
 

Supernova constraint on self-interacting dark sector particles

Allan Sung ,1,2,* Gang Guo ,1,3,† and Meng-Ru Wu 1,4,‡

1Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
2Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

3Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing 210033, China

4Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan

(Received 8 February 2021; accepted 5 April 2021; published 4 May 2021)

We examine the constraints on sub-GeV dark sector particles set by the proto-neutron star cooling
associated with the core-collapse supernova event SN1987a. Considering explicitly a dark photon portal
dark sector model, we compute the relevant interaction rates of dark photon (A0) and dark fermion (χ) with
the Standard Model particles as well as their self-interaction inside the dark sector. We find that even with a
small dark sector fine structure constant αD ≪ 1, dark sector self-interactions can easily lead to their own
self-trapping. This effect strongly limits the energy luminosity carried away by dark sector particles from
the supernova core and thus drastically affects the parameter space that can be constrained by SN1987a. We
consider specifically two mass ratios mA0 ¼ 3mχ and 3mA0 ¼ mχ which represent scenarios where the
decay of A0 to χχ is allowed or not. For mA0 ¼ 3mχ, we show that this effect can completely evade the

supernova bounds on widely examined dark photon parameter space for a dark sector with αD ≳ 10−7. In
particular, for the mass range mχ ≲ 20 MeV, supernova bounds can only be applied to weakly self-

interacting dark sector with αD ≲ 10−15. For 3mA0 ¼ mχ, bounds in regions where αD ≳ 10−7 for mχ ≲
20 MeV can be evaded similarly. Our findings thus imply that the existing supernova bounds on light dark
particles can be generally eluded by a similar self-trapping mechanism. This also implies that nonstandard
strongly self-interacting neutrino is not consistent with the SN1987a observation. Same effects can also
take place for other known stellar bounds on dark sector particles.
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I. INTRODUCTION

Thedetectionof 20 electron antineutrinos emitted from the
core-collapse supernova (SN) explosion event, SN1987a
[1–3], not only broadly confirmed the prevalent SN theory,
but also led to several important consequences to funda-
mental physics, including, e.g., bounds on the neutrino decay
lifetime, the absolute masses of neutrinos, and nonstandard
neutrino interactions [4–13]. In particular, important con-
straints on a variety of particles beyond the Standard Model
(SM) including the axion, sterile neutrino, dark photon, etc.,
whose masses are sub-GeV, were derived [13–48], which
complement ongoing experimental searches for those par-
ticles. These constraints were based on the requirement that

the exotic particles should not carry away an amount of
energy from the cooling proto-neutron star (PNS) more than
the inferred total energy carried by neutrinos, Eν ≃ 3 ×
1053 erg (see, however, a caution fromRef. [49]). In addition
to the SN cooling (more precisely, the PNS cooling)
constraint, recent works also proposed new constraints on
light dark photon or dark photon portal light dark matter
(DM) based on other SN-related observables, such as the
measured SN explosion energy [50], the γ-rays [51,52], or
the produced (semi-)relativistic dark matter flux arriving at
the terrestrial detectors [53].
One important aspect in deriving the SN constraint on

light dark sector (DS) particles is that their interaction
with SM particles cannot be too strong for them being
trapped inside the PNS. We note that previous studies
always ignored the self-interactions between dark sector
particles when deriving the SN bounds. However, if
the abundance of dark sector particles inside the SN
core can be as large as SM particles, and if the self-
interaction cross section can be as large as the neutrino-
nucleon scattering cross section ∼Oð10−41Þ cm2 for
neutrinos of ∼Oð10Þ MeV, dark sector particles can trap
themselves inside the PNS. Consequently, SN bounds on
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self-interacting dark sector particles can be largely
evaded (see also a very recent study discussing SN
bound on axionlike particle portal light DM [54]).
Note that self-interacting dark matter has been considered
to be a viable option to resolve a number of tensions in
the scale of galaxies or galaxy clusters, e.g., the core-
cusp, too-big-to-fail, and the missing satellites problems;
see, e.g., Refs. [55–58]. Extensive efforts investigating
consequences of self-interacting or annihilating dark
matter on various cosmological and astrophysical signa-
tures have been pursued in recent years, e.g.,
Refs. [59–73].
In this work, we aim to address the issue of SN

constraints on self-interacting dark sector particles by
taking into account their self-trapping effect in a systematic
way for the first time. We use a widely examined dark
photon portal dark sector model explicitly to compute all
the relevant interaction cross sections and the decay rates.
In principle, to determine precisely the dark sector particle
fluxes emerging from the PNS requires solving full
Boltzmann transport equations in a way similar to the
neutrino transport problem in SNe (see e.g., a recent review
[74] and references therein).1 Such approach demands
intensive computational power to fully incorporate the
scattering kernels and particle annihilation. Instead of
directly pursuing full numerical simulations, we adopt an
approximated approach to estimate the energy fluxes
carried by dark photons and dark fermions evaluated in
the nondiffuse regime and diffuse regime separately, and
formulate a physically motivated criterion to switch from
one regime to another. This approach allows us to estimate
the effect of dark sector self-trapping on SN bounds for a
wide range of parameter space, which turns out to be very
important even for small couplings in the dark sector.
The rest of the paper is organized as follows. In Sec. II,

we describe the underlying dark photon portal dark sector
model, the considered SN model, and list the relevant
interactions and decay processes that we included in this
work. In Sec. III, we compute the energy luminosity of dark
sector particles leaving the PNS in the nondiffuse and the
diffuse regime, respectively, and formulate the criterion to
switch from one regime to another. We apply this method to
derive SN bounds on self-interacting dark sector particles in
Sec. IV. Our conclusion and discussions of potential
caveats as well as other implications are given in Sec. V.
All detailed derivations of the cross sections, the decay
rates, and the diffusion luminosity of dark sector particles
are given in the Appendixes. We adopt natural units
with ℏ ¼ c ¼ 1 throughout the paper unless explicitly
specified.

II. MODELS

A. Dark sector model

We consider a dark photon portal DS model wherein the
Dirac dark fermion χ couples to dark photon A0 and the dark
photon kinetically mixes with the SM photon [75–77]. The
corresponding Lagrangian of the dark sector is given by

L ⊃ −
1

4
F0
μνF0μν −

ϵ

2
F0
μνFμν þ 1

2
m2

A0A0
μA0μ

þ χði∂ −mχÞχ þ gDχ=A0χ; ð1Þ

where ϵ is themixing parameter,mA0 is the dark photonmass,
mχ is themass of the dark fermion, and gD is theDS coupling
constant. We define the DS fine structure constant αD ≡
g2D=4π analogous to the electromagnetic fine structure
constant αe ≡ e2=4π.
Through the mixing of dark photon with the SM photon,

dark photons and dark fermions can be produced via
processes analogous to the SM electromagnetic ones. We
follow Refs. [33,35] to consider the following production
channels for light dark photons and dark fermions inside
the hot and dense interior of a PNS with a temperature
≃30 MeV and a core mass density ≳1014 g cm−3. For the
dark photon, we include the nucleon-nucleon bremsstrah-
lung np → npA0, Compton-like interaction γe− → e−A0,
and electron-positron annihilation e−eþ → A0. For the dark
fermion, we consider three pair-production channels
including nucleon-nucleon bremsstrahlung np → npχχ,
electron-positron annihilation e−eþ → χχ, and plasmon
decay γ� → χχ.
When the PNS interior is optically thin to dark photons

or dark fermions, the rates of the above production channels
directly determine the energy luminosity carried away by
the dark particles. However, when the interactions between
dark particles and the SM medium, as well as the self-
interactions in the DS, are strong enough, dark photons and
fermions can be trapped in the PNS. These interactions
include the inverse processes of the above production
channels, the dark photon (fermion) pair-annihilation
A0A0 ↔ χχ, the DS Compton scattering A0χ ↔ χA0, the
scattering of dark fermions χχ → χχ and χχ → χχ, as well
as the dark fermion scattering with SM charged fermions
χp → χp and χe− → χe−. These interactions determine the
mean free path of the DS particles and thus the energy loss
rate through the neutrinosphere in the diffuse regime.
Moreover, when mA0 > 2mχ , the (inverse) decay of dark
photon A0 ↔ χχ needs to be considered. In this scenario,
the inverse decay process dominates all the dark fermion
pair-absorption processes and the DS self-interactions due
to the resonances.2 Other DS self-interactions without

1Reference [53] adopted a Monte-Carlo based particle
transport scheme to compute the light dark matter flux emitted
from the PNS, without considering their potential self-
interactions.

2χχ̄ → χχ̄ has a dark photon resonance and A0χ → A0χ has a
dark fermion resonance; see Eq. (A13) and text below in
Appendix A for details.
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resonances are suppressed by an extra factor of αD
compared to the (inverse) decay rate and thus can be
neglected for mA0 > 2mχ. We list all the included inter-
actions in this work in Tables I and II for dark photon and
dark fermion, respectively.
Throughout this work, we will use perturbative calcu-

lation for the interaction rates. Since the temperature in the
PNS is ∼30 MeV, we only consider DS particles of masses
below ≃1 GeV.

B. PNS cooling constraint and SN model

Without the presence of dark particles, long-term SN
simulations predicted that the PNS cools by emitting

neutrinos of all flavors in ∼10 s. The total energy carried
away by neutrinos is ≃3 × 1053 erg, which is fixed by the
available gravitational energy released to form a compact
neutron star. The potential emission of exotic particles that
may be produced inside the PNS will thus reduce the
duration of the neutrino emission and can be constrained by
the observed neutrino events from SN1987a. Based on
comparisons with simulations including the emission of
axions from the PNS, a well-known criterion (Raffelt’s
criterion) was formulated to constrain the maximal energy
luminosity carried by any exotic particles [78],

LD ≤ Lν ≡ 3 × 1052 erg s−1; ð2Þ

where LD denotes the energy luminosity of dark emission,
evaluated during the early PNS cooling phase, and Lν is
approximately the time-averaged neutrino energy luminos-
ity in SM.
In this work, we use the PNS density and temperature

profile at 1 s post the SN core bounce obtained in Ref. [79]
to compute the emission of dark photons and dark
fermions. This PNS profile was widely used recently for
similar purposes (see, e.g., Refs. [33,50]). Note that the
choice of a particular SN model may introduce uncertain-
ties of a factor of a few for the derived bounds [32,33].
Figure 1 shows the radial evolution of the density ρ,
temperature T, the electron chemical potential μe, and
the plasma frequency ωp [see Eq. (B7)]. The position of the
spectral-averaged neutrino decoupling sphere, i.e., neutri-
nosphere, is indicated by the vertical dash line at
Rν ≃ 22 km. The density profile shows a monotonically
decreasing behavior as a function of radius, while the
temperature profile exhibits a peak at r ≃ 11 km, due to the
inefficient compression heating at the densest core region.
The electrons are highly degenerate inside the PNS. The
plasma frequency ωp ≃ 14 MeV at the PNS center and
decreases at larger radii. The plasma effect effectively alters
the mixing between the dark photon and the SM photon
differently for the transverse and the longitudinal polar-
izations [33,34,80]. We have included this effect through-
out this work and give the details in Appendix B.

