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Abstract We use recently derived Ward identities and lat-
tice data for the light- and strange-quark condensates to
reconstruct the scalar and pseudoscalar susceptibilities (χκ

S ,
χK
P ) in the isospin 1/2 channel. We show that χκ

S develops
a maximum above the QCD chiral transition, after which it
degenerates with χK

P . We also obtain χκ
S within Unitarized

Chiral Perturbation Theory (UChPT) at finite temperature,
when it is saturated with the K ∗

0 (700) (or κ) meson, the
dominant lowest-energy state in the isospin 1/2 scalar chan-
nel of πK scattering. Such UChPT result reproduces the
expected peak structure, revealing the importance of thermal
interactions, and makes it possible to examine the χκ

S depen-
dence on the light- and strange-quark masses. A consistent
picture emerges controlled by the ml/ms ratio that allows
one studying K − κ degeneration in the chiral, two-flavor
and SU (3) limits. These results provide an alternative sign
for O(4) × U (1)A restoration that can be explored in lat-
tice simulations and highlight the role of strangeness, which
regulated by the strange-quark condensate helps to reconcile
the current tension among lattice results regarding U (1)A
restoration.

1 Introduction

Chiral symmetry restoration is a key ingredient to understand
the QCD phase diagram [1–3]. The remarkable advances
achieved in lattice simulations have revealed a crossover tran-
sition at Tc � 155 MeV for physical quark masses and van-
ishing chemical potentials [4–8]. In the light chiral limit
ml → 0 this pseudocritical behavior is expected to become
a “true” phase transition with a critical temperature T 0

c �
132 MeV [9]. Nevertheless, the universality class and even
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the order of this transition are still not fully understood and
depend on the strength of the breaking of the anomalous
U (1)A symmetry at the critical temperature [10–12].

Thus, the very nature of the chiral transition is inti-
mately connected to U (1)A restoration. However, there is
currently no agreement as to whether this symmetry is effec-
tively restored close to the critical temperature. While several
phenomenological [13–17] and lattice [18–22] analyses for
N f = 2 light flavors of mass ml = mu = md support the
idea that the U (1)A symmetry can be effectively restored
at the chiral transition in the chiral limit, lattice results for
N f = 2 + 1 (i.e., including the strange quark flavor with
mass ms � ml ) suggest that the anomalous U (1)A sym-
metry is still broken in the chiral crossover region [23–26].
This phenomenon has also implications for the hadron spec-
trum [11,14,27] as well as phenomenological effects driven
by the associated reduction of the anomalous η′ mass and the
topological susceptibility in a thermal environment [28–31].

The main observables commonly employed to study chiral
symmetry restoration, both in the lattice and in phenomeno-
logical analyses, are the light-quark condensate 〈q̄q〉 and the
scalar susceptibility χS , being the chiral transition signaled
by both the inflection point of 〈q̄q〉 and the peak of χS . Nev-
ertheless, since the axial anomaly is consequence of a short-
distance quantum effect, restored only asymptotically [32],
there is no corresponding order parameter to study U (1)A
restoration.

The manifestation and restoration of global symmetries
such as the chiral SU (2)L × SU (2)R ≈ O(4) and the
U (1)A ones can also be studied by analyzing their effect on
the temperature-dependent properties of the particle spec-
trum. For instance, states of opposite parity related under
axial SU (2)A rotations – the so-called chiral partners –
are expected to degenerate at the chiral transition. Correla-
tion functions of chiral partners and properties derived from
them (like susceptibilities and screening masses) should also
degenerate as the transition is reached. In the same way, an
effectiveU (1)A restoration should be indicated by the degen-
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eracy of correlation functions belonging to a U (2) × U (2)

universality class.
So far, available lattice studies looking for the interplay

of chiral and U (1)A restoration concern the isoscalar and
isovector channels. Namely, defining the lightest scalar and
pseudoscalar operators in the isospin I = 0, 1 sector as

πa = i q̄γ 5τ aq, δa = q̄τ aq,

σ = q̄q, ηl = i q̄γ 5q, (1)

with q the light-quark doublet and τ the Pauli matrices, chi-
ral symmetry restoration implies πa − σ and δa − ηl degen-
eration, where the πa , σ , δa and ηl quark bilinears corre-
spond to the pion, f0(500) (or σ ) and the light components
of the a0(980) and η [33], respectively. Likewise, πa−δa and
σ −ηl are expected to degenerate once the U (1)A symmetry
is effectively restored. Whereas chiral degeneration around
and above Tc has been clearly observed in the lattice both
using screening masses [21,34,35] and susceptibilities [23],
hence confirming theoretical predictions at finite temperature
and/or density [17,36–42], lattice results concerning U (1)A
restoration are not conclusive; while N f = 2 simulations
suggest π − δ degeneration close to the chiral limit [18–
20] and for physical quark masses [21,22], N f = 2 + 1
lattice results report sizable differences between the π and
δ susceptibilities in the region where π − σ degeneration
occurs [23,24].

