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Abstract

We study a five-dimensional non-relativistic gravity theory whose action is composed of a gravitational 
sector and a sector of matter where the gravitational sector is given by the so called Newton–Chern–Simons 
gravity and where the matter sector is described by a perfect fluid. At time to do cosmology, the obtained 
field equations shows a close analogy with the projectable version of the Hořava–Lifshitz theory in (3 +
1)-dimensions. Solutions and their asymptotic limits are found. In particular a phantom solution with a 
future singularity reminiscent of a Litlle Big Rip future singularity is obtained.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In Ref. [1] was studied a five-dimensional Einstein-Chern-Simons gravity whose action S =
Sg + SM is composed of a gravitational sector and a sector of matter, where the gravitational 
sector is given by a particular Chern-Simons gravity action [2] instead of the Einstein-Hilbert 
action and where the matter sector is given by the so called perfect fluid.

The corresponding Chern-Simons Lagrangian of Ref. [2] is a Lagrangian for the so called B
algebra whose generators {Jab,Pa,Zab,Za} satisfy the commutation relation given by in the first 
equation of Ref. [1]. This Lagrangian can be constructed from the one-form gauge connection
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A = 1

2
ωabJ ab + 1

l
eaP a + 1

2
kabZab + 1

l
haZa, (1)

and the two-form curvature

F = 1

2
RabJ ab + 1

l
T aP a + 1

2
KabZab + 1

l
HaZa, (2)

where T a = Dωea , Rab = dωab + ωa
cω

cb , Ha = Dωha + ka
be

b , Kab = Dωkab + 1
l2

eaeb , are 
the corresponding “curvatures”. In fact, using the extended Cartan’s homotopy formula [3,4], 
and integrating by parts, we find that the five-dimensional Chern–Simons lagrangian for the B
algebra is given by [1]

L
(5)
ChS = α1l

2εabcdeR
abRcdee + α3εabcde

(
2

3
Rabecedee + 2l2kabRcdT e + l2RabRcdhe

)

+dB
(4)
EChS, (3)

where the surface term B(4)
EChS, given by

B
(4)
EChS = α1l

2εabcdee
aωbc

(
2

3
dωde + 1

2
ωd

f ωf e

)

+ α3εabcde

[
l2

(
haωbc + kabec

)(
2

3
dωde + 1

2
ωd

f ωf e

)

+l2kabωcd

(
2

3
dee + 1

2
ωd

f ee

)
+ 1

6
eaebecωde

]
. (4)

In the above mentioned reference [1] and also in Ref. [5] was shown that:
(i) the field equations can be obtained from the Lagrangian L = L

(5)
ChS + κLM , where LM =

LM(ea, ha, ωab) is the matter Lagrangian and κ is a coupling constant related to the effective 
Newton’s constant. In fact, the variation of the lagrangian (3) w.r.t. the dynamical fields vielbein 
ea , spin connection ωab, ha and kab, leads to the following field equations

εabcdeR
abeced = 4κ5

(
δLM

δee
+ α

δLM

δhe

)
, (5)

δLM

δhe
= l2

8κ5
εabcdeR

abRcd, (6)

εabcdeR
cdDωhe = 0, (7)

where we have imposed the conditions T a = 0, kab = 0 and δLM/δωab = 0 and where κ5 =
κ/8α3 and α = −α1/α3. Note that the equation (5) is analogous to Einstein’s equation, where 
δLM/δha correspond to the energy-momentum tensor for the field ha .

In the case where the equations (5)-(7) satisfy the cosmological principle and the ordinary 
matter is negligible compared to the dark energy, we find that corresponding the FLRW equations 
take the form

6

(
ȧ2 + k

a2

)
= κ5αρ(h), (8)

3

[
ä +

(
ȧ2 + k

2

)]
= −κ5αp(h), (9)
a a
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3l2

κ5

(
ȧ2 + k

a2

)2

= ρ(h), (10)

3l2

κ5

ä

a

(
ȧ2 + k

a2

)
= −p(h), (11)

(
ȧ2 + k

a2

)[
(h − h(0))

ȧ

a
+ ḣ

]
= 0. (12)

These field equations were completely resolved in reference [1] for the age of dark energy, 
where was found that the field ha has a similar behavior of a cosmological constant.

