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It has been argued that the peak of the quarkonium entropy at the deconfinement transition is related 
to the entropic force which induces dissociation of quarkonium states. In this paper, we study the 
effect of the gluon condensate on the entropic force in a dilaton black hole background, by using the 
AdS/CFT correspondence. It is shown that the dropping gluon condensate near Tc (the deconfinement 
temperature) increases the entropic force thus enhancing the quarkonium dissociation.
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1. Introduction

In heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) 
and Large Hadron Collider (LHC), one of the main experimental sig-
natures for strongly coupled quark-gluon plasma (QGP) [1–3] for-
mation is dissociation of heavy quarkonium [4]. They are expected 
to create during the initial stages of the collision and give us signif-
icant information about the entire evolution of QGP. For instance, 
it was suggested that the quarkonium is suppressed due to the 
Debye screening induced by the high density of color charges in 
the hot plasma. However, recent experimental studies of charmo-
nium (cc̄) show a puzzle: the cc̄ suppression at RHIC (lower energy 
density) appeared to be stronger than that at LHC (larger energy 
density) [5,6]. Evidently, this is in contradiction with both the De-
bye screening [4] and the thermal activation through the impact 
of gluons [7,8]. In explaining how, some scholars suggested [9,10]
that the recombination of the produced charm quarks into char-
monium would be one possible solution. Specifically, if a region 
of deconfined quarks and gluons is formed, the quarkonium could 
be formed from a quark and an anti-quark which were originally 
created in separate incoherent interactions.

However, recently D. Kharzeev argued [11] that an anomalously 
strong suppression of cc̄ near the deconfinement transition can be 
a consequence of the nature of deconfinement. In particular, the 
peak of the quarkonium entropy at the deconfinement transition 
can be related to the entropic force which induces the melting of 
cc̄. This argument is based upon the Lattice QCD results [12–15]

* Corresponding author.
E-mail addresses: zhangzq@cug.edu.cn (Z.-q. Zhang), houdf@mail.ccnu.edu.cn

(D.-f. Hou).
https://doi.org/10.1016/j.physletb.2020.135301
0370-2693/© 2020 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
which indicate that there is a large amount of entropy associated 
with the heavy quark-antiquark pair around the crossover region 
of QGP. The proposal of [11] is that the entropy S gives rise to the 
entropic force as

F = T
∂ S

∂L
, (1)

with T the temperature of the plasma and L the inter-quark dis-
tance. Note that this force doesn’t describe other fundamental in-
teractions; instead, it is an emergent force that originates from 
multiple interactions, driving the system toward the state with 
a larger entropy. The entropic force was originally introduced in 
[16] to explain the elasticity of polymer strands in rubber and re-
cently argued in [17] to be responsible for gravity. Here we will 
not discuss these points and restrict ourselves to its application in 
dissociating of quarkonium in QGP.

The AdS/CFT correspondence [18–20] provides a new method 
for studying various aspects of QGP (see [21] for a good review). 
In this approach, K. Hashimoto and D. Kharzeev have first carried 
out the entropic force for N = 4 SYM plasma [22]. It is found that 
the entropy growing with the inter-distance can yield the entropic 
force. Later, this idea has been extended to various cases. For ex-
ample, the entropic force of moving quarkonium was studied in 
[23]. The chemical potential effect on this force was addressed in 
[24]. Moreover, this force has been discussed from AdS/QCD [25]. 
Further study in this direction can be found in [26,27].

In this paper, we are interested in studying the effect of the 
gluon condensate on the entropic force. The gluon condensate was 
introduced [28] as a measure for nonperturbative physics (at zero 
temperature) and considered [29–31] as an order parameter for 
(de)confinement. Furthermore, it has found applications in QGP 
[32]. On the other hand, lattice results indicate that the value of 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the gluon condensate shows a drastic change near Tc regardless of 
the number of quark flavors [33,34]. Due to the above reasons, it 
would be interesting to study the possible effects that the gluon 
condensate might cause on various physical observables. Already, 
there have been some research in this field. For instance, the ef-
fect of the gluon condensate on the heavy quark potential was 
addressed in [35] and the results show that the potential becomes 
deeper as the value of the gluon condensate decreases in the de-
confined phase, indicating the quarkonium mass drops above the 
deconfinement transition. Moreover, the effect of the gluon con-
densate on the quark energy loss was considered in [36,37] and 
the results indicate that the energy loss decreases as the gluon 
condensate decreases near Tc . In the present work, we would like 
to study the effect of the gluon condensate on the entropic force 
mainly because the gluon condensate drastically changes near Tc