In this work we will present a thorough analysis of an
alternative sector; namely, the I = 1/2 channel involving
the kaon K and K ∗

0 (700) (or κ) mesons as the lightest pseu-
doscalar and scalar states, respectively. The study of suscepti-
bilities in this sector will provide additional evidences regard-
ing chiral and U (1)A restoration, which will help to recon-
cile the apparently conflicting scenarios mentioned above
and will highlight the role of the strange quark in an explicit
and consistent way. On the one hand, our analysis is based on
Ward Identities (WIs), which predict the behavior of suscepti-
bilities in a channel where there are currently no lattice results
available. Furthermore, I = 1/2 WIs would provide a tool
to study O(4)×U (1)A restoration in terms of quark conden-
sates, well controlled lattice quantities as opposed to those
customarily used, such as the δ, η or topological suscepti-
bilities, which are considerably more noisy [23,31,43,44].
On the other hand, we will show that the main properties of
χκ
S can be described when it is saturated by the thermal pole

of the K ∗
0 (700) meson, which in turn can be generated in

unitarized πK scattering at finite temperature. This second
approach will shed light on the quark mass dependence and
the role of thermal interactions.

With the above motivation in mind, the paper is struc-
tured as follows: in Sect. 2 we will review the relevant WIs
involving the K and κ susceptibilities, as well as the main

properties regarding chiral and U (1)A transformations in the
I = 1/2 sector. In Sect. 3 we obtain some of our main results
regarding the properties of these susceptibilities; namely, we
will show the existence of a maximum in the κ susceptibility
signaling degeneration with the K one, which, as we will see,
is consistent with asymptotic O(4) × U (1)A restoration in
the physical case. Our conclusions will be reached both from
a direct analysis of lattice data to reconstruct the suscepti-
bilities from the WIs, Sect. 3.1, and from UChPT, Sect. 3.2,
which provides a tool to study their behavior towards the
light chiral and SU (3) limits. Finally, the consequences of
our results regarding O(4) × U (1)A restoration will be fur-
ther addressed in Sect. 4, where we will examine the differ-
ent limits of interest. In particular, within the context of the
results obtained here and previous ones from WIs, ChPT and
phenomenological analyses, we will present some arguments
helping to understand the lattice results obtained in two and
three flavors.

2 Ward identities in the strange sector and K -κ
degeneration

A useful set of WIs connecting pseudoscalar and scalar sus-
ceptibilities with quark condensates for all isospin channels
has been recently derived and analyzed in [16,17,39,45]. In
particular, WIs in the I = 1/2 sector read

χK
P (T )=

∫
T

dx
〈
T Ka(x)Ka(0)

〉 = −〈q̄q〉 (T ) + 2〈s̄s〉(T )

ml + ms
,

(2)

χκ
S (T ) =

∫
T

dx
〈
T κa(x)κa(0)

〉 = 〈q̄q〉 (T ) − 2〈s̄s〉(T )

ms − ml
,

(3)

where 〈q̄q〉 = 〈ūu + d̄d〉 and 〈s̄s〉 are the light- and strange-
quark condensates,

∫
T dx ≡ ∫ 1/T

0 dτ
∫
d3 �x at a temperature

T �= 0,

Ka = iψ̄γ 5λaψ, κa = ψ̄λaψ, a = 4, · · · , 7, (4)

are the pseudoscalar and scalar I = 1/2 quark bilinears,
whose lightest states are the kaon and K ∗

0 (700) mesons,
respectively, and ψ is the quark triplet.