(ii) The equations (8)-(12) have solutions that describe an accelerated expansion for the three 
possible cosmological models of the universe. Namely, spherical expansion (k = 1), flat ex-
pansion (k = 0) and hyperbolic expansion (k = −1) when the constant α is greater than zero. 
This mean that the FRW–Einstein–Chern-Simons field equations have as a of their solutions an 
universe in accelerated expansion. This result allows us to conjecture that these solutions are 
compatible with the era of Dark Energy and that the energy-momentum tensor for the field ha

corresponds to a form of positive cosmological constant.
In summary in Refs. [1,5] were studied the implications of replacing in the action S = Sg +SM

the Einstein–Hilbert action by the Einstein–Chern–Simons action on the cosmological evolution 
for a Friedmann–Lemaître–Robertson–Walker metric (FLRW). In the case that the matter action 
SM is the action for a perfect fluid, was found that the FRW–Einstein–Chern–Simons field equa-
tions have solutions that describe an accelerated expansion for the three possible cosmological 
models of the universe.

On the other hand, in Ref. [6] was found that the non-relativistic limit of Einstein–Chern–
Simons gravity action is given by the so called Newton–Chern–Simons gravity action. This 
action is invariant under the so called non-relativistic algebra GB5, which can be obtained as 
the non-relativistic limit of the generalized Poincaré algebra B5.

One of the purpose of this article is to find a non-relativistic limit of the results found in 
references [1,5], i.e., some cosmological solutions for the field equations which can be obtained 
from the Newton–Chern–Simons action studied in Ref. [6].

This paper is organized as follows: In Section 2 we obtain the field equations for the La-
grangian L = L

(5)
ChS +κLM , where L(5)

ChS is the Newton–Chern–Simons Lagrangian and LM is the 
corresponding matter Lagrangian. These field equations correspond to the non-relativistic limit 
of the field equations studied in Refs. [1,5]. In Section 3 we find the field equations for a Newton–
Chern–Simons cosmology. In Section 4 it is shown that the Newton–Chern–Simons cosmology is 
a sort of analogue of the projectable version of the Hořava–Lifshitz theory in (3 +1)-dimensions, 
although one of the terms is not present. Solutions and their asymptotic limits are found, which 
show interesting properties. In particular a phantom solution with a future singularity reminis-
cent of a Litlle Big Rip future singularity is obtained. Finally, a brief revision of the adiabaticity 
in the cosmic evolution is made.

2. Newton–Chern–Simons gravity

In this section we will make a brief review of the so-called Newton–Chern–Simons gravity. 
The non-relativistic algebra GB5 has the following commutation relation [6] (see also [7]),

[Jij , Jkl] = ηkjJil + ηlj Jki − ηkiJjl − ηliJkj ,

[Jij ,Kk] = ηjkKi − ηikKj , [Ki,Pj ] = −δijM,
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[Jij ,Pk] = ηjkPi − ηikPj , [Ki,H ] = −Pi,

[Jij ,Zkl] = ηkjZil + ηljZki − ηkiZjl − ηliZkj ,

[Jij ,Zk0] = ηjkZi0 − ηikZj0, [Ki,Zj ] = −δijN,

[Zij ,Kk] = ηjkZi0 − ηikZj0, [Ki,Z0] = −Zi,

[Jij ,Zk] = ηjkZi − ηikZj , [Zi0,Pj ] = −δijN,

[Zij ,Pk] = ηjkZi − ηikZj , [Zi0,H ] = −Zi,

[Pi,H ] = Zi0. (13)

The one-form gauge connection A valued in the GB5 algebra is given by

A = c

l
τH + 1

l
eiPi + c

l
τ̂Z0 + 1

l
hiZi + 1

cl
mM + 1

cl
nN

+ 1

c
ωiKi + 1

c
kiZi0 + 1

2
ωijJij + 1

2
kijZij , (14)

where l and c are parameters of dimensions of length and velocity respectively. The correspond-
ing 2-form curvature F = dA + AA is then given by [6]