while the entropy peaks around Tc . Our goal is to understand how 
gluon condensate modifies the entropic force. One step further, 
how gluon condensate affects the quarkonium dissociation, espe-
cially near Tc .

The structure of the paper is as follows. In the next section, we 
briefly review the deformed AdS background with back-reaction 
due to the gluon condensate given in [38]. In section 3, we inves-
tigate the entropic force in the dilaton black hole background and 
analyze how gluon condensate influences it as well as the quarko-
nium dissociation. Finally, we provide a concluding discussion in 
section 4.

2. Background geometry

The action of the gravity with a dilaton coupled is [39]

I = 1

2κ2

∫
d5x

√
g(R+ 12

R2
− 1

2
∂Mφ∂Mφ), (2)

where κ2 is the 5-dimensional Newtonian constant. R is the Ricci 
scalar. R denotes the AdS radius (for convenience hereafter we set 
R = 1). φ represents the dilaton which couples to the gluon oper-
ator.

By solving the Einstein’s equations and the dilaton equation of 
motion, one could obtain two relevant solutions. The first is the 
dilaton-wall solution [40,41]

ds2 = 1

z2
(
√

1 − c2z8(d�x2 − dt2) + dz2), (3)

with the dilaton profile

φ(z) =
√

3

2
log(

1 + cz4

1 − cz4
) + φ0, (4)

where �x = x1, x2, x3 are the boundary coordinates. z is the co-
ordinate of the 5th dimension with z = 0 the boundary. φ0 is a 
constant. c is nothing but the gluon condensate.

The second is the dilaton black hole solution [38,42]

ds2 = 1

z2
[H(z)d�x2 − P (z)dt2 + dz2], (5)

with

φ(z) = c

f

√
3

2
log(

1 + f z4

1 − f z4
) + φ0, (6)

and

H(z) = (1 + f z4)( f +a)/2 f (1 − f z4)( f −a)/2 f ,

P (z) = (1 + f z4)( f −3a)/2 f (1 − f z4)( f +3a)/2 f ,

f 2 = a2 + c2, (7)
where a is related to the temperature by a = (π T )4/4. f deter-
mines the position of the singularity with f −1/4 = z f (implying 
the above solution is well defined only in the range 0 < z < z f ), 
where z f is regarded as an IR cutoff. Notice that for a = 0, (5) re-
duces to (3). While for c = 0, it returns to the Schwarzschild black 
hole solution. Also, there exists a Hawking-Page transition between 
(3) and (5) at some critical value of a. Therefore, the dilaton-wall 
background is for the confined phase while the dilaton black hole 
describes the deconfined phase. For more details on them, refer to 
[38].

3. Entropic force in the dilaton black hole background

Following the holographic prescription given in [22], in this 
section we calculate the entropic force for the dilaton black hole 
background and study the effect of the gluon condensate on it. For 
comparison’s sake, we will work with r = 1/z as the radial coordi-
nate, following the notation of [22].

The Nambu-Goto action is

SNG = − 1

2πα′

∫
dτdσL = − 1

2πα′

∫
dτdσ

√
−detgαβ, (8)

with

gαβ = gμν
∂ Xμ

∂σα

∂ Xν

∂σ β
, (9)

where gαβ is the induced metric and parameterized by (τ , σ) on 
the string world-sheet. gμν denotes the metric, Xμ represents the 
target space coordinate.

For our purpose, we take the static gauge

t = τ , x1 = σ , (10)

and suppose r depends only on σ ,

r = r(σ ). (11)

Given that, the Lagrangian density reads

L =
√

r4 H(r)P (r)eφ(r) + P (r)eφ(r)ṙ2, (12)

with ṙ ≡ dr
dσ , H(r) ≡ H(z)|z=1/r , etc.