The K and κ bilinears in (4) can be related by both a chiral
O(4) and a U (1)A transformation [16]. Namely, a general
SU (2)A ×U (1)A rotation of the up and down quark fields

ψ ′ → eiγ5(α0 12+αb τ̃ b)ψ,
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with 12 = diag(1, 1, 0), τ̃ b =
(

τ b

0

)
, and b = 1, 2, 3,

acting on the Ka bilinear

Ka(x)′ → cos α0(x) cos αb(x)K
a(x)

− sin α0(x) cos αb(x)κ
a(x)

− 2dabc sin αb(x)κ
c(x),

with dabc = ±1/2, a, c = 4, · · · , 7, (5)

connects it with κa field. This connection has some important
consequences:

1. Both O(4) and U (1)A exact restoration imply K − κ

degeneration.
2. The opposite is not necessarily true; there might be a

region where χK
P ∼ χκ

S but the O(4) or U (1)A symme-
tries are still significantly broken, i.e., K − κ degenera-
tion is a necessary but not sufficient condition for O(4)×
U (1)A restoration 1. Nevertheless, throughout this work
we will provide evidences supporting the actual connec-
tion between K − κ degeneration and O(4) × U (1)A
restoration.

3. Exact O(4) restoration at Tc takes place only for N f = 2
in the light chiral limitml → 0. Note that in this case, WIs
for pure UA(1) observables, like the topological suscep-
tibility or the difference between the π and ηl suscep-
tibilities, imply O(4) × U (1)A restoration at the exact
O(4) transition [16,17]. Thus, in this limit K − κ should
also degenerate at Tc.

4. In the physical case with N f = 2 + 1 and nonzero quark
masses, 〈q̄q〉 vanishes only asymptotically and the O(4)

symmetric phase is reached only approximately. In addi-
tion, the U (1)A symmetry vanishes also asymptotically
above Tc. Thus, in this case χK

P − χκ
S might be still dif-

ferent from zero above the crossover chiral transition.
5. In the SU (3) limit, i.e., for ms = ml , the K and

K0(700)/κ are expected to degenerate with the π and
f0(500)/σ , respectively [46,47] and hence, one should
expect K −κ degeneration at the chiral transition, under-
stood as the region where π and σ degenerate.

Furthermore, recent theoretical analyses from the Nambu–
Jona-Lasinio (NJL) model [42] and Chiral Perturbation The-
ory (ChPT) [17] have shown that in the physical case K − κ

degeneration occurs above the crossover region, but around
the same temperature where the isoscalar and isovector
O(4) × U (1)A partners degenerate. Actually, within ChPT,
the temperature at which χK

P matches χκ
S is practically the

1 The same caveat actually applies to most of the observables employed
to study O(4) and U (1)A restoration, like π − σ , π − δ degeneration
or 〈q̄q〉 → 0.

same at which the U (1)A partners π and δ degenerate. Con-
sistent results pointing in the same direction are obtained
from lattice analyses of K and κ screening masses [34,35],
which only degenerate at temperatures above 200 MeV, again
in the same region of O(4) ×U (1)A partner degeneration.

In that context, the advantage of the WIs (2)-(3) is that
χK
P and χκ

S are expressed in terms of well-measured quark
condensates, whose thermal behavior provide a model inde-
pendent tool to study their degeneration. Before discussing
in more detail the consequences of K − κ degeneration for
O(4) × U (1)A restoration, we will first analyze in the next
section what can be learned about χK

P and χκ
S using the WIs

(2)-(3).

3 Properties of χ K
P and χκ

S

The light-quark condensate 〈q̄q〉, as the order parameter of
the chiral transition, is expected to drop abruptly at the tran-
sition temperature, with an inflection point at Tc for phys-
ical quark masses. However, 〈s̄s〉 is supposed to decrease
much softly due to the explicit chiral symmetry breaking
of the heavier strange quark [6], being ml/ms the param-
eter regulating the relative drop of these two condensates.
These trends can be clearly observed in lattice analyses. For
illustrative purposes we show in Fig. 1 the light (
R

l ) and
strange (
R

s ) subtracted condensates reported in [6]; while

R

l drops abruptly close to the chiral transition and asymptot-
ically above Tc, 
R

s remains large at the critical temperature,
showing only a smooth decrease. Note that lattice quark con-
densates usually have to be subtracted to remove UV diver-
gences 〈q̄i qi 〉 ∼ mi/a, with a the lattice spacing and mi the
quark mass as defined in [6].

