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Neutrinos may be Dirac particles of which the masses arise radiatively at one loop, naturally explaining
their small values. In this work, we show that all the one-loop realizations of the dimension-5 operator to
effectively generate Dirac neutrino masses can be implemented by using a single local symmetry:Uð1ÞB−L.
Since this symmetry is anomalous, new chiral fermions, charged under B − L, are required. The minimal
model consistent with neutrino data includes three chiral fermions, two of them with the same lepton
number. The next minimal models contain five chiral fermions, and their B − L charges can be fixed by
requiring a dark matter candidate in the spectrum. We list the full particle content as well as the relevant
Lagrangian terms for each of these models. They are new and simple models that can simultaneously
accommodate Dirac neutrino masses (at one loop) and dark matter without invoking any discrete
symmetries.
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I. INTRODUCTION

The interpretation of neutrino experimental data in terms
of neutrino oscillations is compatible with both Majorana
and Dirac neutrino masses [1]. The former possibility has
received the most attention, but given the lack of signals in
neutrinoless double beta decay experiments [2–7], the latter
cannot be dismissed. If neutrinos are Dirac particles, the
Standard Model (SM) particle content must be extended
with right-handed neutrinos, and some symmetry must be
imposed to prevent their Majorana mass terms. At least a Z3

symmetry is required to guarantee the neutrino Dirac-ness
through

Lν ¼ yDðνRÞ†L ·H þ H:c:; ð1Þ
with1 L ·H ¼ ϵabLaHb, where L is the lepton doublet,H is
the SM Higgs doublet with hypercharge Y ¼ 1, and yD is
the matrix of neutrino Yukawa couplings. To be compatible

with neutrino oscillation data [9], yD should be at least of
order 2 × 3. A possible assignment for the set of SM fields
that transform nontrivially under Z3 is L ∼ ω, ðeRÞ† ∼ ω2,
and ðνRÞ† ∼ ω2, with ω3 ¼ 1. At this level, the neutrino
mass problem is not longer a phenomenological issue but a
theoretical one, in which it is necessary to explain the
smallness of the Yukawa couplings in yD, which must be of
order 10−11.
To do so, we assume that the symmetry allows for the

five-dimensional operator with total lepton number con-
servation [10]

L5 ¼
h
Λ
ðνRÞ†L ·HS� þ H:c:; ð2Þ

where Λ is the new physics scale, and that this operator is
first realized at one-loop level [11] (see Refs. [11–19] for
the tree-level realizations).
Regarding the symmetry, we follow the usual approach

of promoting baryon number (B) minus lepton number (L)
from an accidental global symmetry of the SM, to a local
Abelian symmetry, Uð1ÞB−L, which is spontaneously bro-
ken. One of the main novelties of our work is that we do not
impose any other symmetries, discrete or otherwise. Thus,
the charges of the right-handed neutrinos under Uð1ÞB−L
should be such that the tree-level Dirac mass term (1) is
forbidden. This requirement automatically excludes the
usual assignment where the three right-handed neutrinos
have B − L charges equal to −1.
The classification of all the topologies at one-loop level

that realize the effective operator (2) has been presented in
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1Throughout the text, we will follow the convention of
defining only left-handed Weyl spinors [8], and we will use
the SUð2Þ metric to build scalar products.
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Ref. [11]. There, in addition to the Uð1ÞB−L symmetry, at
least one additional Z2 symmetry was imposed to avoid the
Majorana mass terms for the right-handed neutrinos, and a
further Z0