Now that L does not depend on σ explicitly, one obtains a 
conserved quantity,

L− ∂L
∂ ṙ

ṙ = constant. (13)

Imposing the boundary condition at σ = 0,

ṙ = 0, r = rc (r f < rc), (14)

the conserved quantity becomes

r4 H(r)P (r)eφ(r)√
r4 H(r)P (r)eφ(r) + P (r)eφ(r)ṙ2

=
√

r4
c H(rc)P (rc)eφ(rc), (15)

with r f ≡ f 1/4, H(rc) ≡ H(r)|r=rc , etc.
Rewriting the conserved quantity, one gets

dr

dσ
=

√
r8 H2(r)P (r)eφ(r) − r4 H(r)r4

c H(rc)P (rc)eφ(rc)

r4
c H(rc)P (rc)eφ(rc)

. (16)

Integrating (16), the inter-distance of the quark-antiquark pair 
is obtained as

L = 2

∞∫
rc

dr

√
r4

c H(rc)P (rc)eφ(rc)

r8 H2(r)P (r)eφ(r) − r4 H(r)r4
c H(rc)P (rc)eφ(rc)

. (17)
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Fig. 1. S(2)/
√

λ versus LT for different c. Left: T = 170 MeV; Right: T = 250 MeV. In both from top to bottom c = 0,0.2,0.9 GeV4, respectively.
The next task is to compute the entropy S , given by

S = −∂ F

∂T
, (18)

where F is the free energy of the quark-antiquark pair. This quan-
tity has been holographically calculated at zero temperature [43]
and finite temperature [44,45], respectively. Generally, there are 
two cases.

1. If L > c
T (where c represents the maximum value of LT ), 

one needs to consider some new configurations [46] and then the 
choice of the free energy is not unique [47]. Here we select a 
configuration of two disconnected trailing drag strings [48,49], the 
corresponding free energy reads

F (1) = 1

πα′

∞∫
r f

dr, (19)

results in

S(1) = √
λθ(L − c

T
), (20)

where θ(L − c
T ) denotes the Heaviside step function.

2. If x < c
T , the fundamental string is connected. For this case, 

the free energy could be derived from the on-shell action of the 
fundamental string in the dual geometry, that is

F (2) = 1

πα′

∞∫
rc

dr

√
A(r)B(r)

A(r) − A(rc)
, (21)

with

A(r) = r4 H(r)P (r)eφ(r), B(r) = P (r)eφ(r),

A(rc) = r4
c H(rc)P (rc)eφ(rc). (22)

Since a is related to T , one could rewrite Eq. (18) as

S = −∂ F

∂T
= −∂ F

∂a

∂a

∂T
= −π4T 3 ∂ F

∂a
. (23)

Then one gets

S(2) = −∂ F (2)

∂T
= −π3T 3

2α′
∞∫

rc

dr × [A′(r)B(r)+A(r)B ′(r)][A(r)−A(rc)]−A(r)B(r)[A′(r)−A′(rc)]√
A(r)B(r)[A(r)−A(rc)]3

,

(24)
with

A′(r) = r4eφ(r)[H ′(r)P (r) + H(r)P ′(r) + H(r)P (r)φ′(r)],
B ′(r) = P ′(r)eφ(r) + P (r)eφ(r)φ′(r),

H ′(r) = r−4 f ′[ f + a

2 f
(1 + f r−4)

a− f
2 f (1 − f r−4)

f −a
2 f

− f − a

2 f
(1 − f r−4)

−a− f
2 f (1 + f r−4)

f +a
2 f ],

P ′(r) = r−4 f ′[ f − 3a

2 f
(1 + f r−4)

− f −3a
2 f (1 − f r−4)

f +3a
2 f

− f + 3a

2 f
(1 − f r−4)

3a− f
2 f (1 + f r−4)

f −3a
2 f ],

φ′(r) = c

√
3

2

f ′[2r−4 − (1 + f r−4)(1 − f r−4) log 1+ f r−4

1− f r−4

(1 + f r−4)(1 − f r−4) f 2
,

f ′ = a√
a2 + c2

, (25)

and A′(rc) = A′(r)|r=rc , etc, where the derivatives are with respect 
to a. It seems very hard to evaluate (24) analytically, but it is 
possible numerically. Before numerical calculation, we discuss the 
values of some parameters, i.e., T and c. Since lattice calculations 
[15] show that the entropy (associated with the heavy quark pair) 
peaks around Tc and essentially vanishes above 1.5Tc , we take 
T ≤ 1.5Tc . Moreover, we set 0 ≤ c ≤ 0.9 GeV4, similar to [35–37].