On the one hand, since both the light- and strange-quark
condensates are negative quantities, (2) indicates that χK

P
should decrease continuously at all temperatures, with an
abrupt drop off around Tc coming from the light-quark con-
densate. On the other hand, (3) implies that below and around
the chiral transition χκ

S (T ) should grow following the 〈q̄q〉
decrease and the roughly constant behavior of 〈s̄s〉. Never-
theless, above the O(4) transition the light-quark condensate
starts decreasing only asymptotically, while at some temper-
ature the 〈s̄s〉 reduction takes over, hence changing the trend
of χκ

S (T ) to a slowly decreasing behavior towards degener-
ation with χK

P (T ).
The previous argument implies that in the physical case,

χκ
S should have a maximum at a temperature T > Tc and that

the behavior of the curve above the maximum is driven by
the 〈s̄s〉 drop. In addition, near the chiral ml/ms → 0 limit
one should expect a steepest growth below the maximum,
dictated by 〈q̄q〉, but a flattening above it, from 〈s̄s〉, pointing
out for K − κ degeneration at lower temperatures. On the
contrary, in the SU (3) ml/ms → 1 limit, the peak should be
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Fig. 1 Light- (left panel) and strange-quark (right panel) subtracted condensates around Tc ∼ 155 MeV computed in [5,6]. They are defined as

R

l,s = d + 2msr4
1

(〈ψ̄ψ〉T − 〈ψ̄ψ〉0
)
, with ψ = q, s and d, r1 lattice parameters defined in [6]. Figure taken from [6]

more pronounced from both sides, consistently with κ and σ

degeneration.
The existence and properties of the χκ

S (T ) peak, com-
ing from WIs and confirmed with our lattice and theoretical
UChPT analysis below, are key results of the present work.

3.1 Results from lattice data

Without direct χκ
S (T ) and χK

P (T ) lattice data available,
the above hypotheses can be tested using lattice results for
the combinations of light- and strange-quark condensates
appearing in (2) and (3), which we denote as reconstructed
susceptibilities. In Fig. 2 we show the results of the recon-
structed susceptibilities using the unsubtracted condensate
data in [6,7] for two different quark-mass configurations:
ms = 20ml , which is close to the physical point, and
ms = 40ml , closer to the chiral limit.

The results in Fig. 2 are fully consistent with the theoretical
expectations. First, χK

P decreases at all temperatures, with a
smooth asymptotic behavior above Tc. Second, the scalar sus-
ceptibility χκ

S develops a maximum around Tc, after which it
shows a smooth temperature dependence, degenerating with
χK
P at temperatures T � 180 MeV. Such degeneration is

ultimately driven by strangeness through 〈s̄s〉. In fact, the
data for ms = 40ml reflect the expected behavior below Tc
and seem to indicate χκ

S −χK
P degeneration at lower tempera-

tures, as expected from the softer 〈s̄s〉 T -dependence. Unfor-
tunately, available lattice results for condensates closer to the
chiral limit [6,9] do not reach the temperatures of interest for
our purposes here.

The results in Fig. 2 are also supported by lattice analy-
ses of screening masses [34,35]. Although screening masses
and susceptibilities measure different limits of meson corre-
lators at vanishing four momenta (the susceptibility behaves
as the inverse pole mass squared while the screening mass
measures the exponential falloff of the correlator at large

HISQ/tree, Nσ=32, Nτ=8

χ S
κ ms =20ml

χ S
κ ms =40ml

χ P
K ms =20ml

χ P
K ms =40ml

χ S
κ ms =20ml

χ S
κ ms =40ml
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Fig. 2 Reconstructed pseudoscalar and scalar susceptibilities (in lat-
tice units) in the I = 1/2 channel from (2) and (3), respectively, with
light- and strange-quark condensate data from [6,7]. In the inset panel
we show χκ

S (T ) separately in order to emphasize the peak behavior.
For such lattice setup, the continuum extrapolation to the physical mass
case ms = 27ml gives Tc = 154 ± 9 MeV

spatial separation), these two quantities follow a similar tem-
perature scaling [17,42,45]. Lattice results show a minimum
around the transition for the κ screening mass, hence play-
ing the counterpart of the χκ

S maximum in Fig. 2. Moreover,
all scalar channels analyzed in [34,35] show a similar min-
imum driven by its degeneration with their corresponding
pseudoscalar partner, which might constitute a global meson
pattern.