F = c

l
R(H)H + 1

l
Ri(Pi)Pi + c

l
R(Z0)Z0 + 1

l
Ri(Zi)Zi + 1

cl
R(M)M

+ 1

cl
R(N)N + 1

c
Ri (Ki)Ki + 1

c
Ri (Zi0)Zi0 + 1

2
Rij

(
Jij

)
Jij + 1

2
Rij

(
Zij

)
Zij , (15)

where

R(H) = dτ, Ri(Pi) = T i − ωiτ,

R(Z0) = dτ̂ , R(M) = dm − ωiei,

Ri(Zi) = Dhi − ωiτ̂ − kiτ + ki
j e

j ,

R(N) = dn − ωihi − kiei,

Ri(Zi0) = Dki + ν2eiτ + ki
jω

j , Ri(Ki) = Dωi,

Rij (Jij ) = Rij , Rij (Zij ) = Dkij , (16)

with ν = c/ l, T i = dei + ωij ej and Rij = dωij + ωi
kω

kj .
From the gauge connection transformation for A, δA = d� + [A,�], with

� = v

l
ζ 0H + 1

l
ζ iPi + v

l
ρ0Z0 + 1

l
ρiZi + 1

vl
σM + 1

vl
γN

+ 1

v
λiKi + 1

v
χiZi0 + 1

2
λij Jij + 1

2
χijZij , (17)

it is direct to find the variations of the different gauge fields [6]

δτ = dζ 0, δei = Dζ i − ωiζ 0 − λij ej + τλi,

δhi = Dρi − ωiρ0 − λijhj + h0λi + kij ζj − kiζ 0 − χij ej + τχi,

δm = dσ − ωiζi + eiλi, δωi = Dλi − λijωj ,

δn = dγ − kiζi + hiλi − ωiρi + eiχi , δh0 = dρ0,

δki = Dχi − λij kj − χijωj + kij λj + eiζ 0 − ζ iτ, δωij = Dλij ,

δkij = Dχij + ki
kλ

kj + k
j
kλ

ik, (18)



S. Lepe et al. / Nuclear Physics B 950 (2020) 114838 5
where the derivative D is covariant with respect to the J -transformations.
From (18) we can see that only the gauge fields e i

μ , τμ, mμ, h i
μ , h0

μ and nμ transform under P
and H transformations. These are the fields that should remain independent, while the remaining 
fields will be dependent upon the aforementioned fields. This can be achieved with the following 
constraints

R(H) = dτ = 0, Ri(Pi) = T i − ωiτ = 0,

R(M) = dm − ωiei = 0, R(Z0) = dh0 = 0,

Ri(Zi) = Dhi − ωih0 − kiτ + ki
j e

j = 0,

R(N) = dn − ωihi − kiei = 0. (19)

Using the subspaces separation method introduced in Ref. [4], was found that, except for 
surface terms, the so called Newton–Chern–Simons lagrangian is given by

LNRChS = α1εijkl

(
−2RijT kωl − 4

3
Rijωkωlτ + 2RijDωkel − RijRklm

)

+ α3εijkl

(
4

3
ν2Rij ekelτ − 2RijDhkωl − 4

3
Rij kkωlτ − 4

3
Rijωkωlτ̂

+2RijDωkhl − 4

3
DkijT kωl − Dkijωkωlτ − Rij kkldm − 2

3
Rij kklemωm

−2

3
Rijωk

mkmlm − 4

3
kij T kDωl − kijDωkωlτ − 2RijT kkl − 4

3
Rijωkklτ

+2

3
Rij kkmωmel + 2

3
ωi

mkjmDωkel − RijRkln − 2Rijωkmkmel

)
, (20)

where ν, α1, α3 are parameters of the theory and κ is a constant (for detail see [1,5,6]).
In the next section we will consider obtaining the equations of motion associated with the 

action whose Lagrangian is given by the eq. (20).

3. Newton–Chern–Simons field equations

In presence of matter, the complete Lagrangian of the theory is

L = κLM + LNRChS (21)

where LNRChS is the Newton–Chern–Simons lagrangian given in (20) and LM is the correspond-
ing matter Lagrangian.