III. LUMINOSITY OF DARK SECTOR PARTICLES

In this section, we first describe how we compute the
energy luminosity of DS particles leaving the PNS for the
scenario where the DS self-trapping can be ignored
(Sec. III A) and for cases where they can be considered
as diffusive due to self-trapping (Sec. III B). We formulate
the criteria that determine if a DS particle species is in
diffuse regime or not in Sec. III C. In Sec. III D, we then
apply our formalism to the adopted PNS profile to compute
the total luminosity carried away by DS particles from the
PNS interior.

TABLE I. Relevant processes of dark photon interactions
considered in this work. “Abs.” refers to a process which absorbs
dark photon(s) or decay of dark photon. “Sca.” refers to a
scattering process of a dark photon with a Standard Model
(SM) particle or a dark sector (DS) particle. Only leading-order
processes are included here. Note that for mA0 > 2mχ, A0 → χχ̄
also accounts for contribution from A0χ → A0χ [see Eq. (A13) and
text below for details].

Mass Interaction Type Particle Coupling

mA0 < 2mχ A0np → np Abs. SM ϵ2

A0e− → e−γ Abs. SM ϵ2

A0 → e−eþ Abs. SM ϵ2

A0A0 → χχ̄ Abs. DS α2D
A0χ → χA0 Sca. DS α2D

mA0 > 2mχ A0np → np Abs. SM ϵ2

A0e− → e−γ Abs. SM ϵ2

A0 → e−eþ Abs. SM ϵ2

A0 → χχ̄ Abs. DS αD

TABLE II. Relevant processes of dark fermion interactions.
Notations are the same as in Table I. Only leading-order processes
are included here. Note that for mA0 > 2mχ, χχ̄ → A0 also
accounts for DS processes of A0χ → A0χ and χχ̄ → χχ̄, as well
as SM processes involving a pair of dark fermions [see Eq. (A13)
and text below for details].

Mass Interaction Type Particle Coupling

mA0 < 2mχ χχ̄np → np Abs. SM ϵ2αD
χχ̄ → e−eþ Abs. SM ϵ2αD
χχ̄ → γ� Abs. SM ϵ2αD
χp → χp Sca. SM ϵ2αD
χe− → χe− Sca. SM ϵ2αD
χχ̄ → A0A0 Abs. DS α2D
χχ → χχ Sca. DS α2D
χχ̄ → χχ̄ Sca. DS α2D
χA0 → A0χ Sca. DS α2D

mA0 > 2mχ χp → χp Sca. SM ϵ2αD
χe− → χe− Sca. SM ϵ2αD
χχ̄ → A0 Abs. DS αD
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In the rest of the paper, we denote the 4-momentum of A0

by k ¼ ðω; k⃗Þ, that of χ by p ¼ ðE; p⃗Þ and that of χ by
p0 ¼ ðE0; p⃗0Þ, unless noted otherwise.

A. Nondiffuse regime

In the nondiffuse regime, we consider the bulk emission
rates of DS particles inside the neutrinosphere and the
attenuation due to absorption and decay, following
Refs. [33,50]. The luminosity of the dark photon is given by

LA0 ¼
X
L;T

Z
Rν

0

4πr2dr
Z

d3k
ð2πÞ3

× gL;TωΓL;T
A0;prodðω; rÞe−τL;Tðω;rÞ; ð3Þ

where gL ¼ 1, gT ¼ 2, and ΓL;T
A0;prod and τL;T are the produc-

tion rate and optical depth, respectively. The exponential
factor accounts for the absorption of dark photons by the
mediumand their decay.We separate the longitudinal (L) and
transverse (T) modes because the medium effect modifies
their dispersion relations and leads to different effective
mixings of the two modes with the SM photon

(see Appendix B). The production rate ΓL;T
A0;prod is determined

by the interactions involving the SM particles listed in
Table I. By detailed balance, the rates of each production
process and its inverse process are related by
ΓL;T
A0;prod ¼ e−ω=TΓL;T

A0;abs, where ΓL;T
A0;abs is the total absorption

rate of the inverse process. Therefore,

ΓL;T
A0;prod ¼ e−ω=TðΓL;T

A0np→np þ ΓL;T
A0e−→e−γ þ ΓL;T

A0→e−eþÞ: ð4Þ

For the optical depth, we include the absorption and
decay of A0 by the same processes with SM particle as
above and ignore those involving DS particles, to avoid
double counting the total DS luminosity (see also later
discussions in this subsection).3 This gives

τL;Tðω; rÞ ¼ fðrÞ
Z

Rν

r

dr̃
v
ΓL;T
A0;absðω; r̃Þ; ð5Þ
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FIG. 1. Supernova profiles (density, temperature, electron chemical potential, and plasma frequency) used in this work from the
18 M⊙ progenitor model in Ref. [79], extracted at the time 1 s post the core bounce. The vertical dash line indicates where the
neutrinosphere is located.

3The pair-annihilation rate of A0A0 → χχ̄ is also ignored since
the dark photon abundance inside the PNS is relatively small
compared to that of SM particles in the nondiffuse regime.
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where v ¼ jk⃗j=ω is the dark photon velocity, and fðrÞ is a
geometric factor used in [33] that effectively takes into
account different path lengths of dark photons emitting
locations to the neutrinosphere. The explicit forms of these
absorption rates are given in Appendix C.
Next, we compute the luminosity of the dark fermion (χ)

in the nondiffuse regime as

Lχ ¼
Z

Rν

0

4πr2dr
Z

d3p
ð2πÞ3 gχEΓχ;prodðE; rÞ; ð6Þ

where gχ ¼ 2 is the physical degrees of freedom of χ, and
Γχ;prod is the production rate of χ by the SM medium (see
Table II). Note that since χ and χ are symmetric in our
model, the total luminosity in the dark fermion pair is
Lχ þ Lχ ¼ 2Lχ . Here we do not include the attenuation due
to pair absorption. This is because in the nondiffuse regime,
the dark fermion abundance below the neutrinosphere is
very low, which suppresses the pair absorption of dark
fermions.
If the dark fermions were in equilibrium with the

medium, detailed balance could relate the production rates
to the absorption rates by Γeq

χ;prod ¼ e−E=TΓeq
χ;abs. We take the

equilibrium production rates Γeq
χ;prod as an approximation for

the production rates Γχ;prod used in Eq. (6). That is,

Γχ;prod ≃ e−E=TðΓχχnp→np þ Γχχ→e−eþ þ Γχχ→γ� Þ: ð7Þ

This approximation in principle underestimates a bit the
production rates of χ and χ due to the assumed equilibrium
occupation number, which effectively results in Pauli
blocking. However, since the χ and χ are always produced
in pairs, the effective Pauli-blocking suppression of the
rates is small due to their zero chemical potentials.
We note that when mA0 ≥ 2mχ , the dark fermion pair

production is in fact dominated by the decay of on-shell
dark photons. Since in Eq. (3) we do not include the decay
of A0 to χ and χ when A0 are in nondiffuse regime, it leads to
double counting of the total dark luminosity if we also
include the dark fermion production. Thus, we do not
consider the contribution of Eq. (6) when dark photons are
in nondiffuse regime and when mA0 ≥ 2mχ . We also note
here that if dark photons are in the diffuse limit but dark
fermions are not, then effectively the nondiffuse dark
fermion luminosity can be determined by the decay rate
of the trapped dark photons that are in thermal equilibrium
with the SM medium (see Appendix A).4

Before we discuss the detailed numerical results of the
DS luminosity in the nondiffuse regime, let us provide an

analytic estimation for the relevant region of the parameter
space. First, for most cases, the production rates of longi-
tudinal dark photons and dark fermions are suppressed by a
factor of m2

A0=ω2 (see Appendix C) and by the coupling
constant αD, respectively, compared to the production rate of
the transverse dark photons. We can thus approximate the
nondiffuse luminosity of DS particles by considering trans-
verse dark photons only. Second,we consider for simplicity a
homogeneous PNS with radius Rc ≃ 10 km, temperature
T ≃ 30 MeV, density ρ ≃ 3 × 1014 g=cm3, and electron
fraction Ye ≃ 0.3. We also assume that dark photons are
relativistic. Taking the nucleon-nucleon bremsstrahlung
A0np → np without the plasma effects (see Appendix
C1), the luminosity of DS particles, LD, is approximately

LD ≃ Lν ×

�
ϵ

4 × 10−10

�
2

× exp

�
−

mA0

29 MeV

�
ð8Þ

for mA0 ≲ 1 GeV.

B. Diffuse regime

In the diffuse regime, we assume that DS particles are in
good thermal contact with the SM medium. Due to the
temperature gradient, the DS phase space distributions are
slightly anisotropic, which induces an outward energy flux.
We use the radiative transfer equation for the DS particle
energy flux through the neutrinosphere in Appendix E. The
energy flux of a particle species i is approximately given by

Li ¼ −
2giR2

νT3
ν

3π

dT
dr

����
Rν

1

hλ−1i ðRνÞi

×
Z

∞

mi=Tν

ξ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −

�
mi

Tν

�
2

s
eξ

ðeξ � 1Þ2 dξ; ð9Þ

where the upper (lower) sign is for fermions (bosons), gi is
the physical degrees of freedom of particle i, Tν is the
temperature at the neutrinosphere,mi is the mass of particle
i, and hλ−1i ðrÞi is the thermally averaged inverse mean
free path (IMFP)5 of particle i at radius r defined by

hλ−1i ðrÞi≡
R
d3pfiðE; TðrÞÞλ−1i ðE; rÞR

d3pfiðE; TðrÞÞ
; ð10Þ

where fiðE; TðrÞÞ is the distribution function of particle i at
radius r. We distinguish between the absorptive and
scattering IMFP, λ−1i;abs and λ−1i;sca, and define the total
IMFP as

4Note that we consider separately the diffuse condition for the
longitudinal and the transverse dark photons. Thus, we further
multiply the nondiffuse dark fermion luminosity by a factor of
1=3 (2=3) if only the longitudinal (transverse) mode of the dark
photons is trapped (see Appendix D).