3.2 Theoretical analysis from effective theories

In order to analyze the behavior of χκ
S from the theoretical

side at and beyond the physical point, we consider a UChPT
approach where χκ

S (T ) is saturated by its lowest pole, the
K ∗

0 (700)/κ meson, generated in πK scattering at finite tem-
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perature. Namely,

χ
κ,U
S (T ) = Aκ

M2
κ (0)

M2
κ (T )

(6)

where we fix Aκ to reproduce the perturbative ChPT result
at T = 0, i.e., Aκ = χ

κ,ChPT
S (0) calculated in [17], and

M2
κ (T ) = M2

p(T ) − �2
p(T )/4, with sp = (Mp − i�p/2)2

the resonance pole position in the second Riemann sheet of
the complex s-plane for the unitarized πK I = 1/2 scalar
partial wave. Thus, M2

κ (T ) is the real part of the K ∗
0 (700)

self-energy at the pole, which is expected to provide the dom-
inant temperature dependence of χκ

S . Since susceptibilities
are p = 0 correlators, the sensibility to the p-dependence of
the self-energy and the T -dependence of its residue in (6) are
assumed to lie within the uncertainty bands. That is actually
the case when the scalar susceptibility χS(T ) is saturated by
the thermal f0(500)/σ [39,48]. Namely, this approach has
been proven to reproduce the χS(T ) transition peak and to
describe lattice data around it.

For the unitarized πK scattering amplitude we rely on
the UChPT techniques described in [48–50] and write the
I = 1/2 scalar πK partial wave as

tU (s; T ) = t2
2 (s)

t2(s) − t̃4(s, T )
, (7)

where s = (pπ + pK )2,

t2(s) = 5s2 − 2s(M2
K + M2

π ) − 3(M2
K − M2

π )2

128F2
π

is the T -independent leading-order O(p2) ChPT amplitude,
Mπ(K ) the pion (kaon) mass and Fπ the pion decay con-
stant. For the O(p4) contribution t̃4(s, T ) we consider two
different methods consistent within unitarity and analyticity
requirements for the thermal amplitude:

Method 1: t̃4(s; T ) = 16π t2(s)
2 J̃πK (s; T ),

Method 2: t̃4(s; T ) = t4(s; 0) + 16π t2(s)
2 [JπK (s; T ),

− JπK (s; 0)]

where

JπK (s; T )=T
∞∑

n=−∞

∫
d3 �q

(2π)3

1

q2 − M2
K

1

(q − Q)2 − M2
π

(8)

is the one-loop thermal integral in the center-of-momentum
frame, whose detailed expression can be found, e.g., in [51],
with q0 = 2π i n T , �Q = �0 and Q2

0 → s after analytic
continuation from external discrete frequencies.

Method 1 was proposed in [50], where J̃πK denotes the
finite part of JπK , renormalized by a subtraction constant fit-
ted to scattering data at T = 0 [52,53]. In Method 2, t4(s; 0)

is the renormalized ChPT O(p4) amplitude at T = 0 [54].
The main advantage of Method 2 is that is consistent with
the perturbative chiral expansion at O(p4) at T = 0; hence,
providing better control over the quark mass dependence of
the amplitude. Similarly to the ππ scattering case studied
in [55,56], both methods ensure elastic thermal unitarity [51],
which for πK scattering reads:

Im tU (s; T ) = σπK (s; T )|tU (s; T )|2, s ≥ (MK + Mπ )2,

(9)

where the thermal phase-space factor

σπK (s; T ) = 1

s

√(
s − (Mπ + MK )2

) (
s − (Mπ − MK )2

)

× [
1 + n(E+) + n(E−)

]
, (10)

with E± = (s ± 
)/(2
√
s), 
 = M2

K − M2
π and n(x) =

(ex/T − 1)−1 is the Bose-Einstein distribution function.
As a test of the capability of Methods 1 and 2 to describe

the K ∗
0 (700), we get at T = 0

√
sp(1) = (731±7)− i(280±

9) MeV and
√
sp(2) = (679 ± 6) − i(289 ± 8) MeV, for

method 1 and 2, respectively, where we have used the sub-
traction constant value and error in [50] for method 1 and
the low-energy constants (LECs) of the global fit in [57] for
method 2. For the latter, the uncertainties are computed from
the propagation in quadrature of the LEC errors. These results
are perfectly consistent with the most precise dispersive cal-
culations [58–60].