The field equations obtained from the action (21) are given by

εijkl

(
−4

3
α1R

ijωkωl + 4

3
α3ν

2Rij ekel

)
= κ

δLM

δτ
, (22)

4

3
α3εijklR

ijωkωl = −κ
δLM

δτ̂
, (23)

2εijkl

(
α1R

ijDωk − 4

3
α3ν

2Rij ekτ

)
= κ

δLM

δel
, (24)

2α3εijklR
ijDωk = κ

δLM
, (25)
δhl
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a1εijklR
ijRkl = −κ

δLM

δm
, (26)

a3εijklR
ijRkl = −κ

δLM

δn
, (27)

4εijkl

(
2

3
α1R

ijωkτ − α1R
ijT k + 2

3
α3R

ijωkτ̂ − α3R
ijDhk

)
= κ

δLM

δωl
, (28)

εijkl

(
−2α1R

kmemωl − 4α1T
kDωl − 4

3
α1ω

kωldτ − 8

3
α1Dωkωlτ + 2α1R

kmωmel

−2α1R
kldm + 8

3
ν2α3T

kelτ + 4

3
α3e

keldτ − 2α3R
kmhmωl − 4α3DhkDωl

−4

3
α3ω

kωldτ̂ − 8

3
α3Dωkωlτ̂ + 2α3R

kmωmhl − α3R
kldn

)
= κ

δLM

δωij
, (29)

where we have imposed the kij = ki = 0 conditions, and used

Ti = ∗
(

δLM

δei

)
, T0 = ∗

(
δLM

δτ

)
.

From (19) and Bianchi identities we find

DT i = Dωiτ , Rij ej = Dωiτ , R
ij

[λμ eν]j = (D[λωμ)iτν], (30)

e[λi(Dμων])i = 0. (31)

For simplicity we will assume that the torsion vanishes. In this case δLM/δωij = 0. Using the 
constraint (19) we find that (28) takes the form

4εijkl

(α1

3
Rijωkτ + α3

3
Rijωkτ̂

)
= 0,

τ̂ = −α

3
τ. (32)

Introducing (30), (31) in (29) we have

εijkl

(
−10α1

3
Dωkωlτ + 2α1R

kmωmel − 8

3
ν2α3ω

kτelτ − α1R
kldm

+2α3Rkmωmhl − 10

3
α3Dωkωlτ̂ − α3R

kldn

)
= 0. (33)

Since τ 2 = 0 we can write

εijkl

(
−13α1

3
Dωkωlτ − 13

3
α3Dωkωlτ̂

)
= 0, (34)

which means that this equation is satisfied identically and therefore the space is a flat manifold 
as can be seen from the equations (26), (27).

Introducing eqs. (23) in (22) and (25) in (24), we obtain

εijklR
ij ekel = 6

ν2

(
k1

δLM

δτ
− αk2

δLM

δτ̂

)
,

εijklR
ij ekτ = 3

2

(
k1

δLM

l
− α

δLM

l

)
. (35)
ν δe δh
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Taking into account that

∗(T0)δτ = det(g)δσ
δ T 0

0 δτ δ
σ dx5, (36)

εijkl0R
ij ekelδτ = 2 det(g)

(
δσ
δ R − 2Rσ

δ

)
δτ δ

σ dx5, (37)

εijkl0R
ij ekτδel = −2 det(g)

(
δσ
δ R − 2Rσ

δ

)
δeδ

σ dx5, (38)

and using T (h)
00 = ρ(h), T (h)

ii = 4p(h)/c2, we find (with R = 0)

R00 = 3

2ν2

(
k1ρ

(e) − αk2ρ
(h)

)
, (39)

R00 = 3

c2ν2

(
k1p

(e) − αk2p
(h)

)
, (40)

where (39) coincides with the results found in [6]

∇2φ = 3

2ν2 (k1ρ
(e) − αk2ρ

(h)), (41)

with ν = c/ l, β1 = β2 = κ , k1 = κ/8α3 = 8πG5, k2 = κ/24α3, α = 3α1/α3, k1 = 3k2. From 
(39), (40) we have,

2k1p
(e) − 2αk2p

(h) =
(
k1ρ

(e) − αk2ρ
(h)

)
c2,

2p(e) − 2α

3
p(h) =

(
ρ(e) − α

3
ρ(h)

)
c2. (42)

Defining a density and an effective pressure as

p = p(e)

2
− α

6
p(h),

ρ = ρ(e)

2
− α

6
ρ(h), (43)

we find

p = ρc2

2
, (44)

and from (32), we have

ρ(h) = − 3

α
ρ(e). (45)

From (39), (40) we can see

R00 = 3

4ν2

(
k1ρ

(e) − αk2ρ
(h) + 2k1

p(e)

c2 − 2αk2
p(h)

c2

)
,

R00 = ∇2φ = 3k1

2ν2

(
ρ + 2p

c2

)
. (46)

On the other hand, the interaction between the fluids is described by the following state equa-
tions

p(e) = ω(e)ρ(e)c2,

p(h) = ω(h)ρ(h)c2 = − 3
ω(h)ρ(e)c2, (47)
α
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2k1ω
(e)ρ(e) − 2αk2ω

(h)ρ(h) = k1ρ
(e) − αk2ρ

(h),

2
(
k1ω

(e) + 3k2ω
(h)

)
ρ(e) = (k1 + 3k2) ρ(e), (48)

ω(h) = (k1 + 3k2)

6k2
− k1

3k2
ω(e),

= 1 − ω(e). (49)

In the next section we will study a possible non-relativistic version of the results obtained in 
Ref. [1].