5The IMFP used here is rescaled by the relative abundances of
the DS particles. See Sec. III C for the definition.
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λ−1i ðE; rÞ≡ λ−1i;absðE; rÞð1� e−E=TðrÞÞ
þ λ−1i;scaðE; rÞ: ð11Þ

As in the nondiffuse regime, we compute the energy fluxes
of the longitudinal and transverse dark photon separately,
and assume that the energy fluxes of χ and χ are equal.
Hence, the total energy loss rate in the DS particles is
Ltot ¼ LA0;L þ LA0;T þ 2Lχ . The IMFP calculations can be
found in Appendix C.
Wenowestimate the relevant parameter space region in the

limit where the DS self-interaction is the dominant opacity
source. When mA0 > 2mχ , the dominant DS self-interaction
is the (inverse) decayA0 ↔ χχ. GivenTν ≃ 3.9 MeV and the
temperature gradient jdT=drjRν

≃ 6.2 × 10−4 MeV=m, if
we fix mA0=mχ ¼ 3, the luminosities of the DS particles
can be fitted by

LA0 ≃ Lν ×

�
6.3 × 10−12

αD

��
MeV
mA0

�
2

× exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49.0þ

�
mA0

4.3 MeV

�
2

s �
ð12Þ

for mA0 ≲ 25 MeV, and

Lχ þLχ ≃Lν ×

�
2.1× 10−13

αD

��
MeV
mχ

�
2

× exp

��
mχ

1.9 MeV

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49.0þ

�
mχ

4.3 MeV

�
2

s �

ð13Þ

for mχ ≲ 30 MeV. If we take mA0 ¼ 9 MeV and
mχ ¼ 3 MeV, then the total DS luminosity is

LD ≃ Lν ×

�
1.5 × 10−16

αD

�
: ð14Þ

The corresponding χχ → A0 cross section is6

σχχ→A0 ≃ 4.7 × 10−41 cm2

�
αD

1.5 × 10−16

�
: ð15Þ

When mA0 < 2mχ , the diffuse luminosities of dark
photons and dark fermions depend on the values of ϵ
and αD. For regions where ϵ is small enough such that the
dominating opacity source for dark photons is DS self-
interaction A0A0 → χχ, one may estimate the DS luminosity
by considering the dark photon luminosity only. If we fix

mA0=mχ ¼ 1=3, then the dark photon luminosity can be
fitted by

LA0 ≃ Lν ×

�
2.0 × 10−7

αD

�
2

× exp

��
mA0

0.74 MeV

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49.0þ

�
mA0

4.3 MeV

�
2

s �

ð16Þ

for mA0 ≲ 25 MeV. Adopting mA0 ¼ 3 MeV and
mχ ¼ 9 MeV, this gives

LD ≃ Lν ×

�
4.5 × 10−8

αD

�
2

: ð17Þ

The corresponding χχ → χχ cross section is7

σχχ→χχ ≃ 9.7 × 10−37 cm2

�
αD

4.5 × 10−8

�
2

; ð18Þ

and the corresponding A0A0 → χχ cross section is

σA0A0→χχ ≃ 3.1 × 10−39 cm2

�
αD

4.5 × 10−8

�
2

: ð19Þ

These analytical formulas Eqs. (14)–(19) already illus-
trate that DS particles can be self-trapped by interaction
cross sections of ≳Oð10−40Þ cm2 such that the correspond-
ing diffuse DS luminosity LD ≲ Lν. Only very weakly
interacting DS particle with αD much smaller than those
nominal values in Eqs. (14)–(19) can result in LD > Lν.

C. Diffuse criteria

WhetherDS particles are in the nondiffuse or in the diffuse
regime sensitively depends on their abundances in the PNS.
For example, if the dark fermion abundance is significant,
the contribution of their pair-absorption processes (e.g.,
χχnp → np, χχ → e−eþ, and χχ → γ�) to the dark fermion
optical depth cannot be neglected. Furthermore, the DS
abundances lead to significant DS self-interactions (e.g.,
χχ → χχ, χχ → A0A0, χA0 → A0χ; …) that can trap them-
selves in the PNS. These DS self-interactions delay the
escape times for both the dark photon and the dark fermion,
which enhances their abundances and optical depths.
Therefore, the abundances of DS particles is critical in
determining whether self-trapping is important. Below, we
formulate the diffuse criteria in terms of the DS abundances
and their IMFP at the neutrinosphere.
To obtain the exact DS abundances, detailed transport

incorporating their production, scattering, and absorption
needs be solved. Here we roughly estimate the abundance6The estimated value here is the thermally averaged cross section

evaluated at the center of PNS σχχ̄→A0 ≡ hλ−1χχ̄→A0 ðr ¼ 0Þi=
nχðr ¼ 0Þ. 7The cross section is evaluated in the same way as Eq. (15).
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of each particle species by their production rate and a
relevant timescale. The abundance of a DS particle species i
is approximated as

Ni ¼
Z

Rν

0

4πr2dr
Z

d3pi

ð2πÞ3 giΓi;prodΔti; ð20Þ

where the quantity Δti is subject to the following consid-
erations. First, the longest possible time for DS particles to
accumulate is the cooling time of the PNS. We set this
upper bound of Δti as tcool ¼ 1 s. Second, the shortest
possible timescale, i.e., the lower bound ofΔti, is estimated
by the free-escaping timescale tfree ≡ Rν=vi. Another
characteristic timescale here in the limit where a DS particle
is trapped is the diffusion timescale ti;diff ≃ R2

ν=Di where
Di ≃ vi=λ−1i is the diffusion coefficient (see below for
details). For tfree < ti;diff < tcool, we then take ti;diff as
Δti. Combining these criteria, the relevant timescale Δti
used in Eq. (20) is given by

Δti ¼

8>><
>>:

tfree; if ti;diff ≤ tfree;

ti;diff ; if tfree < ti;diff < tcool;

tcool; if tcool ≤ ti;diff :

ð21Þ

Since the PNS is not homogeneous, the diffusion of DS
particles cannot be described by a constantDi. As shown in
Tables I and II, the interactions relevant to the IMFP of DS
particles can be categorized as SM-type or DS-type by
particles involved in the interactions. We choose particular
locations in the PNS where the IMFPs of each type are
maximal to roughly estimate their contribution to the
diffusion timescale.8 For the SM-type interactions, we
estimate the IMFP at the center (rSM ¼ 0 km) of the
PNS where the density of SM particles is the largest. As
for the DS-type interactions, we estimate the IMFP at
rDS ¼ 11 km where the temperature is the highest. This
location has the largest DS particle density, if DS particles
are in thermal equilibrium with the SM medium. Knowing
the IMFPs of both types at these respective locations, we
can then compute the diffusion timescale

ti;diff ≡ R2
ν

vi
½hλ̃−1i;SMðrSMÞi þ hλ̃−1i;DSðrDSÞi�; ð22Þ

where λ̃−1i;SM and λ̃−1i;DS are SM-type and DS-type contribu-
tion to the IMFP of particle i. When computing the IMFP
contribution from DS particles, λ̃−1i;DS in Eq. (22), we take
the assumption that DS particles are in full thermal
equilibrium with the SM medium. Combining Eqs. (20)–

(22) then allows us to compute the DS abundance Ni for
particle i.
After deriving Ni, we then define a scaling factor ηi ≡

Ni=N
eq
i for each dark particle species i for Ni < Neq

i
(ηi ¼ 1 if Ni ≥ Neq), where

Neq
i ≡

Z
Rν

0

4πr2dr
Z

d3pi

ð2πÞ3 gifiðEi; TðrÞÞ ð23Þ

is the corresponding total equilibrium abundance of i.
These scaling factors are then used to better estimate the
IMFP, λ−1i;DS due to the DS particles self-interaction, used in
Eq. (10) for computing the DS diffuse luminosities. We also
use ηi to calculate the thermally averaged total IMFP of i at
Rν, hλ−1i ðRνÞi.
We are now finally ready to write down our diffuse

criteria. We say that a DS particle species i can be treated as
in diffuse limit if the following conditions are satisfied:

Ni > Neq
i ; andhλ−1i ðRνÞi > R−1

ν : ð24Þ

The first condition ensures that a DS particle species i is
only considered to be diffusive when their production is
efficient enough such that their amount can exceed the
equilibrium number within the relevant timescale Δti. The
second condition requires that the IMFP of i at Rν, where
both the density and temperature are the lowest in the PNS,
is large enough to trap particle i inside the PNS (see
Fig. 1).9 When Eq. (24) is satisfied, we use Eq. (9) to
compute the DS diffuse luminosity for i. Otherwise, we
take the nondiffuse luminosities, Eqs. (3) and (6) for dark
photons and dark fermions, respectively. Note that in the
diffuse regime and when Δti ¼ ti;diff , the first condition in
Eq. (24) is approximately equivalent to having the char-
acteristic thermalization IMFP [81,82] of DS particles with

SM medium,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−1i;SM;abs × λ−1i;total

q
averaged over the phase

space and spatial volume inside Rν, being larger than R−1
ν .

This means that the energy exchange between the DS
particles and the SM medium, enhanced by the DS self-
interactions, is efficient enough to keep themselves in
thermal contact with SM medium.
We provide in Appendix D a detailed work flow to

additionally describe how we use the results in these
sections to compute the dark sector luminosity for inter-
ested readers.

8Overestimating the IMFP makes Eq. (24) easier to satisfy.
Because the luminosity in the diffuse regime is generally lower
than that in the nondiffuse regime for the same parameters, our
estimation leads to a conservative bound.