2 was required to avoid i) the appearance of tree-
level realizations in the cases when Uð1ÞB−L is not able to
do it and ii) to have a dark matter candidate in the particle
spectrum—one of the new particles needed to realize (2).
Here, we focus instead on the simplest realizations of each
topology that can be realized with a single symmetry,
Uð1ÞB−L. This same symmetry would be responsible for the
stability of possible dark matter candidates appearing in
the different realizations. Let us stress that until now in the
literature there has not been a simple realization of operator
(2) at one loop invoking only a single symmetry. There
have been some efforts in this direction, but either some
Majorana terms were left out, which would need to be
forbidden with an extra Z2-symmetry [20,21], or the found
models require many extra fields [20].
Using only Uð1ÞB−L, we find, for each topology, the

realization with the minimum number of fields. The
minimal model requires three chiral fields, two of them
sharing the same lepton number, so that the spectrum
contains two massive Dirac neutrinos. The next minimal
models include five chiral fields. Interestingly, their B − L
charges are fixed once the requirement to have a dark
matter particle is imposed. Hence, these new models may
account for dark matter and Dirac neutrino masses (at one
loop) without invoking any discrete symmetries.
The rest of the paper is organized as follows. In the next

section, we introduce the notation and derive the conditions
necessary to realize the different topologies that give rise to
one-loop Dirac neutrino masses. Our main results are
presented in Sec. III. There, the particle content of the
minimal models, with three and five chiral fields, is spelled
out. Finally, in Sec. IV, our conclusions are drawn.

II. GENERAL SETUP

We use the notation for the topologies defined in
Ref. [11], which are displayed in Fig. 1. There the flux
of the lepton number is illustrated by the wide colored
arrows. The green arrow represents the flux of the doublet
lepton number, LðLiÞ ¼ −1; the yellow is for LðνRβÞ ¼ −ν
with β at least 1,2; the blue is for LðSÞ ¼ s; and the red is for
some internal circulating L charge associated with a chiral
fermion, which we choose as a free parameter in our setup.
We do not consider the T1-1 or T4 topologies of

Ref. [11] because the former is already included in top-
ology T3-1 when the X3 scalar field is decoupled, whereas
the latter requires further symmetries to forbid the tree-level
contribution.2 In Ref. [11], it was assumed that the internal

fermion lines were already vectorlike fermions, which
allow them to use the ν ¼ 1 solution for anomaly cancel-
lation conditions, but they needed to impose additional Z2

symmetries to forbid the tree-level contribution to neutrino
masses and to stabilize the dark matter. Here, we instead
assume chiral fields for the fermions that are singlets under
the SM gauge group. This allows us to search for new
minimal realizations of the topologies with a single extra
symmetry beyond the SM. It is clear that our solution with
three chiral states, corresponding to the three right-handed
neutrinos, can be easily extrapolated to all the solutions
found in Ref. [11], with the advantage that not further
discrete symmetries are imposed. We explicitly illustrate
this for the case of topology T3-1-A, the minimal solution
of which involves just a Dirac fermion.
In our setup, the only extra symmetry beyond the SM,

Uð1ÞB−L, must forbid the tree-level terms

Lν ¼ yDβiðνRβÞ†Li ·H þMR
βγðνRβÞ†ðνRγÞ†Sþ H:c ð3Þ

as well as allow for the dimension-5 operator (2). This is
accomplished by the L charge assignments in Table I.
There, ν is the lepton number of the left-handed antineu-
trino, which is common to at least the two right-handed
neutrinos required to explain the neutrino oscillation data.
As already mentioned, the solution with ν ¼ 1, studied in
Ref. [11], is no longer considered in this work.
To find the new possible solutions, we explore the

anomaly cancellation conditions with five chiral fields
by checking that their charges do not generate direct or
induced Majorana mass terms for them; that is, the fermion
loop mediators are Dirac-like fields. In addition to the chiral
fields for β ¼ 1, 2, we introduce ðνRkÞ† with LðνRkÞ ¼ −νk
and a heavy Dirac fermion field with Weyl components ψL

and ðψRÞ†, such that LðψLÞ ¼ l and LðψRÞ ¼ −r, respec-
tively. The linear and cubic anomaly cancellation condi-
tions are [22,23]