4. Newton–Chern–Simons cosmology

Following the formalism used in [8], we denote with (t, xi), the local coordinates where 
i = 1, 2, 3, 4 and τ = dx0, h = δij ∂i ⊗ ∂j are the temporal and spatial metric respectively. The 
matter is modeled as an ideal fluid with velocity u, which is a timelike unit vector. The vorticity 
�αβ and the (rate of) strain �αβ relative to a timelike unit vector field V , where τ(V ) = 1, i.e., 
τa = gαβV β , are given by

�αβ = 1

2
(uα

;λh
λβ − u

β

;λh
λα),

�αβ = 1

2
(uα

;λh
λβ + u

β

;λh
λα). (50)

The expansion rate and the (rate of) shear is the trace-free part of the strain are given by

θ = hαβ�αβ, σ = � − 1

4
θh (51)

respectively.
It is possible to show that θ = uσ

;σ and that the covariant derivative of the velocity can be 
decomposed as [8]

hαλu
λ
;β = �αβ + �αβ + hαρV λu

ρ

;λgβσ V σ , (52)

and with the help of this last equation we can obtain the so called Raychaudhuri equation in the 
Newton–Chern–Simons gravity. Following Ref. [9] we start from the known identity (see also 
[10])

uα
;β;γ − uα

;γ ;β = Rα
σγβuσ ,

uβuα
;α;β =

(
uβuα

;β
)

;α − u
β

;αuα
;β − Rαβuαuβ, (53)

where the two first terms on the right are given by [8](
uβuα

;β
)

;α = div(∇uu),

u
β

;αuα
;β = hραhσβ(�ρβ�σα + �ρβ�σα), (54)

and the last terms on the right is given by

Rαβuαuβ = 3k1

2ν2

(
ρ + 2p

c2

)
, (55)

where we have used (46) together to the equations
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Rαβ = 3k1

2ν2

(
ρ + 2p

c2

)
τατβ,

τατβ = gασ gβρuσ uρ. (56)

These results allow us to find the five dimensional Raychaudhuri equation for the Newton–
Chern–Simons gravity

div(∇uu) = ∇uθ + 1

4
θ2 + σαβσαβ − �αβ�αβ + 3k1

2ν2

(
ρ + 2p

c2

)
. (57)

4.1. FLRW background

In this section we study the non-relativistic FLRW equations in the context of the Newton-
Chern-Simons gravity.

The calculation of the Ricci tensor from its definition leads to the following result

R00 = −1

2
(hij ḣij ),0 − 1

4
hij ḣjkh

kl ḣli + 2hij κ0j,i + κij κij ,

= 3k1

2ν2

(
ρ + 2p

c2

)
,

R0i = hjkκik,j = 0,

Rij = 0. (58)

The first equation is equivalent to the Raychaudhuri equation (57) for u = V , while the second 
equation is equivalent to �ij

,j = 0 for u = V , since for any u

�αβ = 1

2

(
hacu

c
,b − hbcu

c
,a − 2κab

)
. (59)

For the other kinematical quantities we find

�ab = 1

2

(
hacu

c
,b − hbcu

c
,a + ḣab

)
, (60)

θ = ua
,a + 1

2
habḣab, (61)

div(∇uu) = u̇a
,a + 2habκ0a,b + 2hbcκacu

a
,b

+hbcua
,bḣac + uaub

,ab + ua
,bu

b
,a. (62)

For an ideal fluid with pressure, the continuity equation and the Euler equation are respectively 
given by [11],

ρ̇ +
[(

ρ + p

c2

)
ui

]
,i

+ 1

2
hij ḣij

(
ρ + p

c2

)
= 0, (63)

and

u̇i + ujui
,j + 2hij κ0j + 2uj

(
1

2
hikḣkj + hikκjk

)
+

(
ρ + p

c2

)−1
hijp,j = 0. (64)

When κij = 0, we find that the equations (63), (64) and (58) take the form
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ρ̇ +
[(

ρ + p

c2

)
ui

]
,i

= 0,

u̇i + ujui
,j = −

(
ρ + p

c2

)−1
p,i + gi,

−gi
,i = 3k1

2ν2

(
ρ + 2p

c2

)
, (65)

where gi = −2κ0i . So that we have arrived to the equations for Newton–Chern–Simons gravity 
coupled to an ideal fluid.