9Note that in computing the second criterion, we exclude the
contribution from the dark photon decay via A0 → e−eþ This is
because including this decay process leads to an artificially
enhancement of the IMFP by several orders of magnitudes for
dark photon heavier than ≃30 MeV, as the electron chemical
potential μe ≃ 15 MeV at Rν. However, this process should be
strongly Pauli blocked for mA0 ≲ 200 MeV in most region inside
the PNS (see Fig. 1) where dark photons are most abundant in the
diffuse limit.
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D. Numerical calculations

We now apply formulas derived in previous sections to
compute the dark photon and dark fermion luminosities and
examine how they depend on the coupling constants ϵ and
αD. Figure 2 shows the luminosities of different DS
particles as functions of αD with ϵ ¼ 10−8 for two different
choices of DS masses. In the left panel, the masses are
chosen such that the decay process A0 → χχ is allowed. In
this scenario, dark photons of different polarization modes
are trapped diffusively when αD ≳ 5 × 10−18, while the
dark fermions are diffusive when αD ≳ 10−17. The non-
diffuse luminosity of the dark photon for small αD mainly
depends on the interaction with the SM particles and thus is
independent of αD.

10 The dark fermion luminosity is
proportional to αD in the diffuse limit, as analyzed in
Appendix A. However, the dark fermion luminosity for
αD ≲ 5 × 10−18 is set to zero to avoid double counting
because they are predominantly produced through the
decay of on-shell dark photons (see discussions in
Sec. III A). In the diffuse regime, the luminosities of the
DS particles are proportional to α−1D due to the self-trapping
interactions effectively dominated by the (inverse) decay
process A0 ↔ χχ.
For the right panel in Fig. 2, we choose DS masses such

that the decay process A0 → χχ is not allowed. In this case,
dark photons of different polarization modes are in diffuse
regime when αD ≳ 8 × 10−9, while dark fermions are
always in the nondiffuse regime for the range of αD shown
in the plot. The main reason leading to several orders of

magnitude larger difference in αD here than the previous
case is due to the extra αD dependence in the IMFP of DS
self-interactions [see, e.g., Table I or Eqs. (14) and (17)].
Similar to the previous scenario, the nondiffuse luminosity
of the dark photon is independent of αD. However, the
luminosities in the diffuse regime scale as α−2D . Once again,
this is because the dominant interaction is responsible for
trapping the dark photon being A0A0 → χχ, whose inter-
action rate is proportional to α2D. The dark fermion
luminosity is significantly smaller than the dark photon
luminosity for the range of αD in the plot, because the dark
fermion production rate is proportional to ϵ2αD, suppressed
by an extra factor of αD when compared with the dark
photon production rate.
In Fig. 3, we show the luminosities of the DS particles as

functions of ϵ with two choices of αD and same DS masses
as those in Fig. 2. For the case with αD ¼ 10−17 in the left
panel where the decay process A0 → χχ is again allowed,
the longitudinal (transverse) dark photons are trapped when
ϵ≳ 3 × 10−9 (ϵ≳ 2 × 10−9). For dark fermions, they just
free stream independent of the value of ϵ, because of the
small value of αD (cf., Fig. 2). The nondiffuse luminosities
of the dark photons of both modes are proportional to ϵ2 as
determined by their production rates. The dark fermion
luminosity for ϵ≲ 2 × 10−9 is set to zero for the same
reason discussed above. The diffuse luminosities of dark
photons are affected by both the interactions with the SM
particles and the DS self-interactions. For ϵ≳ 10−7,
dark photon–SM interactions dominate over DS self-
interactions, so the dark photon luminosities are propor-
tional to ϵ−2 as determined by the mean free path of the dark
photon–SM interactions. Interestingly, the dark fermion
luminosity becomes independent of ϵ and can thus remain
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FIG. 2. Luminosity of different dark sector particles as a function of αD for a fixed value of ϵ ¼ 10−8. In the left (right) panel,
mA0 ¼ 9 MeV and mχ ¼ 3 MeV (mA0 ¼ 3 MeV and mχ ¼ 9 MeV). The horizontal dotted lines label the neutrino luminosity Lν ¼
3 × 1052 erg=s used to set the supernova bound [Eq. (2)]. The vertical dashed lines indicate the transition from the nondiffuse (smaller
αDÞ to the diffuse (larger αDÞ regime (see text for details). Note that χ is in the nondiffuse limit for the range of αD shown in the
right panel.

10The difference of ∼102.5 between the luminosities of the
longitudinal and transverse dark photon is due to the plasma
effects.
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larger than Lν for large ϵ. This is because the branching
ratio of the dark photon absorption processes approaches to
1, such that dark fermions can be produced via the decay of
trapped dark photons (see Appendix A).
For the right panel in Fig. 3, we choose αD ¼ 10−9 for

the case where A0 → χχ is not allowed. There, longitudinal
(transverse) dark photons are diffusively trapped when ϵ≳
3 × 10−7 (ϵ≳ 2 × 10−7), while dark fermions are in the
diffuse limit when ϵ≳ 2 × 10−5. The dark photon lumi-
nosities are proportional to ϵ2 for ϵ≲ 10−9, where the
optical depths are negligible. The diffuse luminosities of
dark photons scale as ϵ−2 because the absorption processes
by the SM medium are dominant. The dark fermion
luminosity is much smaller than that of the dark photons
until ϵ≳ 10−5, because the dark fermion production rate is
suppressed by an additional factor of αD when compared
with the dark photon production rate. The diffuse lumi-
nosity of the dark fermion is proportional to ϵ−2 for
ϵ≳ 10−4, where χe− → χe− dominates the IMFP at Rν.

IV. COOLING BOUNDS ON SELF-INTERACTING
DARK SECTOR PARTICLES

In this section, we examine the excluded parameter space
of the DS. Since the model has four free parameters, mA0 ,
mχ , ϵ, and αD, we choose to project the exclusion contours
on various combinations of these parameters. As discussed
in the previous sections, whether the decay of A0 → χχ is
allowed affects the DS luminosity significantly. Here we
choose two benchmark mass ratios mA0=mχ ¼ 3 and 1=3 to
investigate the SN bounds for these two scenarios.
We first show the contours of the DS luminosity LD ¼

Lν and LD ¼ 0.1Lν on the αD − ϵ plane with fixed mA0 and
mχ in Fig. 4. The chosen masses are mA0 ¼ 9 MeV and

mχ ¼ 3 MeV (mA0 ¼ 3 MeV andmχ ¼ 9 MeV) for the left
(right) panel in the figure, which allows (forbids) A0 → χχ.
Regions inside the LD ¼ Lν contours indicate that the
cooling bound [Eq. (2)] is violated. In the left panel where
A0 → χχ is allowed, the excluded region exhibits an L
shape, covering the parameter ranges of (I) αD ≲ 10−16 for
10−10 ≲ ϵ≲ 10−6, as well as (II) 10−19 ≲ αD ≲ 10−16 for
ϵ≳ 10−6. For the majority of the parameter space in (I)
(αD < 10−16 and 10−10 < ϵ < 10−6), the DS luminosity is
mainly contributed by the nondiffuse dark photons (see also
Figs. 2 and 3). In (II) (10−19 ≲ αD ≲ 10−16 for ϵ≳ 10−6),
LD is mainly contributed by the nondiffuse dark fermions
(see also Fig. 4). Close to the upper edge of the LD ¼ Lν

contour in both regions, self-trapping of DS particle takes
effect such that LD ∝ α−1D decreases with increasing αD (see
Fig. 2), leading to the horizontal edge at αD ∼ 10−16. The
lower bound of αD ∼ 10−19 for region (II) is due to the
inefficient production of dark fermions. For the right panel
in Fig. 4 where A0 → χχ is not allowed, two regions
similarly exist. Region (A) with 10−9 ≲ ϵ≲ 10−6 and αD <
10−8 receives dominant contribution from nondiffuse dark
photons as region (I) in the left panel (see also Figs. 2 and
3). Similarly, the self-trapping of DS particles defines the
upper edge of LD ¼ Lν at αD ∼ 10−8. For the narrow
diagonal-shape region (B) at ϵ≳ 10−5, LD is dominated by
dark fermions. This shape is related to the fact that both the
production and pair-absorption rates of dark fermions from
the SM medium are proportional to ϵ2αD, as discussed also
in Sec. III D.
For both scenarios shown in Fig. 4, there are specific

values of αD above which the cooling criterion gives no
constraint due to DS self-trapping. We now investigate the
dependence of these critical values of αD on DS particle
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FIG. 3. Luminosity of different dark sector particles as a function of ϵ for fixed values of αD ¼ 10−17 (left), 10−9 (right). In the left
(right) panel, mA0 ¼ 9 MeV and mχ ¼ 3 MeV (mA0 ¼ 3 MeV and mχ ¼ 9 MeV). The horizontal dotted lines label the neutrino
luminosity Lν ¼ 3 × 1052 erg=s used to set the supernova bound [Eq. (2)]. The vertical dashed lines indicate the transition from the
nondiffuse (smaller ϵ) to the diffuse (larger ϵ) regime (see text for details). Note that χ is in the nondiffuse limit for the range of ϵ shown
in the left panel.
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masses. Figure 5 shows the excluded regions on the αD-mχ

plane with ϵ ¼ 10−8 for fixed mass ratios mA0 ¼ 3mχ (left
panel) and 3mA0 ¼ mχ (right panel). Note that regions
below the contours are excluded. In the left panel where the
decay A0 → χχ is allowed, the SN bound only weakly
depends on αD for mχ ≲ 10 MeV. On the other hand, αD
increase sharply with mχ for mχ ≳ 10 MeV. The main
reason is the DS particle abundances are insensitive to the
mass for mχ ≪ 30 MeV which is the typical temperature
inside the PNS. Larger mχ (and mA0 Þ leads to smaller DS
abundances, which in turn gives rise to a smaller IMFP of
DS self-trapping for a given αD. Thus, the suppression of
LD due to DS self-trapping occurs at a larger αD for larger
mχ (andmA0 Þ. Formχ ≳ 70 MeV (mA0 ≳ 210 MeV), no SN

bounds can be placed due to the inefficient production of
DS particles. In the right panel where 3mA0 ¼ mχ , the
bound is completely determined by the dark photon only
because the dark fermion production is further suppressed
by an extra factor of αD. Here, the critical αD also increases
withmχ sharply formχ ≳ 10 MeV as in the left panel. Once
again, this is resulting from smaller dark photon abundance
for larger mχ (thus m0