The χ
κ,U
S results for both unitarization methods, includ-

ing their uncertainties, are plotted in Fig. 3 together with
the reconstructed scalar susceptibility from the WI in (3)
using for the light- and strange-quark condensates the Hadron
Resonance Gas (HRG) results in [61]. The HRG includes
hadron resonances of masses below 2 GeV and is meant to
capture the relevant thermodynamics below the transition,
hence providing a check of consistency for our unitarized
results and a way to estimate the importance of such higher
states for this observable. In addition, we also include the
perturbative ChPT prediction calculated in [17]. The two
thermal unitarized methods remain fairly consistent between
them and compatible with the perturbative ChPT and HRG
results below the transition, indicating the robustness of the
approach. In addition, both reproduce the expected χ

κ,U
S peak

behavior, unlike the ChPT or HRG, which are monotonically
increasing. This reveals the importance of considering ther-
mal interactions in order to describe these non-perturbative
phenomena around the transition.

Finally, we study the chiral and SU (3) limits using method
2, which at T = 0 reproduces the light- and strange-
quark mass dependence of the πK amplitude predicted in
ChPT. The behavior of χ

κ,U
S in the two limits is plotted in

Fig. 3, showing the expected results. On the one hand, when
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Fig. 3 Left panel: κ susceptibility from UChPT with the two methods
explained in the main text, including their theoretical uncertainty bands,
the perturbative ChPT result and the HRG one extracted from the quark

condensate combination in (3). Right panel: Unitarized κ susceptibil-
ity for physical masses, the light chiral limit and for MK closer to the
SU (3) limit

approaching the chiral limit we find a steepest growth below
the maximum and a flatter curve above it.On the other hand,
the reduction of the kaon mass enhances the size of the peak
and moves it to lower temperatures closer to Tc, so that χ

κ,U
S

tends to resemble the behavior of χS consistently with SU (3)

symmetry.
The above results for the I = 1/2 scalar susceptibility

within the UChPT approach constitute also an important out-
come of the present work.

4 Consequences for O(4) × U(1)A restoration

The results described in Sect. 3 show that χκ
S develops a max-

imum, after which it degenerates with χK
P . This prediction

is obtained from rigorously derived WIs and hence, it can
be considered as a model independent result. In that con-
text, some comments are in order to relate this sector with
O(4) ×U (1)A restoration:

(i) Close to the physical point, i.e., using the ms = 20ml

lattice data for the light- and strange-quark condensates
in [6,7], one observes that the position of the χκ

S peak
lies well above the O(4) crossover region – the tem-
perature at which χS develops a maximum and π − σ

degenerate. There is no contradiction since K−κ degen-
eration should happen at Tc only if O(4) restoration is
exact i.e., for N f = 2 and ml → 0.
Conversely, the temperature at which the reconstructed
χκ
S and χK

P degenerate lies close to region where current
N f = 2 + 1 lattice data [23,24] find π − δ degener-
ation; even when K − κ degeneration only imposes a
lower bound for U (1)A restoration, this result shows
that, for physical quark masses, such degeneration lies

around the point where U (1)A symmetry is assumed to
be asymptotically restored in N f = 2 + 1 lattice simu-
lations. Thus, K − κ degeneration might be considered
as an additional sign to study asymptotic O(4)×U (1)A
restoration. Additional arguments supporting this pro-
posal are the degeneration of K − κ lattice screening
masses in the T ∼ 200 MeV region of O(4) × U (1)A
restoration [35], and results in ChPT and NJL models
showing coincidence of the K −κ degeneration temper-
ature with that of theU (1)A partners, like π −δ [17,42].
Further information can be obtained by taking the dif-
ference between (2) and (3),

χκ
S (T ) − χK

P (T ) = 2

m2
s − m2

l


l,s(T ), (11)

where 
l,s(T ) = ms 〈q̄q〉 (T ) − 2ml〈s̄s〉(T ) is the so-
called subtracted condensate, one of the order param-
eters considered in the lattice literature2 to cancel out
finite-size divergences [1,4–6]. Eq. (11) provides infor-
mation on K − κ degeneration in terms of a well-
determined lattice quantity. In Fig. 4 we plot the normal-
ized 
̄l,s(T ) = 
l,s(T )/
l,s(0) results given in [6],
where one can see that at Tc this difference has reduced
its value by half, and only at much larger tempera-
tures T > 200 MeV 
l,s shows an asymptotic vanish-
ing behavior compatible with effective O(4) × U (1)A
restoration. Thus, even when 
l,s is usually considered
equivalent to 〈q̄q〉, i.e., as an order parameter for O(4)

restoration, this is only true in the light chiral limit. In
the physical case, Eq. (11) indicates that its vanishing
actually provides a sign of O(4) × U (1)A restoration.