2νþ νk þ lþ r ¼ 3; 2ν3 þ ν3k þ r3 þ l3 ¼ 3: ð4Þ

From the linear equation,

νk ¼ 3 − 2ν − l − r: ð5Þ

To further proceed, we separate the topologies in two
types: the set (A) with T1-3-D and T3-1-A, corresponding
to the ones with the yellow ν flux in Fig. 1 and where S is in
a vertex only involving scalars, and the set (B) with T1-3-E
and T1-2-(A/B), with the blue s flux in Fig. 1 and where S
is in a Yukawa-type vertex. For each case, we have
(A) The heavy Dirac fermion has a vectorlike mass, such

that

l ¼ −r: ð6Þ

2The exception cases are the IV and V solutions of T4-3-I.
However, they require mixing between the charged leptons and
the new fermion fields, thus leading to charged lepton flavor
violation processes which are quite constrained.
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Replacing back in Eq. (5), we obtain

νk ¼ 3 − 2ν: ð7Þ

Solving the cubic equation for ν gives rise to two
different roots: 1 and 4. Thus, we choose ν ¼ 4,
which leads to νk ¼ −5.
On the other hand, the fact that the new fermion

field ψ does not contribute to the anomalies implies
that the only possible realization within the T1-3-D
topology is the solutions I and II with ψL ¼ Li and
ψR ¼ eRi, since in these cases the corresponding
contributions to the anomalies are already taken into
account.

(B) The two SM-singlet chiral fields can acquire a Dirac
mass [after the spontaneous symmetry breaking
(SSB) of Uð1ÞB−L] through

Lψ ¼ hSðψRÞ†ψLSþ H:c:: ð8Þ

If we choose r as the free charge circulating in the
loop, and since from Table I we have s ¼ ν − 1, then
from the condition in Eq. (8), rþ lþ s ¼ 0, we get

l ¼ 1 − ν − r; ð9Þ

and replacing back in Eq. (5)

TABLE I. General assignment of lepton number for external
legs of the one-loop topologies in Fig. 1.

Fields H Li ðνRβÞ† S

L 0 −1 ν ≠ 1 ν − 1 ≠ −2ν

FIG. 1. Topologies (in notation of Ref. [11]) leading to one-loop Dirac neutrino masses.

MINIMAL RADIATIVE DIRAC NEUTRINO MASS MODELS PHYS. REV. D 99, 075008 (2019)

075008-3



νk ¼ 2 − ν: ð10Þ

Using (9) and (10) in the cubic condition for
anomaly cancellation, Eq. (4), we end up with the
one-parameter solution,

ν ¼ r2 − rþ 2

3 − r
: ð11Þ

If νk ¼ 0, we would have a solution with four chiral
fields when ν ¼ 2; however, the required r charge is
irrational and will not be further considered here.

To label the solutions, we use the conventions of
Ref. [11], as Ta-n-b-I α, where a refers to the topology
itself, n indicates the different choices of the fermion and
scalar lines in a given topology, b denotes the field
assignments for external fields, I denotes the simplest
solution with standard model–singlet scalars or fermions,
and α is the parameter which fixes the hypercharges of the
Xi fields inside the loop.
It is worth mentioning that when both ψL and ψR are SM

singlets (in the T3-1-A-I with α ¼ 0, T1-3-E-I with α ¼ 0,
T1-2-A-I with α ¼ 0, and T1-2-B-II with α ¼ þ1 models),
the condition r ≠ 1 or l ≠ −1 must be imposed in order to
avoid the tree-level realization of (2) that involves a SM-
singlet fermion mediator—the so-called type I Dirac see-
saw. In this way, one of the two required terms in that
realization (ψ†

RLi ·H and ν†RβψLS�) is forbidden.
As usual for scotogenic models, we demand the lightest

neutral particle running in the loop to be stable. For the case
of scalar dark matter (DM), the stability is guaranteed if
there is no linear terms in the scalar potential involving
scalar loop mediators, neither Yukawa interactions with
two SM fermions. The minimal DM scenarios that may
arise are then the singlet [24–26], doublet [27,28], and
singlet-doublet [29–32] scalar DM. It is worth mentioning
that, since Majorana mass terms for the fermion loop
mediators are not allowed, the fermion DM candidate is
either singlet [33] or singlet-doublet Dirac DM [34].
The wanted solutions must satisfy the constraints regard-

ing DM stability and Dirac-ness of light neutrinos and
guarantee that the direct or induced fermion mass terms
between the right-handed neutrinos and ψL or ψR are
forbidden. The reason to exclude this kind of mixings is
that in such a case the DM would not be stable because the
fermion loop mediator would decay into particles of the
visible sector. For instance, the induced (through S) or
direct mixing between ðνRkÞ† and either ψL or ðψRÞ† leads
to the decay into S and νRk for the induced mixing and into
Z0
μ and νRk for the direct mixing.
The solutions of the two sets are displayed in Table II.