A) inside the PNS. It thus requires a
larger αD for A0A0 → χχ to self-trap the dark photons. Note
that the maximal mχ ≃ 800 MeV below which SN bound
exists corresponds to a maximalm0

A ≃ 250 MeV, consistent
with the maximal m0

A in the left panel.
The above examples clearly demonstrated how effi-

ciently a small αD within the self-interacting DS can affect
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the SN bound. In Fig. 6, we further show the excluded
regions in the ϵ −mA0 plane with two different values of αD
for each choice of the DS mass ratio. Also shown are the
bounds derived by considering the dark photon degree of
freedom only, as well as the existing experimental con-
straints on dark photon (extracted from Ref. [83]). We
refrain from showing other astrophysical or cosmological
bounds on dark photon of similar masses; see, e.g.,
Refs. [50,52,80,84–90]. These plots show once again that
even for small values of αD ¼ 10−12 (left panel) and 10−5

(right panel), the SN exclusion regions shrink significantly
due to the self-trapping effects when compared to results
derived by considering only dark photons without self-
trapping. However, for very small values of αD, e.g., 10−17

and 10−9 shown in the left and right panels, respectively,
the cooling bounds can be extended to larger ϵ. This is due
to the contribution of dark fermions through the decay of
trapped dark photons, as discussed in earlier sections. Note
that for αD ¼ 10−12 in the left panel, the excluded region
slightly extends to larger values ofmA0 for ϵ≳ 10−7. This is
because the dark fermion luminosity depends on both the
decay rate of A0 → χχ and the blackbody energy density of
dark photons (see Appendix A). The larger decay rate can
compensate the smaller dark photon energy density with
increasingmA0 , provided that the branching ratio of the dark
photon absorption processes is close to 1.

V. CONCLUSION

In this work, we examined the SN bounds on self-
interacting dark sector particles. Adopting a dark photon
portal dark sector, we derived the relevant interaction cross
sections and (inverse) decay rates for reactions listed in
Tables I and II. We then used these to compute the energy

luminosities of dark sector particles in the nondiffuse and
diffuse regimes separately, and formulated a simple cri-
terion to connect these two regimes. The self-interaction of
dark sector particles can efficiently trap themselves inside
the proto-neutron star and thus suppress their energy
luminosities.
Comparing the dark sector luminosity with the neutrino

luminosity inferred from the SN1987a event, we derived
SN bounds for two assumed dark photon to dark fermion
mass ratios, mA0=mχ ¼ 3 and 1=3, which represent scenar-
ios where A0 → χχ is allowed or not. For the former (later)
case with mA0=mχ ¼ 3 (mA0=mχ ¼ 1=3), SN bounds only
apply to weakly interacting dark sectors whose dark fine
structure constant αD ≲ 10−15 (≲10−7), for mχ ≲
Oð20Þ MeV (see Figs. 4 and 5). The dominating dark
sector cross sections for these αD values correspond to
≃10−40 cm2. In particular, there is no SN bound for the
former case for αD ≳ 10−7 (Fig. 5). Our results differ from
the previous analysis [35] considering similar models. This
is because Ref. [35] assumed that the DS particles decouple
from the SMmedium at the surface where the χ-p scattering
becomes inefficient and ignored the DS self-interactions
which can trap themselves and help thermalize the DS
particles with the SM medium.
Although the exact excluded regions in the DS parameter

space should also depend on the chosen value of mA0=mχ ,
which are unexplored in this work, our results demon-
strated that when applying the supernova bounds to dark
sector particles, their self-interactions, which can evade the
bounds, must be taken into considerations. Our results here
also imply that other stellar bounds, e.g., from the hori-
zontal branch stars, tips of red giants, or white dwarfs, on
dark sector particles may also be sensitive to the structure of
the dark sector. Similarly, our results also indicate that for
nonstandard strongly self-interacting neutrinos proposed to
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resolve the Hubble tension [91], the needed strong self-
interaction, ∼106 or 109 times stronger than the SM weak
interaction, will likely lead to self-trapping of neutrinos and
results in inconsistency with the SN1987a observation
[cf. Eqs. (15) and (19)]. Moreover, we would like to point
out that although the self-interaction of dark sector can
completely evade the SN bound, new constraints may be
further derived by considering their potential late-time
heating to the remnant NS via decays or annihilations in
a longer timescale. Furthermore, such self-trapping effect
might provide an efficient mechanism to produce DM-
admixed NS, which might have implication for the GW
detection of binary NS merger events [92–94]. All these
aspects are beyond the scope of this paper and can be
further investigated in future work. We also note that our
results indicate that self-interacting DM that can help solve
the small-scale issues in galaxies cannot be excluded by the
SN cooling bound, as the required χ − χ self-interaction
cross section σχχ=mχ ∼Oð1Þ cm2 g−1 largely exceeds val-
ues that can be constrained by SN cooling [cf. Eq. (18)].
Finally, we comment on potential caveats in this work.

First, our criterion of switching from the nondiffuse to
diffuse regime is rather abrupt and can sometimes create
non-negligible discontinuity in dark sector luminosities as
shown in e.g., Figs. 2 and 3. In reality, the transition should
be smooth and this can possibly introduce errors of a factor
of a few in all our derived bounds. For example, while
evaluating the luminosities in the nondiffuse regime, we
only included absorption and decay processes in the
opacity. In principle, scattering can somewhat reduce the
energy luminosity of dark sector particles leaving the PNS,
before the condition for diffusion is fully satisfied. Also, we
used a sharp neutrinosphere as a boundary to estimate the
luminosities in the diffuse regime. This may lead to some

errors when the dark sector particles are not fully in the
diffuse limit. Second, when we evaluated the diffusion
timescale used to determine the diffuse criterion, we
selected two specific locations where the IMFPs are largest
for simplicity. This approximation may overestimate the
diffusion time a bit. All these sources of uncertainties can
only be addressed by performing a full numerical calcu-
lation of multidimensional Boltzmann transport and can be
pursued in future. However, the main conclusion derived in
this work—self-interactions inside the dark sector can
crucially affect stellar bounds—should remain relatively
solid and needs to be considered in all relevant studies.
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APPENDIX A: NARROW WIDTH
APPROXIMATION

Consider a process χχ → A0� → f1f2… when mA0 >
2mχ so that the intermediate A0 can be on shell. Let k ¼
ðω; k⃗Þ be the momentum of the intermediate A0 and
p ¼ ðE; p⃗Þ, p0 ¼ ðE0; p⃗0Þ be the momentum of the initial
χ and χ, respectively. The spin-averaged amplitude squared
is given by

jMj2¼g2D ·
k2

2

� jϵL ·Jj2
ðk2−m2

A0 Þ2þðωΓLÞ2
�
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�
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�	

; ðA1Þ

where Jμ is the final state current that couples to the dark photon, ϵL, ϵTλ are the polarization vectors of the longitudinal and
transverse dark photon with helicity index λ ¼ 1, 2, and the thermal width of the dark photon ΓL;T is given by [95]

ΓL;T ¼ ð1 − e−ω=TÞðΓL;T
A0;abs þ ΓA0→χχÞ: ðA2Þ

In the limit ΓL;T ≪ mA0 , we can approximate the Breit-Wigner distribution by a δ function,

1

ðk2 −m2
A0 Þ2 þ ðωΓL;TÞ2

→
π

ωΓL;T
δðk2 −m2

A0 Þ: ðA3Þ

With the above approximation, the absorption rate of χ becomes
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Γχχ→A0�→f ≡ 1

2E

Z
d3p0

ð2πÞ3
gχfχ
2E0 dΠfð2πÞ4δ4ðpþ p0 − pfÞjMj2
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T
�; ðA4Þ

where

ω� ¼ m2
A0

2m2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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4m2
χ
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BrðA0
L;T → fÞ ¼ ΓA0→f

ΓL;T
A0;abs þ ΓA0→χχ

; ðA6Þ

ΓA0
L→f ¼ 1
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Z
dΠfð2πÞ4δ4ðk − pfÞjϵL · Jj2; ðA7Þ
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Note that the inverse decay rates into dark photons of
different polarizations are

Γχχ→A0
L;T

¼ 1

16πEjp⃗j
Z

ωþ

ω−

dωð1þ fA0 Þgχfχ jMj2χχ→A0
L;T
:

ðA11Þ

Thus, we can relate the differential absorption rate and
inverse decay rates by

dΓχχ→A0�→f

dω
≃BrðA0

L→fÞdΓχχ→A0
L

dω
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T

dω
:
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With the above equation, the total pair-absorption rate of χ
is given by

Γχ;pair ¼
X
f
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The total pair-absorption rate is equal to that of the inverse
decay process χχ → A0. Therefore, the inverse decay
process χχ → A0 accounts for all the pair-absorption
processes with dark photon resonances when mA0 > 2mχ .
These processes include χχnp → np, χχ → e−eþ,
χχ → γ�, and χχ → χχ. Note that the dark Compton
scattering χA0 → A0χ also admits an on-shell dark fermion
χ. With the approximation analogous to Eq. (A3), one can
show that the scattering rate of χ via χA0 → A0χ is
equivalent to the inverse decay rate of χχ → A0, and the
scattering rate of A0 via the same process is equivalent to the
decay rate of A0 → χχ. Thus, we do not include the dark

Compton process in our IMFP calculations (see Tables I
and II).
With Eq. (A12), we can derive the luminosity of χ and χ

in the nondiffuse regime,

Lχ þ Lχ ≃
Z

dV
Z

dω
duA0

dω
ΓA0→χχ

×

�
1

3
BrðA0

L → fÞ þ 2

3
BrðA0

T → fÞ
�
; ðA14Þ

whereuA0 is the blackbody energy density of the dark photon.
We shall make several comments on the above equation.
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(1) It is assumed that dark photons are in thermal
equilibrium with the SM medium while the dark
fermion streams freely. (This corresponds to large ϵ
and small αD.) In this scenario, BrðA0

L;T → SMÞ ≈ 1.
So 1=3 of the dark fermion is produced by the
longitudinal dark photon, while 2=3 of the dark
fermion is produced by the transverse dark photon.
However, if the dark photon escapes the PNS freely,
this calculation is invalid, and the dark photon
usually cannot decay into the dark fermions before
escaping the PNS. Thus, the dark fermion luminos-
ity would be negligible. Therefore, we compute the
luminosity of χ according to Eq. (D4) for different
scenarios.

