aebecedee,

= 5rcdφe4 f ε̃mnpq ẽ
mẽnẽ pẽq . (74)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2022) 82 :906 Page 7 of 7 906

6.2 Lovelock gravity in 5D

En las ecuaciones (2.1) y (2.2) de la Ref. [5] the coefficients
λk in the Lagrangian (2.2) have dimensions of [length](2p−D)

and δ
i1···i2p
j1··· j2p are the so-called generalized Kronecker delta.

Usually such Lagrangian density is normalized in units of
Planck length λ1 = (16πG)−1 = l2−D

P . In 5-dimensions,
the Lagrangian is given by the first three terms of the sum

L(5D) = √−g[λ0 + λ1R

+λ2(R
2 − 4Ri j R

i j + Ri jkl R
i jkl)], (75)

where λ1 = (16πG)−1 = l−3
P .

In the language of differential forms, the five-dimensional
Lovelock Lagrangian can be written as [4]

L(5) = εabcde

(
α0 e

aebecedee + α1R
abecedee

+α2R
abRcdee

)
, (76)

where α1, α2 and α3 are arbitrary constants.
Taking into account that εabcdeeaebecedee = −120√−gd5x , εabcde Rabecedee = −6

√−gRd5x , εabcde Rab

Rcdee = −√−g
(
R2 − 4Ri j Ri j + Ri jkl Ri jkl

)
d5x , we have

that (76) can be written in the form

L(5) = −√−g(120α0 + 6α1R

+α2[R2 − 4Ri j R
i j + Ri jkl R

i jkl ])d5x . (77)

The comparison of (75) with (77) we see that λ0 = 120α0,
λ1 = 6α1, λ2 = α2.

On the another hand, from (3) it is direct to see

L(5D)
EGB = εabcde

(
αRabRcdee + 2

3
Rabecedee

− �5D

15
eaebecedee

)
, (78)

where α = 2α2/3α1, β = 2α0/3α1, which indicates that the
coefficients α and λ2 are proportional. Indeed

α = 2α2

3α1
= 4λ2

λ1
= 64πGλ2 = 4l3Pλ2. (79)
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