Solution (A) is the well-known one studied in Ref. [15] for
tree-level realization of the five-dimensional operator. In
this solution, r is quite free; in fact, r ¼ �1=2;�1=3;…

The solution (B) was obtained after exploring all the
solutions of Eq. (11) for rational values of jrj ≤ 10,
and with both the numerator and denominator less than
or equal to 10. Since the anomaly cancellation conditions
are invariant under the exchange of r with l, a second
solution for (B) exists with the charges of ψL and ðψRÞ†
exchanged.
Higher SUð2ÞL fermion representations, as required in

T1-2 topologies, need to be introduced as vectorlike
fermions to not spoil the anomaly cancellation conditions
of the standard model. We will denote vectorlike doublet
Weyl fermions fields with Y ¼ −1 (Y ¼ þ1) as
ΨL;R (ϒL;R).
Regarding the scalars circulating in the loop, we will use

σ and η to represent SUð2ÞL scalar singlets and scalar
doublets, respectively, and we will denote their nonzero
lepton number with the same symbols.
A final comment is in order. Because Uð1ÞB−L is

promoted to a gauge symmetry, the vacuum expectation
value of S, hSi ¼ vS=

ffiffiffi
2

p
, induces a nonzero mass to the

associated gauge boson ZBL. The expression for its mass
can be cast as MZBL

¼ gBLvSjsj, where gBL is the B − L
gauge coupling and s is the B − L charge of S. On the other
hand, since ZBL couples to all the SM fermions (they have
nonzero B − L charges), it can be produced in hadron and
lepton colliders leading to observable signatures. Indeed,
from the nonobservation of any of such signatures in the
large electron positron and LHC data, there exist con-
straints on its mass and gauge coupling [35–39] (see e.g.,
Refs. [20,21] for specific analysis in B − L scotogenic
Dirac models).

III. SOLUTIONS

The new solutions correspond to the case in which
some of the Xi fermion fields in Fig. 1 can be chosen as
chiral fields. We explore the solutions with the minimal
number of fermion fields beyond the standard model. We
are interested, therefore, in the solutions in which at least
two right-handed neutrinos have the same Uð1ÞB−L charge
because in such a case both of them can couple to the same
set of extra chiral fermions. All the solutions for the B − L
charges presented below have been chosen in such a way
the DM particle does not decay.

A. Chiral T1-3-D-I (α= − 2)
We will start our analysis with the case in which an

internal fermion line in Fig. 1 can be interpreted as a

TABLE II. Solutions for Dirac neutrino masses with Dirac loop
mediators for i ≠ j ≠ k.

Fields ðνRiÞ† ðνRjÞ† ðνRkÞ† ψL ðψRÞ† S

L
(A) þ4 þ4 −5 −r r þ3

(B) þ 8
5

þ 8
5

þ 2
5

7
5

− 10
5

þ 3
5

CALLE, RESTREPO, YAGUNA, and ZAPATA PHYS. REV. D 99, 075008 (2019)

075008-4



standard model field. Therefore, only the right-handed
neutrinos contribute to the anomaly cancellation conditions
of the SM with Uð1ÞB−L. There are three well-known
solutions with three chiral fields [15,40]. However, solution
(A) in Table II is the only one that satisfies our constraints.
In fact, with the additions of two charged scalars, σ�1;2,

which are singlet under SUð2ÞL, we can build the Dirac
version of the Zee mechanism to generate neutrino masses
[41]. The couplings required to build the diagram displayed
in Fig. 2 are