(2) In the limit of large ϵ and small αD, the dark sector
luminosity is mostly contributed by the dark fermion
since the dark photon is trapped. The luminosity
only depends on αD and does not depend on ϵ in this
limit. It is possible that the luminosity can exceed Lν

for some values of αD even if ϵ is large, as shown in
the left panels of Figs. 3, 4, and 6.

(3) The luminosity in this regime also depends on mA0

through the blackbody energy density uA0. There-
fore, for a larger value of αD, the constraint can
extends to larger mA0 values, as shown in the left
panel of Fig. 6.

APPENDIX B: PLASMA EFFECTS

In the PNS, the hot (T ∼ 30 MeV) and dense
(ρ ∼ 1014 g=cm3) plasma consisting of electrons and nucle-
ons can modify the dispersion relations of the SM photons
and give rise to a longitudinally polarized propagation
mode called plasmon. This plasma effect changes the SM
photon propagator, so we must take it into account when
calculating the interaction rates between SM and DS
particles through photon–dark photon mixing. The effective
mixing ϵkjL;T and the plasma factor βkjL;T for the SM
current–dark photon interactions are defined by

β2kjL;T ≡ ϵ2kjL;T
ϵ2

≡ ðk2Þ2
ðk2 − ReΠL;TÞ2 þ ðImΠL;TÞ2

; ðB1Þ

where k ¼ ðω; k⃗Þ is the 4-momentum of the dark photon
with k2 ≡ ω2 − jk⃗j2, and ΠL;T is the longitudinal (L) and
transverse (T) polarization functions and is related to the
SM photon polarization tensor Πμν ¼ e2hAμ; Aνi by

ΠL ¼ k2

jk⃗j2
Π00; ðB2Þ

ΠT ¼ 1

2

�
δij −

kikj

jk⃗j2
�
Πij: ðB3Þ

We would like to point out that our definition for ΠL aligns
with [80] but differs from [96]. For the on-shell dark
photon, we replace the subscript “k” with “m” for the
effective mixing, i.e., ϵ2mjL;T ¼ ðϵ2kjL;TÞjk2¼m2

A0
, and likewise

for the plasma factor. On the other hand, the DS current–
SM photon counterpart of Eq. (B1) is

ϵ2kjL;T
ϵ2

¼ ðk2Þ2
ðk2 −m2

A0 Þ2 þ ðωΓL;TÞ2
≡ β2kjL;T; ðB4Þ

where ΓL;T ¼ ð1 − e−ω=TÞΓL;T
A0;abs is the thermal absorptive

width of the dark photon [95]. Similarly, for the on-shell
transverse photon or plasmon, we replace the subscript k
with m for the effective mixing and the plasma factor. Note
that the dispersion relation of the SM photon k2 ¼ ReΠL;T

is a transcendental equation that can only be solved
numerically. The derivation of Eqs. (B1) and (B4) in
diagonalized mass basis can be found in Appendix B
of [97].
In the medium consisting of relativistic and degenerate

electron, the real parts of the scalar polarization functions
are [96]

ReΠL ¼ 3ω2
pð1 − v2Þ
v2

�
1

2v
ln

�
1þ v
1 − v

�
− 1

�
; ðB5Þ

ReΠT ¼ 3ω2
p

2v2

�
1 −

1 − v2

2v
ln

�
1þ v
1 − v

��
; ðB6Þ

where v≡ jk⃗j=ω and the plasma frequency in this limit is

ω2
p ¼ 4αe

3π

�
μ2e þ

1

3
π2T2

�
: ðB7Þ

With detailed balance ΓL;T
prod ¼ e−ω=TΓL;T

abs , the imaginary
part of the polarization functions is

ImΠL;T ¼ −ωðΓL;T
prod − ΓL;T

abs Þ ¼ −ωΓL;T
abs ð1 − e−ω=TÞ; ðB8Þ

where ΓL;T
prod (Γ

L;T
abs ) are the production (absorption) rates of

the SM photon. When calculating the plasmon decay, we
should include the renormalization factor for the polariza-
tion vectors of the external photons,

ϵ̃μL;T ¼ ffiffiffiffiffiffiffiffiffi
ZL;T

p
ϵμL;T; ðB9Þ

where the renormalization factor is given by

Z−1
L;T ¼ 1 −

∂ReΠL;T

∂ω2

����
pole

; ðB10Þ

which can be calculated from Eqs. (B5) and (B6),

ALLAN SUNG, GANG GUO, and MENG-RU WU PHYS. REV. D 103, 103005 (2021)

103005-14



Z−1
L ¼ 3ω2
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2ω2v2
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2v
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�
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1 − v

��
pole

; ðB11Þ

Z−1
T ¼ 1 −

3ω2
p

2ω2v2

�
3

2
−
3 − v2

4v
ln

�
1þ v
1 − v

��
pole

: ðB12Þ

APPENDIX C: INTERACTION RATES AND
INVERSE MEAN FREE PATH

The interaction rate of particle 1 via a process 1þ � � � þ
n → 10 þ � � � þm0 is given by

Γ ¼ 1

2E1

Z Yn
i¼1

d3pi

ð2πÞ3
gifi
2Ei

Ym0

j¼10

d3pj

ð2πÞ3
1� fj
2Ej

jMj2ð2πÞ4δ4
�Xn

i¼1

pi −
Xm0

j¼10
pj

�
; ðC1Þ

where gi is the degrees of freedom of the initial state
particles and fi and fj are the distribution functions of the
initial and final state particles. The upper (lower) sign in
front of fj is for bosonic (fermionic) final states, which
takes into account the bosonic enhancement and Pauli-
blocking effects. The above expression already assumes
that all the particles are in thermal equilibrium. The IMFP
of the process is related to the interaction rate by

λ̃−1 ¼ Γ
v1

¼ E1

jp⃗1j
Γ: ðC2Þ

In the following, we denote the 4-momentum of A0 by
k ¼ ðω; k⃗Þ, that of χ by p ¼ ðE; p⃗Þ, and that of χ by
p0 ¼ ðE0; p⃗0Þ, unless noted otherwise.

1. A0np → np

The absorption rate via inverse nucleon bremsstrahlung
A0np → np is given by [33]

ΓL;T
A0np→np¼

32

3π

αeϵ
2
mjL;Tnnnp
ω3

�
πT
mN

�
3=2

hσð2Þnp ðTÞihL;T; ðC3Þ

where nn;p is the number density of neutrons and protons, respectively, mN is the nucleon mass, hσð2Þnp ðTÞi is the thermally
averaged n − p cross section defined as [31]

hσð2Þnp ðTÞi ¼ 1

2

Z
∞

0

dx x2e−x
Z

1

−1
d cos θcmð1 − cos θcmÞ

dσnp
d cos θcm

ðTcm ¼ xT; cos θcmÞ; ðC4Þ

and hL;T is defined as

hL ¼ m2
A0

ω2
; ðC5Þ

hT ¼ 1: ðC6Þ

In the derivation of Eq. (C3), the soft radiation approximation is used to connect the bremsstrahlung rate with the
experimental n − p scattering cross section. Additionally, the nucleons are assumed to follow Maxwell-Boltzmann
distribution, and the Pauli-blocking effect is ignored.

2. A0e − → e − γ
The absorption rate via the Compton-like process A0e− → e−γ is approximately [33]

ΓL;T
A0e−→e−γ ¼

8πα2eϵ
2
mjL;Tne

3E2
F

ffiffiffiffiffiffi
ωp

ω

r
hL;T; ðC7Þ

where ne is the electron number density, EF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3π2neÞ2=3 þm2

e

p
is the electron Fermi energy, and hL;T is defined in

Eqs. (C5) and (C6). The approximated formula is valid for ω≲ 200 MeV and r ≤ Rν [33].

3. A0 → e− e +
The decay rates of dark photon via A0 → e−eþ, given that mA0 > 2me, are given by

ΓL
A0→e−eþ ¼

ϵ2mjLαem
2
A0

4jk⃗j

Z
ξ0

−ξ0
dξ

�
1þ exp

�
μe − ω=2

T
−

ω

2T
ξ

��
−1
�
1 −

ω2

jk⃗j2
ξ2
�
; ðC8Þ
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ΓT
A0→e−eþ ¼

ϵ2mjTαem
2
A0

4jk⃗j

Z
ξ0

−ξ0
dξ

�
1þ exp

�
μe − ω=2

T
−

ω

2T
ξ

��
−1
�
1

2
þ 2m2

e

m2
A0

þ ω2

2jk⃗j2
ξ2
�
; ðC9Þ

where the integral limit is

ξ0 ¼
jk⃗j
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

m2
A0

s
: ðC10Þ

4. χ χnp → np

The pair-annihilation rate via inverse nucleon bremsstrahlung χχnp → np is

Γχχnp→np ¼ 16ϵ2αDαennnp
3π2E

�
πT
mN

�
3=2

hσð2Þnp ðTÞi
Z

∞

0

djk⃗j
Z

1

−1
d cos θ

jk⃗j2ðFL
χχnp→np þ 2F T

χχnp→npÞ
E0ω2k2ð1þ eE

0=TÞ ; ðC11Þ

where the momentum transfer is k ¼ pþ p0 and cos θ ¼ k⃗ · p⃗=jk⃗jjp⃗j. Note that E, p (E0; p0) are for χ (χ). Thus E0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ jk⃗j2 − 2jk⃗jjp⃗j cos θ

q
and ω ¼ Eþ E0. The two terms FL

χχnp→np, F
T
χχnp→np in the integrand are

FL
χχnp→np ¼ β2kjLβ

2
kjL ·

k2

ω2

�
1 −

�
ω − 2E

jk⃗j

�
2
�
; ðC12Þ

F T
χχnp→np ¼ β2kjTβ

2
kjT ·

�
1

2
þ 2m2

χ

k2
þ 1

2

�
ω − 2E

jk⃗j

�
2
�
: ðC13Þ

Similar to the calculation of A0np → np, we use soft radiation approximation for the dark fermion pair absorption and
ignore the Pauli-blocking effect of the nucleons.
When mA0 > 2mχ , we use the narrow width approximation (NWA) detailed in Appendix A to approximate the integral.