If now we assume that ρ and p are only functions of t (homogeneity), then the Euler equation 
implies

∇uu = −
(
ρ + p

c2

)−1
div(ph) = 0, (66)

and the continuity equation (63) shows that ui
,i depends only of the time t . These results lead to

the following simplifications of the equation (57)

θ̇ + 1

4
θ2 + σabσab − �ab�ab + 3k1

2ν2

(
ρ + 2p

c2

)
= 0. (67)

Since we have used the fact that θ is a function that depends only on time, we have that (61) and 
(63) imply

ρ̇ + θ
(
ρ + p

c2

)
= 0. (68)

Let us now consider a homogeneous and isotropic flat-FLRW background in the context of 
Newton–Chern–Simons gravity. This model is found using the following Ansatz

V = u, hij = a2(t)δij , � = 0, (69)

which leads to

θ = 4
ȧ

a
, σab = 0, θ̇ = 4

(
äa − ȧ2

a2

)
. (70)

Here, a is the cosmic scale factor. Introducing these results in the equations (68) and (67) we 
obtain

θ̇ + 1

4
θ2 = − 3k1

2ν2

(
ρ + 2p

c2

)
,

ä

a
= − 3k1

8ν2

(
ρ + 2p

c2

)
. (71)

In the following Section we will use the equations (71) to visualize the cosmologies that can 
be derived from the present five-dimensional scheme

4.2. Cosmological solutions

From now on we use units k1 = 8πG5 = 1 = c and ν = 1/l. The equations (71) are the 
conservation equation and the equation for the acceleration, respectively, where p is the pressure, 
ρ the energy density, θ = 4H , H = ȧ/a is the Hubble parameter and a is the cosmic scale factor. 
We immediately visualize the absence of the Friedmann constraint. This situation is analogous 
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to what happens in the projectable version of the Hořava–Lifshitz theory in (3+1)-dimensions 
[12]. From equations (71) it is possible to obtain the first integral

8

3
ν2H 2 = ρ + C0

a2 , (72)

where C0 is an integration constant. The term C0/a
2 is not dark matter in the usual sense, but 

gravitationally behaves like a fluid whose pressure is p = − (1/2)ρ which, as we shall see, cor-
responds to an evolutionary scheme with zero acceleration, which is a Milne universe. In General 
Relativity in (3+1)-dimensions, dark matter corresponds to ρ (a) = ρ (a0) (a0/a)3. A term of this 
form is present in the Hořava–Lifshitz theory in (3+1)-dimension through C (t) /a3. In Ref. [13], 
a realization of the Hořava–Lifshitz gravity as the dynamical Newton–Cartan geometry was dis-
cussed.

The scheme of equations in the projectable version of Hořava–Lifshitz theory in (3+1)-dimen-
sions is given by the equations

ρ̇ + 3H (ρ + p) = −Q,

3η
(

2Ḣ + 3H 2
)

= p, (73)

where η is a dimensionless constant parameter associated with invariance under diffeomorphisms 
and Q represents the amount of energy non-conservation [14]. Here there is no Friedmann con-
straint. From these equations, it is straightforward to find the first integral

3ηH 2 = ρ + C (t)

a3 with C (t) = C0 +
t∫

t0

dta3Q, (74)

and C (t) /a3 is not a real dark matter, but gravitationally it behaves like a fluid with p = 0.
Now, we return to the equations given in (71), which can be written in the form

ρ̇ + 4H (ρ + p) = 0, (75)
ä

a
= Ḣ + H 2 = − 3

8ν2 (ρ + 2p) . (76)

Considering the barotropic relation p = ωρ, we can write (75) and (76) in the form

ρ̇ + 4H (1 + ω)ρ = 0, (77)

from which it is direct to obtain

ρ (a) = ρ (a0)
(a0

a

)4(1+ω)