L ⊂ ½fijLi · Ljσ
þ
1 þ hije ðeRiÞ†Lj · H̃ þ hiβR eRiνRβσ

þ
2 þ H:c:�

þ Vðσ�1 ; σ�2 ; HÞ; ð12Þ

where Li are the SM lepton doublets, H ¼ ðHþ; H0ÞT ,
H̃ ¼ iσ2H�, and Vðσ�1 ; σ�2 ; HÞ is the scalar potential.
Therefore, ψL (ψR) in solution (A) of Table II corre-

sponds to three lepton doblets Li (right-handed electrons
e−Ri) with l ¼ −1 (r ¼ 1) as the usual lepton number. Since
we use one set of charged scalar fields, σ�1;2, the model has
two massless chiral fields, one of them, νRk, contributing to
the effective number of relativistic degrees of freedom, Neff
[21,40,42]. From the lepton number flux in Fig. 2, we have

Lðσþ1 Þ ¼ −2; Lðσþ2 Þ ¼ −5: ð13Þ

The full solution is presented in Table III. This is by far the
minimal model for Dirac neutrino masses with a gauged
Uð1ÞB−L. The Dirac Zee model with ν ¼ νk ¼ 1 and extra
discrete symmetries has been studied in Ref. [41].
It is worth noticing that the restrictions from Neff are

expected to be stronger in our model because of the larger
lepton number assignment for the right-handed neutrinos.
However, since they do not couple directly to any SM
particles, we can simply assume that their interactions with
the extra gauge boson and scalars are sufficiently sup-
pressed that they decouple early enough from the thermal

bath. On the other hand, it is clear that there is not a DM
candidate in this model. Indeed, this is just a specific
example of models with one-loop Dirac neutrino masses
but without a DM candidate that can be obtained within
our setup.
Regarding νRk, it can give rise to either a third Dirac

neutrino mass if we extend the scalar sector with S0 and σ0�2
of L charges −6 and þ8, respectively, or a Majorana dark
matter candidate if we extend the scalar sector with a S0 of
L chargeþ10 [40]. In both cases, we end up with a physical
Goldstone boson (GB) which could contribute to Neff
through interactions with the Higgs [43]. The conditions
that GB decouples from the bath in the early Universe are
analyzed in Ref. [40] and require couplings of GB with SM
Higgs not larger than 10−3. This discussion can be easily
extended to the other one-loop realizations below.
We have implemented the model with three nonzero

Dirac neutrino masses in SARAH [44]. We use the method in
Refs. [41,45] to express f13, f23, h11, h22, hR33, h

R
31, h

R
32, and

hR23 as a function of the neutrino masses and mixings, by
using fR12, h

R
12, h

R
13, and hR21 as free parameters. For an

example of the consistency of the model, we show in Fig. 3
the observable Brðμþ → eþγÞ < 4.2 × 10−13 [46] as a
function a f12. The other parameters were fixed as
θ ¼ 0.1, Mσ1 ¼ 500 GeV, Mσ2 ¼ 750 GeV, hR12, hR13,
hR21 ¼ 10−4, where θ is the mixing angle between the
charged mass eigenstates σ1 and σ2. We can see that the
value for the parameter f12 is restricted to values lower
than 0.02.

FIG. 2. Dirac Zee model.

TABLE III. Chiral T1-3-D-I (α ¼ −2): Solutions for the Dirac
Zee model with i ≠ j ≠ k (i, j, k, l ¼ 1, 2, 3).

