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In this paper, we study within the structure of Symplectic Quantum Mechanics a bidimensional nonrelativistic strong interaction
system which represent the bound state of heavy quark-antiquark, where we consider a Cornell potential which consists of
Coulomb-type plus linear potentials. First, we solve the Schrödinger equation in the phase space with the linear potential. The
solution (ground state) is obtained and analyzed by means of the Wigner function related to Airy function for the c�c meson. In
the second case, to treat the Schrödinger-like equation in the phase space, a procedure based on the Bohlin transformation is
presented and applied to the Cornell potential. In this case, the system is separated into two parts, one analogous to the
oscillator and the other we treat using perturbation method. Then, we quantized the Hamiltonian with the aid of stars
operators in the phase space representation so that we can determine through the algebraic method the eigenfunctions of the
undisturbed Hamiltonian (oscillator solution), and the other part of the Hamiltonian was the perturbation method. The
eigenfunctions found (undisturbed plus disturbed) are associated with the Wigner function via Weyl product using the
representation theory of Galilei group in the phase space. The Wigner function is analyzed, and the nonclassicality of ground
state and first excited state is studied by the nonclassicality indicator or negativity parameter of the Wigner function for this
system. In some aspects, we observe that the Wigner function offers an easier way to visualize the nonclassic nature of meson
system than the wavefunction does phase space.

1. Introduction

With the discovery of the J/Ψmeson in 1974 [1], the search to
describe such heavy quark systems was based on the approach
of potential models. The J/Ψ, which has a mass around 3.5
times that of the proton, is the lowest bound state of a charm
and anticharm quark [2]. The c�cmeson appears to be an excel-
lent device for testing QCD predictions. In quantum chromo-
dynamics (QCD), the computation of meson properties is
completely nonperturbative. As a result, direct calculation uti-
lizing lattice QCD (LQCD) techniques is the only general
method accessible. However, other strategies are effective for

heavy quarkonia. The light quarks in a meson, the mass of
the bound state is much larger than the mass of the quark,
move at relativistic speeds. On the other hand, the speed of
the charm and bottom quarks in their respective quarkonia
is tiny enough that relativistic effects in these states are greatly
diminished. The velocity, v, is believed to be around 0:3c for
charmonia. An extension in powers of v2/c2 can then be used
to approximate the computation. This method is known as
nonrelativistic QCD (NRQCD).

The masses of heavy quarkonium states can be calcu-
lated using effective potential models. The nonrelativistic
motion of the quarks that make up the quarkonium state is
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exploited in this technique to imply that they move in a
static potential, comparable to nonrelativistic hydrogen
atom models. One of the most prominent potential models
is the Cornell (or funnel) potential [3]. Specifically, the sys-
tem is characterized by a linear combination of the Coulomb
and linear potentials. The study of these potentials should
take into account the two important features of the Quan-
tum Chromodynamics (QCD), namely, asymptotic freedom
and quark confinement [4–7]. Another interest is that the
Cornell potential can be used to analyze the transition
between the confined and unconfined phases of matter
[8–10]. This potential is of considerable importance in vari-
ous branches of physics such as propagation of gravitational
waves, particle and nuclear physics [11–15], mathematical
modeling of the parton vibrations inside hadronic system
[16–20], quantum chromodynamics, and atomic physics
[5, 9, 11, 15]. It takes the form:

V qð Þ = b
q
+ aq, ð1Þ

where the first term is responsible for the interaction
between quark and its antiquark by gluon exchange at short
distances. The second term is responsible for quark confine-
ment at large distances. It is known that the potential VðqÞ
given in Eq. (1) reproduces two specific features of the
strong interaction. The Coulomb-like term displays a prop-
erty known as asymptotic freedom. This phenomenon tells
us that strong interaction coupling constant is a function
of momentum transfer. At short distances, the momentum
transfer increases in a quark-antiquark collision. In this
regard, the coupling constant becomes so small that quarks,
and gluons can be considered as approximately free, and
their interactions can be treated by a perturbation theory
[21–26]. Over large distances, momentum transfer decreases
as the strong interaction coupling constant becomes larger.
On the other extreme, it features a mechanism called con-
finement that keeps quarks and antiquarks permanently
within hadrons at 1 Fermi separations [22, 25, 27, 28]. Con-
finement is explained consistently in the flux tube model.
The gluon field between a pair of color charges develops a
string-like configuration as the distance between quarks
and antiquarks is extended (flux tube). As a result, across
extended distances, the energy density in the tube between
the quarks maintaining the gluon field remains constant
[22, 25, 29]. The energy stored in the field is then propor-
tional to the quark separation, giving us the linear term in
the potential of Eq. (1). In that way, at relatively larger sep-
aration, the potential energy can create new quarks pairs in
colorless forms instead of a free quark. The confinement
has been a mystery until now since no one has been able
to confirm it; although, there has been recent progress using
the techniques of lattice QCD [22, 25, 28].

There are several studies with the Cornell potential in lit-
erature. For instance, Flores [9, 30] studied the Schrödinger
equation with the Cornell potential using variational method
and supersymmetric quantum mechanics [9, 10, 30–32].
Bruni et al. [8] calculated the energy configuration for a

quark-antiquark pair from the Nambu-Goto action. It was
shown that this configuration energy has the shape of a Cor-
nell potential [8]. Khoka et al. [31, 33] utilized the analytical
exact iterative method to solve N-dimensional Schrödinger
equation with an extended Cornell potential [31]. They
found the energy and mass spectrum of heavy quarkonia
[31]. Omugbe [31] applied the Nikiforov-Uvarov method
to obtain the eigensolutions of the radial Schrödinger equa-
tion with Cornell potential plus an inversely quadratic
potential [11, 31, 34]. Until now, an analysis of such states
in quantum phase space via the Wigner function is still lack-
ing. In this work, we investigate confinement term of strong
interaction system described by heavy quarks-antiquarks in
the phase space.

The first successful formalism of quantum mechanics in
phase space was introduced by Wigner in 1932 [35–57]. He
was motivated by the problem of finding a way to improve
the quantum statistical mechanics [42–47, 50–54, 58–70].
In the Wigner formalism, an operator A defined in Hilbert
space H , is associated to a function in a phase space, says
A⟶ aWðq, pÞ. The product of two operators, AB, both
defined inH , is associated to a Weyl product or star product
of their phase space correspondents, i.e. [61–69],

aW⋆bW = aW q, pð ÞeiΛ2 bW q, pð Þ, ð2Þ

where Λ = ∂
!

p∂
 
q − ∂
!

q∂
 
p. Such result can be seen as the

action of a star operator, aWðq, pÞ⋆, in the function bWðq,
pÞ. This fact is important for define the star operators aWð
q, pÞ⋆, which are used to build up representations of symme-
try groups in a symplectic manifold [50–52, 64]. This gives
rise, for example, to the Klein-Gordon and Dirac equations
written in phase space [44, 61, 62, 64]. The connection with
Wigner function is derived, providing a physical interpreta-
tion for the representation. These symplectic representations
provide a way to consider a perturbative approach for Wig-
ner function on the bases of symmetry groups.

The aim of this work is to analyze the behavior of the
Wigner function given in terms of Airy function for the
ground state of c�c meson in the formalism of the symplectic
quantum mechanics. For this, we consider only the linear
potential that is a model more simple of the Cornell poten-
tial. In sequence, we studied the Schrodinger equation in
the phase space to obtain the energy eigenvalues and corre-
sponding wave functions by using the Bohlin transformation
and perturbation theory for the Cornell potential. Then, we
calculate the Wigner function for the heavy c�c meson (Jψ).
Consequently, we calculate the negativity parameter of the
Wigner function associated to the ground state and first
excited state of c�c meson that present nonclassical behavior.
The study of the Wigner function for such a system is crucial
in order to learn more about the system’s chaotic nature.

The paper is organized as follows. In Section 2, we write
the Schrödinger equation in phase space, and we perform
the relation between phase space amplitude and Wigner
function. In Section 3, we solve the Schrödinger equation
in phase space for the quark-antiquark potential and calcu-
late the Wigner function. In Section 4, the perturbative
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method is presented in order to solve the Schrödinger equa-
tion in phase space with the Cornell potential, and the Wig-
ner function is calculated. The conclusion is presented in
Section 5.