The resulting formula is

ΓNWA
χχnp→np ¼ 8ϵ2αDαem2

A0nnnp
3πEjp⃗j

�
πT
mN

�
3=2

hσð2Þnp ðTÞi
Z

ωþ

ω−

dω
FL�

χχnp→np þ 2F T�
χχnp→np

ω3½1þ eðω−EÞ=T � ; ðC14Þ

where the two terms FL�
χχnp→np, F

T�
χχnp→np in the integrand are

FL�
χχnp→np ¼

β2mjL
ΓL

·
m2

A0

ω2

�
1 −

�
ω − 2E

jk⃗j

�
2
�
; ðC15Þ

F T�
χχnp→np ¼

β2mjT
ΓT

·
�
1

2
þ 2m2

χ

m2
A0

þ 1

2

�
ω − 2E

jk⃗j

�
2
�
; ðC16Þ

and we now have jk⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

A0

q
. The dark photon widths must include the contribution from the dark photon decay via

A0 → χχ. Thus, we have ΓL;T ¼ ð1 − e−ω=TÞðΓL;T
A0;abs þ ΓA0→χχÞ. Momentum conservation demands that ω is bounded by

ω� ¼ m2
A0

2m2
χ

�
E� jp⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

m2
A0

s �
: ðC17Þ
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5. χ χ → e− e +
The pair-annihilation rate via χðpÞ þ χðp0Þ → e−ðp3Þ þ eþðp4Þ is

Γχχ→e−eþ ¼ ϵ2αDαe
4πE

Z
∞

0

djk⃗j
Z

1

−1
d cos θ

Z
E3þ

E3−

dE3

jk⃗j
E0 f

0ð1 − f3Þð1 − f4ÞðFL
χχ→e−eþ þ 2F T

χχ→e−eþÞ; ðC18Þ

where we have the same definitions for cos θ, E0, and ω as in Eq. (C11). Moreover, f0, f3, and f4 are the distribution
functions of χ, e−, and eþ, respectively. That is,

f0 ¼ 1

eE
0=T þ 1

; ðC19Þ

f3 ¼
1

eðE3−μeÞ=T þ 1
; ðC20Þ

f4 ¼
1

eðE4þμeÞ=T þ 1
; ðC21Þ

where the positron energy is expressed as E4 ¼ ω − E3 by energy conservation. With the electron and positron distribution
function included, we take the Pauli-blocking effect into account, which is significant near the center of the PNS. The two
terms FL

χχ→e−eþ , F
T
χχ→e−eþ in the integrand are

FL
χχ→e−eþ ¼ β2kjLβ

2
kjL

�
1 −

�
ω − 2E

jk⃗j

�
2
��

1 −
�
ω − 2E3

jk⃗j

�
2
�
; ðC22Þ

F T
χχ→e−eþ ¼ β2kjTβ

2
kjT

�
1

2
þ 2m2

χ

k2
þ 1

2

�
ω − 2E

jk⃗j

�
2
��

1

2
þ 2m2

e

k2
þ 1

2

�
ω − 2E3

jk⃗j

�
2
�
: ðC23Þ

Momentum conservation demands that E3 is bounded by

E3� ¼ 1

2

"
ω� jk⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

k2

s #
: ðC24Þ

When mA0 > 2mχ , we use NWA (see Appendix A) to approximate the annihilation rate. The resulting formula is

ΓNWA
χχ→e−eþ ¼ ϵ2αeαDm4

A0

8Ejp⃗j
Z

ωþ

ω−

dω
Z

E3þ

E3−

dE3

f2ð1 − f3Þð1 − f4Þ
ωjk⃗j

ðFL�
χχ→e−eþ þ 2F T�

χχ→e−eþÞ; ðC25Þ

where we now have jk⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

A0

q
. The energies of χ and eþ on which their distribution functions depend are expressed

as E0 ¼ ω − E and E4 ¼ ω − E3. The two terms FL�
χχ→e−eþ , F

T�
χχ→e−eþ in the integrand now are

FL�
χχ→e−eþ ¼

β2mjL
ΓL

�
1 −

�
ω − 2E

jk⃗j

�
2
��

1 −
�
ω − 2E3

jk⃗j

�
2
�
; ðC26Þ

F T�
χχ→e−eþ ¼

β2mjT
ΓT

�
1

2
þ 2m2

χ

m2
A0

þ 1

2

�
ω − 2E

jk⃗j

�
2
��

1

2
þ 2m2

e

m2
A0

þ 1

2

�
ω − 2E3

jk⃗j

�
2
�
; ðC27Þ

where ΓL;T is the same as in Eqs. (C15) and (C16). The limit of E3 now becomes
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E3� ¼ 1

2

�
ω� jk⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

m2
A0

s �
; ðC28Þ

while the limit of ω is the same as Eq. (C17).

6. χ χ → γ�

Let ωL;T ¼ ωL;Tðjk⃗jÞ be the energy of the longitudinal and transverse SM photon as functions of jk⃗j, and mL;T be the
effective mass satisfying m2

L;T ¼ ω2
L;T − jk⃗j2 ¼ ReΠL;TðωL;T; jk⃗jÞ. Then the pair-annihilation rate can be expressed as

Γχχ→γ� ¼
ϵ2αD
4Ejp⃗j

X
L;T

Z
∞

0

jk⃗jdjk⃗j
ωL;T

gL;TF
L;T
χχ→γ�Θð1 − cos2 θL;TÞ

½1þ eðωL;T−EÞ=T �ð1 − e−ωL;T=TÞ ; ðC29Þ

where gL ¼ 1, gT ¼ 2, and FL
χχ→γ� , F

T
χχ→γ� are defined as

FL
χχ→γ� ¼ β2mjLZLm2

L

�
1 −

�
ωL − 2E

jk⃗j

�
2
�
; ðC30Þ

F T
χχ→γ� ¼ β2mjTZTm2

T

�
1

2
þ 2m2

χ

m2
T
þ 1

2

�
ωT − 2E

jk⃗j

�
2
�
; ðC31Þ

where ZL;T is the renormalization factor for the longitudinal plasmon and transverse photon detailed in Appendix B. The
bosonic enhancement for the plasmon is included in Eq. (C29). The step function in Eq. (C29) is to ensure that the momenta
are kinematically allowed. The definition of cos θL;T is

cos θL;T ¼ 2ωL;TE −m2
L;T

2jk⃗jjp⃗j
: ðC32Þ

We use NWA to approximate the annihilation rate when mA0 > 2mχ . The resulting expression is

Γχχ→γ� ¼
πϵ2αDm6

A0

4Ejp⃗j
X
L;T

gL;TF
L;T�
χχ→γ�Θðωþ − ω�

L;TÞΘðω�
L;T − ω−Þ

½1þ eðω�
L−EÞ=T �ð1 − e−ω

�
L=TÞ ; ðC33Þ

where ω�
L;T is the solution of the equation ReΠL;Tðω;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

A0

q
Þ ¼ m2

A0 . FL;T�
χχ→γ� is now defined as

FL�
χχ→γ� ¼

1

ω�
LΓL

�
1 −

ðω�
L − 2EÞ2

ω�2
L −m2

A0

�������
dReΠLðω;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

A0

q
Þ

dω

������
ω�
L

������
−1

; ðC34Þ

F T�
χχ→γ� ¼

1

ω�
TΓT

�
1

2
þ 2m2

χ

m2
A0

þ 1

2

ðω�
T − 2EÞ2

ω�2
T −m2

A0

�������
dReΠTðω;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

A0

q
Þ

dω

������
ω�
T

������
−1

: ðC35Þ

ω� is the same as Eq. (C17) and ΓL;T is the same as in Eqs. (C15) and (C16).

7. χe − → χe − and χp → χp

The scattering rate of χðpÞ þ e−ðp2Þ → χðp0Þ þ e−ðp4Þ is given by

Γχe−→χe− ¼ ϵ2αDαe
4πE

Z
djk⃗jd cos θ

Z
∞

E2þ
dE2

jk⃗j
E0 f2ð1 − f0Þð1 − f4ÞðFL

χe−→χe− þ 2F T
χe−→χe−Þ; ðC36Þ
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where k ¼ p − p0 is the momentum transfer, cos θ and E0
are the same in Eq. (C11) while ω ¼ E − E0 instead. f2, f0,
and f4 are the distribution functions of the initial state e−,
final state χ, and final state e−, respectively. The final state
electron energy is expressed as E4 ¼ ωþ E2 by energy
conservation. The two terms FL

χe−→χe− , F T
χe−→χe− are the

same as Eqs. (C22) and (C23) except that −E3 is replaced
with þE2, and E2 is bounded below by

E2þ ¼ 1

2

�
jk⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

k2

s
− ω

�
: ðC37Þ

Note that the momentum transfer is spacelike (k2 < 0) for
the χ − e− scattering. In this scenario, we take the dark
photon width to be zero, while ImΠL;T is determined by the
imaginary parts of Eqs. (B5) and (B6) with ω → ωþ iε for
an infinitesimal ε > 0 [98].
The scattering rate via χp → χp is the same as χe− →

χe− if the differences in masses and distribution functions
of the proton and the electron are taken into account.
However, we can approximate the χ − p scattering as an
elastic scattering due to the fact thatmp is much larger than

mχ . We also ignore the Pauli-blocking effect of proton.
Thus the scattering rate of χ − p scattering can be approxi-
mated by

Γχp→χp ¼
4πϵ2αeαDnpjp⃗j
Eð1þ e−E=TÞ

×
Z

1

−1
d cosθβ2kjL ·

2E2 − jp⃗j2ð1− cosθÞ
ðk2 −m2

A0 Þ2 ; ðC38Þ

where the momentum transfer is k2 ≃ −jk⃗j2 ≃ −
2jp⃗j2ð1 − cos θÞ. Note that in this static limit (ω → 0), the
contribution from the transverse mode, corresponding to the
classical magnetic field, is suppressed. And the plasma factor
β2kjL of the longitudinal mode, corresponding to the static

electric field, accounts for the screening effect in
medium [99].