Fields X1 X2 X3 X4

ðνRiÞ† ðνRjÞ† ðνRkÞ† S
T1-3-D-I e−Rl

σ−2 σ−1 Ll

L þ4 þ4 −5 −1 −5 −2 −1 3

FIG. 3. Relationship between Brðμþ → eþγÞ and the para-
meter f12.
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B. Chiral T1-3-E-I (α= 0)

We consider now the topologies where two SM-singlet
chiral fields acquire a Dirac mass after the SSB of Uð1ÞB−L
from the term Lψ in Eq. (8). For them, we will use the
solution (B). The relevant terms in the Lagrangian include

L ⊃ Lψ þ Lσψ þ Lηψ þ Vðσa; ηa; S;HÞ; ð14Þ

where Lψ was given in Eq. (8),

Lσψ ¼ hβa1 ðνRβÞ†ψLσ
�
a þ H:c:;

Lηψ ¼ h0ia1 ðψRÞ†Li · ηa þ H:c:; ð15Þ

and Vðσa; ηa; S;HÞ is the scalar potential.
After the spontaneous breaking of the Uð1ÞB−L sym-

metry, this topology is reduced to the well-known Dirac
radiative seesaw model, but with different Lepton number
assignments. In fact, the model with ν ¼ νk ¼ r ¼ 1 and
two extra Z2 discrete symmetries was first introduced in
Refs. [47,48], while the case with r ≠ 1 which requires
only one extra Z2 symmetry was studied in Ref. [49]. The
minimal set of fermion fields is achieved when the two
nonzero Dirac neutrino masses are generated with two sets
of SM-singlet and doublet scalars: ηa, σa [49].
From Fig. 4, the charges of the scalars are

η ¼ 1 − r; σ ¼ 1 − r: ð16Þ

The solution compatible with the fields in Fig. 4 is
displayed in Table IV. The phenomenology of the radiative
seesaw model with ν ¼ 1 has been already studied in the
literature [20,21,47–49], where either singlet Dirac (ψ) or
singlet-doublet scalar ðσa; ηaÞ DM is realized. Because of
the similar charges associated to solution (B), we do not
expect significant differences with respect to those works.

C. Chiral T1-2-A-I α= 0

The solution compatible with the fields in Fig. 5 (left),
requires at least the following terms in the Lagrangian,

L ⊃ Lψ þ Lσψ þ ½MΨ
gðΨRÞ ·ΨL þ hia2

gðΨRÞ · Liσa

þ y1ðψRÞ†ΨL ·H þ H:c:� þ Vðσa; S;HÞ; ð17Þ

where ΨL ¼ ðΨ0
L;Ψ−

LÞT, gðΨRÞ ¼ ððΨ−
RÞ†;−ðΨ0

RÞ†ÞT, and
Vðσa; S;HÞ is the scalar potential. It follows that this
model requires a set of at least two SM-singlet scalars
to generate a rank-2 neutrino mass matrix and allows
for either singlet scalar (σa) or singlet-doublet Dirac
ðψ ;ΨÞ DM.
From Fig. 5 (left),

σ ¼ 1 − r: ð18Þ

The corresponding charges for the solution (B) are
shown in Table IV.

D. Chiral T1-2-B-II α= 0

The solution compatible with the fields in Fig. 5 (right)
requires at least the following terms in the Lagrangian,

L ⊃ Lψ þ Lηψ þ ½Mϒ
gðϒRÞ ·ϒL þ h0aβ2

gðϒLÞ · ηaνRβ
þ y01fϒR ·HψL þ H:c:� þ Vðηa; S;HÞ; ð19Þ

where ϒL ¼ ðϒþ
L ;ϒ

0
LÞT, gðϒRÞ ¼ ððϒ0

RÞ†;−ðϒþ
R Þ†ÞT, and

Vðηa; S;HÞ is the scalar potential. It follows that this model
requires a set of at least two scalar doublets to generate a
rank-2 neutrino mass matrix and allows for either doublet
scalar (ηa) or singlet-doublet Dirac ðϒ;ψÞ DM.
From the figure,

η ¼ 1 − r: ð20Þ

The solutions compatible with the fields in Fig. 5 (right)
correspond to the ones displayed in Table IV.
The phenomenological analysis of the chiral realizations

of topologies T1-2 will be done elsewhere. It is worthFIG. 4. T1-3-E-I (α ¼ 0).

TABLE IV. Chiral solutions for Dirac neutrino masses with the
minimal T1 topologies with i ≠ j ≠ k and α ¼ 0.