2 The renormalized subtracted condensates plotted in Fig. 1 are another
commonly employed choice.
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Fig. 4 Subtracted quark condensate normalized to its value at zero
temperature as given in [6]. At Tc, 
̄l,s has reduced its value by half and
only at higher temperatures it shows an asymptotic vanishing behavior
compatible with O(4) ×U (1)A restoration. Figure taken from [6]

Note, however, that its inflection point practically coin-
cides with that of 〈q̄q〉 since the variation of 〈s̄s〉 with T
is almost negligible at that temperatures and hence, the

l,s subtracted condensate works perfectly well to esti-
mate the crossover temperature. This is not in conflict
with the 
l,s vanishing signaling O(4)×U (1)A restora-
tion, being 〈s̄s〉 ultimately responsible for the 
l,s tail
behavior.

(ii) Let us consider now the ms � ml expansion. On the
one hand, the right-hand side in (11) reads

χκ
S (T )−χK

P (T )
∣∣
ms�ml

= 2

ms
〈q̄q〉 (T )

∣∣∣
SU(2)

+O
(

1/m2
s

)
.

(12)

On the other hand, the left-hand side of (11) in this
limit can be studied in ChPT, where at leading order
in this expansion one finds χκ

S (T ) − χK
P (T )

∣∣
ms�ml

∝
1/ms [17]. Thus, at leading order, this regime is nothing
but the N f = 2 limit, where the strange quark is fully
decoupled for ms → ∞. Even though the K and κ

susceptibilities are pure SU (3) quantities and, in the
physical case, the strange quark should be taken as a
dynamical degree of freedom, its difference has a well-
defined N f = 2 limit.
Furthermore, Eq. (12) implies K −κ degeneration at Tc
in the ml → 0 limit, since in this case the light-quark
condensate vanishes exactly. This is consistent with the
analysis in [16,17] and two-flavor lattice results [18–
22], which suggest O(4) × U (1)A restoration at the
O(4) transition for N f = 2 in the light chiral limit.
Thus, our analysis helps to reconcile lattice results in
these two different regimes.

(iii) It is also relevant to discuss the light chiral limit for
N f = 2 + 1. As one can check in ChPT, both χκ

S and
χK
P are well behaved quantities in this case [17], and

hence, Eq. (11) simplifies to

χκ
S (T ) − χK

P (T )
∣∣
ml=0 = 2

ms
〈q̄q〉 (T )

∣∣∣
ml=0

. (13)

Note that the difference between (12) and (13) is that
for the latter, the light-quark condensate appearing in
the right-hand side is the SU (3) result in the light
chiral limit, which does not vanish at Tc and hence,
the K − κ susceptibility difference does not vanish
either. Even though the susceptibility difference in this
case is expressed in terms of the chiral condensate3,
Eq. (13) does not imply any consequence regarding
O(4) × U (1)A restoration since both symmetries are
explicitly broken. Clearly, ml → 0 accelerates chi-
ral O(4) restoration with respect to the physical case,
but it also does so with U (1)A restoration, since we
are closer to the regime where exact O(4) restoration
implies an exact O(4) ×U (1)A symmetric phase. This
is actually reflected in the behavior of the χκ

S peak in
the light chiral limit analyzed in Sect. 3 both for the
reconstructed lattice data and the UChPT. Only when
the ml/ms → 0 limit is taken, Eqs. (13) and (12) coin-
cide, the strange quark decouples and the previous con-
clusion about O(4) ×U (1)A restoration at Tc follows.