Let’s discuss results. First, we analyze how gluon condensate af-
fects the entropic force. To this end, we plot S(2)/

√
λ as a function 

of LT for different values of c in the left and right panel of Fig. 1, 
where the left is for T = 170 MeV while the right T = 250 MeV
(here we have used the relation α′ = 1/

√
λ). In all of the plots 

from top to bottom c = 0, 0.2, 0.9 GeV4, respectively. From these 
figures, one finds that increasing c leads to smaller entropy at 
small distances. As we know, the entropic force is related to the 
growth of the entropy with the distance (see Eq. (1)) and respon-
sible for dissociating the quarkonia. Therefore, one concludes that 
the inclusion of the gluon condensate decreases the entropic force 
and then decreases the quarkonia dissociation. However, lattice re-
sults show [33,34] that the value of c drastically drops near Tc , so 
one infers that the dropping gluon condensate near Tc increases 
the entropic force thus enhancing the quarkonia dissociation.

Also, we would like to investigate the temperature dependence 
of the entropic force. But, as far as we know, there is no clear con-
clusion on the temperature dependence of the gluon condensate 
for full QCD. Here we consider the gluon condensate in the lattice 



4 Z.-q. Zhang, D.-f. Hou / Physics Letters B 803 (2020) 135301
Fig. 2. S(2)/
√

λ versus LT for different T and c. From top to bottom, (T =
250 MeV, c = 0.001 GeV4), (T = 170 MeV, c = 0.007 GeV4), (T = 150 MeV, c =
0.01 GeV4), respectively.

gauge theory and suppose that the temperature dependence of the 
gluon condensate is tuned to describe the lattice data given in [34]. 
Then we plot S(2)/

√
λ versus LT for various cases in Fig. 2. From 

these figures, one finds as T increases (meanwhile c decreases), 
the entropic force increases. But at high temperatures, the differ-
ences are not significant. Therefore, one concludes that under the 
influence of the gluon condensate, increases the temperature leads 
to increasing the entropic force thus making the quarkonium melt-
ing easier. The physical significance of the results will be discussed 
in the next section.

4. Conclusion

Recently it has been argued that the entropic force may repre-
sent a mechanism for melting the heavy quarkonium. In this paper, 
we studied the effect of the gluon condensate on the entropic 
force in a dilaton black hole background using AdS/CFT correspon-
dence. It is shown that the dropping gluon condensate near Tc

increases the entropic force thus enhancing the quarkonium dis-
sociation. Also, we analyzed the temperature dependence of the 
entropic force and found under the influence of the gluon conden-
sate, the entropic force increases with the temperature.

There are, of course, some problems in this research. First, one 
should bear in mind that the holographic model is not real QCD, 
which may lead to somewhat different results, e.g., Ref. [15] shows 
that the entropy essentially vanishes above 1.5Tc but we got a dif-
ferent result from Eq. (24) (Ref. [22] also faces the same problem). 
Moreover, when analyzing the temperature dependence of the en-
tropic force, we have considered the gluon condensate from lattice 
gauge theory [34] which may differ from real QCD.

One may wonder how gluon condensate affects the dissocia-
tion of other quarkonium states, e.g., bottomonium? We would like 
to make the following comment. Most of the bottomonium states 
have smaller sizes, which are much less affected by the entropic 
force [11], but this does not mean the gluon condensate has no 

effect on the bottomonium dissociation. It would be significant to 
check whether gluon condensate has effect on Debye screening or 
thermal gluon activation. We hope to report our progress in this 
regard in the near future.
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