Fields X1 X2 X3 X4

ðνRiÞ† ðνRjÞ† ðνRkÞ† S
T1-3-E-I ψL ηa σa ψR

L 7
5

15
5

15
5

10
5

T1-2-A-I σa ψR ψL gðΨRÞ ΨL

L 8
5

8
5

2
5

15
5

10
5

7
5

− 10
5

10
5

3
5

T1-2-B-II ηa gðϒRÞ ϒL ψR ψL

L 15
5

− 7
5

7
5

10
5

7
5
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noting, however, that a model independent analysis of the
effect of the right-handed neutrinos on Neff can be inferred
from Ref. [42]. The ratio MZBL

=ðνgBLÞ, where gBL is the
Uð1ÞB−L gauge coupling, must be larger than 7–8 TeV in
order to be in agreement with the cosmological constraints.

E. Vectorlike solutions

In Ref. [11], all the obtained solutions for the topologies
in Fig. 1 have internal vectorlike fermions. We want to
stress that it is possible to realize all of them with a single
extra symmetry Uð1ÞB−L. For that, we can use the solution
(A) with a proper choice of the circulating free charge r.
For example, in the simplest case of just one circulating

SM-singlet Dirac fermion line as in T3-1-A, we have the
diagram displayed in Fig. 6.
From the flux of lepton number in Fig. 6, we have

η ¼ 1 − r; σ ¼ ν − r: ð21Þ

The corresponding charges for solution (A) are shown in
Table V.
Since the charges of the right-handed neutrinos are now

bigger than those in solution (B) used in Sec. III B, the
constraints from Neff are expected to be stronger. In fact, a
recent detailed phenomenological analysis of the Dirac
radiative seesaw [21] includes the case of a right-handed
neutrino with ν ¼ 4 and can be fully applied here. In
particular, the restrictions from Neff for both scalar ðσa; ηaÞ
and Dirac fermion (ψ) dark matter cases are more important
than the restriction from ZBL searches at the LHC. We refer
the reader there for further details.
It is clear that after SSB of Uð1ÞB−L both solutions T1-3-

E-I (α ¼ 0) in Sec. III B and T3-1-A-I (α ¼ 0) reduce to the
Dirac radiative seesaw. Moreover, we can add extra
circulating charges in the loop. In fact, when all the
circulating particles in the loop are color octets [49], we
can have a bound state dark matter candidate formed by two
Dirac color-octet fermions [50]. With our solutions, the
extra Z2 symmetry in Ref. [49] is no longer required.

IV. CONCLUSIONS

We found new and simple models for Dirac neutrino
masses within an extension of the Standard Model
by a spontaneously broken Uð1ÞB−L gauge symmetry.
Specifically, we studied the minimal chiral realizations, at
one loop, of the dimension-5 total lepton number
conserving operator that gives rise to Dirac neutrino
masses without imposing extra symmetries. The minimal
models contain three or five chiral fields, two of them
with the same charges under B − L. In the latter case,
their charges can be fixed by the requirement to have a
dark matter particle in the spectrum. The full particle
content as well as the relevant Lagrangian terms were
given for each of these models. We also showed that
known solutions with vectorlike fermions can be obtained
with just the single symmetry Uð1ÞB−L. These new
models, therefore, can simultaneously accommodate
one-loop Dirac neutrino masses and dark matter without
invoking any discrete symmetries.

FIG. 6. T3-1-A-I (α ¼ 0): B − L flux in the Dirac radiative
seesaw.

TABLE V. T3-1-A-I (α ¼ 0): Solutions for Dirac radiative
seesaw model with i ≠ j ≠ k (i, j, k ¼ 1, 2, 3).

Fields X1 X2 X3 X4

ðνRiÞ† ðνRjÞ† ðνRkÞ† S
T3-1-A-I ðψRÞ† ψL ηa σa —

L þ4 þ4 −5 r −r 1 − r 4 − r — 3

FIG. 5. Chiral T1-2-A-I (α ¼ 0) Chiral T1-2-B-II (α ¼ 0).
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