(iv) The SU (3) ml/ms → 1 limit in (11) is also well
behaved and illustrative. Evaluating it once again in
ChPT, we get

χκ
S (T )−χK

P (T )
∣∣
ms→ml

= χS + 〈q̄q〉
ml

= χS −χπ
P , (14)

where χπ
P stands for the pion pseudoscalar suscepti-

bility. This confirms our previous statement about this
limit, where the κ and the I = 0 scalar susceptibili-
ties degenerate one into another. Thus, if this limit is
obtained by reducing the strange-quark mass but keep-
ing the light-quark mass fixed, one expects χκ

S to resem-
ble the χS crossover peak, as we do observe in our
UChPT analysis. Finally, it is worth noting that even
when the K − κ susceptibility difference is expressed
once more in terms of two O(4) quantities, they are
nonzero at Tc in N f = 2 + 1. Thus, O(4) × U (1)A
would not be restored near Tc in this limit because one
is far away from the strange-quark decoupling regime.

Our arguments in this section justify then that ml/ms is
the relevant parameter regarding the behavior of the K− κ

3 This comes as no surprise since exact O(4) implies K − κ degener-
ation.
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susceptibility difference and its connection with O(4) ×
U (1)A restoration.

5 Conclusions

We have performed a detailed analysis of the scalar and pseu-
doscalar susceptibilities in the I = 1/2 channel based on
Ward Identities, lattice data and Unitarized Chiral Perturba-
tion Theory, which provides an alternative way to study the
interplay between chiral and O(4) × U (1)A restoration and
the role of strangeness in that context. This joint analysis
gives rise to the following consistent results:

1. The κ scalar susceptibility develops a peak, which in the
physical limit and for N f = 2 + 1 lies above the chiral
crossover. Below this peak, the rise of the susceptibility
is controlled by the light-quark condensate and then it is
mostly related to chiral restoration. Above the peak, the
susceptibility drop is driven by the strange-quark con-
densate and the κ susceptibility tends to degenerate with
the K one.

2. Although there are no direct lattice results for the I = 1/2
susceptibilities available, we reconstruct them from WIs
and condensate data. The results confirm the existence of
theχκ

S peak and theχκ
S −χK

P degeneration. In the physical
case, the position of the peak lies within the region of
O(4) × U (1)A restoration, i.e., the temperature where
lattice analyses suggest the vanishing of the topological
susceptibility or π − δ degeneration.

3. Within a UChPT approach, we have studied the κ scalar
susceptibility by saturating it with the thermal pole of the
K ∗

0 (700)/κ , the lightest I = 1/2 scalar state, which is
dynamically generated through unitarized π − K scat-
tering at finite temperature. The result confirms again
the presence of the peak, which other approaches such
as ChPT or the HRG are not able to provide, hence
highlighting the importance of including properly ther-
mal interactions. Our analytic UChPT approach has also
the advantage of allowing us to tune the meson masses
beyond the physical limit to study the behavior of the κ

susceptibility in the chiral and SU (3) limits.
4. The parameter ml/ms controls effectively the transition

from the N f = 2 to the N f = 2+1 cases for the observ-
ables analyzed here. This offers a way to reconcile lattice
results in these two scenarios regarding O(4) × U (1)A
restoration and suggest that χκ

S − χK
P is an alternative

useful sign to study this problem. In the physical case,
our work, based on lattice data, is consistent with previ-
ous ChPT and NJL analyses, as well as with results from
lattice screening masses, all pointing to χκ

S −χK
P degen-

eration in the region where O(4) × U (1)A restoration
takes place.

5. The χκ
S − χK

P susceptibility difference can be related to

l,s , one of the subtracted quark condensates customar-
ily analyzed in the lattice. For ml/ms → 0, the strange
quark decouples, the N f = 2 limit is reached and our
analysis suggests that the O(4) and O(4) ×U (1)A tran-
sitions coincide at Tc, hence consistently with previous
WIs analyses and N f = 2 lattice data. In the same way,
our UChPT result shows a flattening of χκ

S above the peak
in the light chiral limit, reflecting degeneration with χK

P .
In the opposite limit, ml/ms → 1, the degenerate SU (3)

phase is achieved, which implies χκ
S and χS degeneration.

Within UChPT, we confirm this behavior by lowering the
kaon mass, which makes the χκ

S peak grow and displace
to the left towards Tc, thus resembling the behavior of χS

at the crossover region.

We believe that our present analysis provides new insight
about the I = 1/2 sector, which may be useful for future
theoretical and lattice analyses. Furthermore, it helps to bet-
ter understand the role of strangeness in the current tension
between N f = 2 + 1 and N f = 2 lattice results regarding
O(4) ×U (1)A restoration.
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