, (78)

and

Ḣ + H 2 = − 3

4ν2

(
ω + 1

2

)
ρ, (79)

from which we can see that ä � 0 and that ω � −1/2.
The equations (72) and (77), with 1 + z = a0/a where z is the redshift parameter, implies that 

the Hubble parameter can be written as

H (z) =
√

3ρ (0)

8ν2 (1 + z)4(1+ω) +
(

H 2 (0) − 3ρ (0)

8ν2

)
(1 + z)2. (80)

We consider now some particular cases:
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(1) Case when ω = 0. In this case ρ (z) = ρ (0) (1 + z)4 and

H (z) =
√

3ρ (0)

8ν2 (1 + z)2 +
(

H 2 (0) − 3ρ (0)

8ν2

)
(1 + z) , (81)

where we can see that

H (z → ∞) → ∞ and H (z → −1) → 0. (82)

(2) Case when ω = −1/2. In this case ρ (z) = ρ (0) (1 + z)2 and

H (z) = H (0) (1 + z) =⇒ ä = 0, (83)

which correspond to a Milne universe.

(3) Case when ω = −1. In this case ρ (z) = ρ (0) = const ., but according to (80)

H (z) =
√

3ρ (0)

8ν2 +
(

H 2 (0) − 3ρ (0)

8ν2

)
(1 + z)2, (84)

from which we see

H (z → ∞) → ∞ and H (z → −1) →
√

3ρ (0)

8ν2 , (85)

and unlike to General Relativity in (3+1)-dimensions, we have H (z) �= const . for ρ (z) = const .

(4) Case when ω < −1. In this case ρ (z) = ρ (0) (1 + z)−4(|ω|−1) and

H (z → ∞) →
√

H 2 (0) − 3ρ (0)

8ν2 (1 + z) → ∞, (86)

H (z → −1) →
√

3ρ (0)

8ν2 (1 + z)−2(|ω|−1) → ∞. (87)

We note that H (z → −1) diverges, when ρ (z → −1). However this not happens in a finite time 
how it happens in General Relativity in (3 + 1)-dimensions when we think, for instance, in a 
Little Big Rip future singularity [15].

Now, the first and second law of thermodynamics tell us, respectively,

T dS = d (ρV ) + pdV = (ρ + p)dV + V dρ, (88)

T
dS

dt
= V [ρ̇ + 4H (ρ + p)] . (89)

Since, according to (75), ρ̇ +4H (ρ + p) = 0, we have an adiabatic evolution. This means that in 
Newton–Chern–Simons cosmology there is no Friedmann constraint and we have adiabatic evo-
lution. On the other hand in Hořava–Lifshitz theory in (3+1)-dimensions there is no Friedmann 
constraint and, unlike of Newton–Chern–Simons cosmology, the evolution is non-adiabatic since 
ρ̇ + 4H (ρ + p) = −Q �= 0 and therefore dS/dt �= 0.

In summary we can say that we have presented cosmological schemes from the five-
dimensional Einstein-Chern-Simons gravity theory. It could be interesting to use some process 
of compactification to project these results to (3 + 1)-dimensions and then compare them with 
the results obtained in the context of general relativity.
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5. Final remarks

We have considered a five-dimensional action S = ∫
L

(5)
ChS + κLM which is composed of a 

gravitational sector and a matter sector, where the gravitational sector is given by a Newton–
Chern–Simons gravity action instead of the Einstein–Hilbert action and the matter sector is 
described by a perfect fluid. We have studied the implications of replacing the Einstein–Hilbert 
action by the Newton–Chern–Simons action on the cosmological evolution for a FLRW metric.

We have showed that the Newton–Chern–Simons cosmology is a sort of analogue of the pro-
jectable version of the Hořava–Lifshitz theory in (3+1)-dimension, although a term that contains 
Q is not present. We have found solutions and their asymptotic limits which show interesting 
properties. In addition, a phantom solution with a future singularity reminiscent of a Litlle Big 
Rip future singularity has been obtained. Finally, a brief revision of the adiabaticity in the cosmic 
evolution was made.

As we said at the end of the previous section, an interesting thing would be to do a compact-
ification of five to four-dimensions in order to obtain generalized non-relativistic cosmologies 
to be compared with the respective schemes studied in the context of general relativity (work in 
progress).
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