8. A0χ → χA0 and A0A0 ↔ χ χ

The spin-averaged matrix element squared of A0ðp1Þ þ
χðp2Þ → χðp3Þ þ A0ðp4Þ is

jMj2A0χ→χA0 ¼ 64π2α2D
3

�
ðm2

A0 þ 2m2
χÞ2
�

1

ðs −m2
χÞ2

þ 1

ðt −m2
χÞ2
�
þ 8ðm4

χ −m4
A0 Þ

ðs −m2
χÞðt −m2

χÞ

þ4ðm2
χ þm2

A0 Þ
�

1

s −m2
χ
þ 1

t −m2
χ

�
−
�
s −m2

χ

t −m2
χ
þ t −m2

χ

s −m2
χ

�	
; ðC39Þ

where s ¼ ðp1 þ p2Þ2 and t ¼ ðp1 − p3Þ2 are the Mandelstam variables. By crossing symmetry, the matrix element of
A0ðp1Þ þ A0ðp2Þ → χðp3Þ þ χðp4Þ is the same as Eq. (C39) except that s is replaced by u ¼ ðp1 − p4Þ2 and the matrix
element is multiplied by a factor of −2=3. (The minus sign is due to the crossing of one fermion state.) For
χðp1Þ þ χðp2Þ → A0ðp3Þ þ A0ðp4Þ, we can again reuse Eq. (C39), replace s by u, and multiply by a factor of −3=2.

9. χ χ → χ χ and χ χ → χ χ

The spin-averaged matrix element squared of χðp1Þ þ χðp2Þ → χðp3Þ þ χðp4Þ is

jMj2χχ→χχ ¼ 64π2α2D

��
5

2
m4

A0 − 4m2
χm2

A0 þ 4m4
χ

��
1

ðt−m2
A0 Þ2 þ

1

ðs−m2
A0 Þ2
�
þ 4ðm4

A0 −m4
χÞ

ðt−m2
A0 Þðs−m2

A0 Þ

þð3m2
A0 − 4m2

χÞ
�

s−m2
A0

ðt−m2
A0 Þ2 þ

t−m2
A0

ðs−m2
A0 Þ2
�
þ 6m2

A0

�
1

t−m2
A0
þ 1

s−m2
A0

�
þ
�
s−m2

A0

t−m2
A0
þ 1þ t−m2

A0

s−m2
A0

�
2
	
: ðC40Þ

Due to crossing symmetry, we can reuse Eq. (C40) for the scattering process χðp1Þ þ χðp2Þ → χðp3Þ þ χðp4Þ with s
replaced by u.

10. A0 ↔ χ χ

For the decay process A0 → χχ, we take into account the Pauli-blocking effect of the dark fermions. The decay rate is
given by

ΓA0→χχ ¼
αDðm2

A0 þ 2m2
χÞ

3ωjk⃗j
2T

1 − e−ω=T
ln

�
cosh ½ð1þ ξ0Þω=4T�
cosh ½ð1 − ξ0Þω=4T�

	
; ðC41Þ
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where ξ0 is similar to Eq. (C10),

ξ0 ¼
jk⃗j
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

m2
A0

s
: ðC42Þ

Note that in the limit T → 0, Eq. (C41) reduces to the decay rate in vacuum given by Eq. (2.6) in [35].
The inverse decay rate of χχ → A0, taking into account the bosonic enhancement of the dark photon, is given by

Γχχ→A0 ¼ αDðm2
A0 þ 2m2

χÞ
2Ejp⃗j

T

1þ e−E=T
ln

�
sinh ðωþ=2TÞ cosh ½ðω− − EÞ=2T�
sinh ðω−=2TÞ cosh ½ðωþ − EÞ=2T�

	
; ðC43Þ

where ω� is the same as Eq. (C17).

APPENDIX D: DETAILED WORK FLOW FOR COMPUTING DS LUMINOSITY

(1) We take the following steps to determine if a DS particle species is in the diffuse regime or not:
(a) Compute λ̃−1i ðEi; rÞ, the IMFP of each species i assuming all DS particle species are in thermal equilibrium with

the SM medium at temperature TðrÞ.
(b) Compute Δti, the escape timescale for each particle species i with Eqs. (21) and (22).
(c) Compute Ni, the estimated abundance of each particle species with Eq. (20), and obtain the relative abundance

ηi ≡ Ni=N
eq
i , where Neq

i is the abundance of DS particle species i assuming they are in thermal equilibrium with
the SM medium. If ηi > 1, we simply set ηi ¼ 1.

(d) Compute λ−1i , the IMFP of each species rescaled by the relative abundance as

λ−1i ¼
X

possible final states

�
λ̃−1i→final states þ

X
j

ηjλ̃
−1
iþj→final states

�
; ðD1Þ

where j runs over all possible DS particle species.
(e) Check the diffuse criteria for the dark photons: if ηA0

L;T
¼ 1 and hλ−1A0

L;T
ðRνÞi − hλ̃−1A0

L;T→e−eþðRνÞi > R−1
ν , then A0

L;T
is in the diffuse limit. Otherwise, A0

L;T is treated as nondiffuse particles.
(f) Check the diffuse criteria for the dark fermion: if ηχ ¼ 1 and hλ−1χ ðRνÞi > R−1

ν , then χ is in the diffuse regime.
Otherwise, χ is treated as nondiffuse particles.

(2) Depending on whether the DS particles are in the diffuse limit or not, we compute the luminosity of each particle
species as follows:
(a) Regardless of the DS masses, the dark photon luminosity is given by

LA0
L;T

¼
�LA0

L;T ;diff
; for diffuseA0

L;T ½use Eq:ð9Þ�;
LA0

L;T ;nondiff
; for non-diffuseA0

L;T ½use Eq:ð3Þ�: ðD2Þ

(b) When mA0 < 2mχ , the dark fermion luminosity is given by

Lχ ¼
�
Lχ;diff ; for diffuse χ ½use Eq:ð9Þ�;
Lχ;nondiff ; for non-diffuse χ ½use Eq:ð6Þ�: ðD3Þ

(iii)When mA0 > 2mχ , the dark fermion luminosity is given by

Lχ ¼

8>>>>>>>><
>>>>>>>>:

Lχ;diff ; if χ is in the diffuse limit;

Lχ;nondiff ; if onlyA0
L; A

0
T are in the diffuse limit;

2
3
Lχ;nondiff ; if only A0

T is in the diffuse limit;
1
3
Lχ;nondiff ; if only A0

L is in the diffuse limit;

0; if no DS particle species is in the diffuse limit:

ðD4Þ
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(d) The total DS luminosity is LX ¼ LA0
L
þ LA0

T
þ

2Lχ .

APPENDIX E: RADIATIVE TRANSFER

We now derive the energy flux carried by the DS
particles through a surface of radius r near the neutrino-
sphere, assuming they are in the diffuse limit. The deriva-
tion follows from Appendix I of [100]. The equation of
radiative transfer is given by

1

ρ

∂I
∂r cos θ þ κI − j ¼ 0; ðE1Þ

where ρ is the matter density, I is the intensity of radiation
per unit solid angle per unit frequency, θ is the angle
between the direction of radiation and the radial direction, κ
is the opacity, and j is the total radiation power emitted per
unit mass per unit frequency. We distinguish between the
opacity contributions from scattering processes and absorp-
tion processes κ ¼ κs þ κa, and between the radiation by
scattering and radiation emitted by matter j ¼ js þ jem. In
equilibrium and isotropic environment,

Iiso;eq ≡ B ¼ g
ð2πÞ3

E2p

eE=T � 1
; ðE2Þ

jiso;eqem ¼ κaB; ðE3Þ

where g is the degree of freedom, and the upper (lower) sign
is for fermions (bosons). However, in an anisotropic
environment, the relation between jem and I is given by

jem ¼ κað1� e−E=TÞB ∓ κae−E=TI: ðE4Þ

In the second term, the minus sign for fermion is due to
Pauli blocking, while the plus sign for boson is due to
stimulated emission. Substitute the above equation back
into Eq. (E1),

1

ρ

∂I
∂r cos θ þ κsI − js þ κ�aðI − BÞ ¼ 0; ðE5Þ

where κ�a ≡ κað1� e−E=TÞ. We assume that the radiation
intensity I is very close to Iiso;eq. Therefore, we can expand

I in terms of Legendre polynomials Pnðcos θÞ and sub-
stitute it back into Eq. (E5). Keeping the terms up to n ¼ 1,
we obtain

I ≃ B −
1

ρðκ�a þ κsÞ
∂B
∂r cos θ: ðE6Þ

It follows that the energy flux through the spherical surface
of radius r is

LðrÞ¼4πr2
Z

IcosθdEdΩ

¼−
16

3
π2r2

dT
dr

Z
1

ρðκ�aþκsÞ
∂B
∂TdE

¼−
2gr2

3π

T3dT
dr

Z
∞

m=T

ξ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2−ðmTÞ2

q
λ−1ðE¼ ξT;rÞ

eξ

ðeξ�1Þ2dξ; ðE7Þ

where m is the mass of the particle carrying the radiation,
and λ−1 is the effective IMFP defined as

λ−1 ¼ ρðκ�a þ κsÞ: ðE8Þ

We can identify the absorptive IMFP λ−1abs with ρκa and the
scattering IMFP λ−1sca with ρκs. Thus, we can express the
effective IMFP as

λ−1ðE; rÞ≡ λ−1absðE; rÞð1� e−E=TÞ þ λ−1scaðE; rÞ: ðE9Þ

We note that since the integral in Eq. (E7) is dominated by
the energies with small λ−1ðE; rÞ, it is possible that Eq. (E7)
could overestimate the energy flux if λ−1ðE; rÞ≲ Rν for
some energies E. We found that it occurs near the switching
of diffuse and nondiffuse regimes, and thus it leads to
orders of magnitude jumps of energy luminosity. To avoid
this caveat, we approximate the IMFP λ−1ðE; rÞ by the
thermally averaged IMFP hλ−1ðrÞi defined as

hλ−1ðrÞi ¼
R
d3pfðE; TðrÞÞλ−1ðE; rÞR

d3pfðE; TðrÞÞ : ðE10Þ

Thus, the energy flux is approximately given by

LðrÞ ≃ −
2gr2

3π

T3dT
dr

1

hλ−1ðrÞi
Z

∞

m=T
ξ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −

�
m
T

�
2

s
eξ

ðeξ � 1Þ2 dξ: ðE11Þ
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