2. Symplectic Quantum Mechanics: Outline
and Notation

In this section, we construct a formalism to quantum
mechanics in phase space. For this purpose, we introduce
an Hilbert space associated to phase space, denoted by Hð
ΓÞ. In this sense, the association of the Hilbert space H with
the phase space Γ is given by

Ð
dpdq ϕ∗ðq, pÞϕðq, pÞ <∞

where ϕðp, qÞ ∈ Γ. Then, we write ϕðq, pÞ = hq, p ∣ ϕi, with
the aid

Ð
dpdqjq, pihq, pj = 1 such that hϕj is the dual vector

of jϕi. This symplectic Hilbert space is denoted by HðΓÞ.
To construct a symplectic representation of quantum
mechanics, we define the momentum and position operator

P̂ = p⋆ = p − i
∂
∂q

, ð3Þ

Q̂ = p⋆ = q + i
∂
∂p

, ð4Þ

which satisfy the Heisenberg commutation relation ½Q̂,
P̂� = i.

Introduced the following operators,

K̂i =mQ̂i − tP̂i,
L̂i = εijkQ̂jP̂k,

Ĥ = P̂
2

2m :

ð5Þ

We obtain the following set of commutation rules:

L̂i, L̂j

� �
= iεijkL̂k, L̂i, k̂j

h i
= iεijkK̂k, K̂i, Ĥ

� �
= iP̂i,

L̂i, P̂ j

� �
= iεijkP̂k, K̂i, P̂ j

� �
= imδij1,

ð6Þ

with all the other commutations being zero. This is the
Galilei-Lie algebra with a central extension characterized
by m, where P̂, K̂ , L̂, and Ĥ are the generators of translation,
Galilean boosts, rotation, and time translation, respectively.

The evolution of the wave function in phase space is

ψ q, p, tð Þ = eĤtψ q, p, 0ð Þ, ð7Þ

derivating with respect to time, and we obtain

∂tψ q, p ; tð Þ = P̂
2

2m +V Q̂
� � !

ψ q, p ; tð Þ: ð8Þ

This is the Schrodinger-like equation in phase space [54].

The association of ψðq, p, tÞ with a function f w is given
by [54].

f w q, p, tð Þ = ψ q, p, tð Þ⋆ψ† q, p, tð Þ, ð9Þ

which has all the properties of the Wigner function [60]. In
the next section, we solve the representation Schrödinger
equation in phase space and establish the relation of ampli-
tudes in phase space and the Wigner function for the c�c
meson system.

3. Quark Confinement and Schrödinger
Equation in Phase Space

In this section, we analyze the quark confinement in the con-
text of phase space. For this purpose, we consider the second
term of Cornell potential given in Eq. (1). Therefore, we find
a solution for the Scrödinger equation in phase space with
linear potential and construct the associated Wigner func-
tion. We write the Schrödinger equation in phase space with
the linear potential VðqÞ as follows:

p2

2m⋆ψ q, pð Þ + λq⋆ψ q, pð Þ = Eψ q, pð Þ: ð10Þ

And using equations (3) and (4)in (10), we get the
Schrodinger equation in the form

1
2m p2 − ip∂q −

1
4 ∂

2
q

� �
ψ + λ q + i

2 ∂p
� �

ψ = Eψ, ð11Þ

where we used ℏ = 1. By using the transformation ω = ðp2/2
mÞ + λq, such that

∂ψ
∂q

= ∂ψ
∂ω

∂ω
∂q

= λ
∂ψ
∂ω

: ð12Þ

With this, we obtain

α
∂2ψ
∂ω2 − ωψ = −Eψ, ð13Þ

where α = λ2/8m. Then, the Schrodinger equation is reduced
to the Airy equation (49)

∂2ψ
∂ω2 − κψ = 0, ð14Þ

where κ = ω − E/α. The solution of this equation is

ψ ωð Þ = C1Ai α
2
3

ω

α
−
E
α

� �� 	
+ C2Bi α

2
3

ω

α
−
E
α

� �� 	
, ð15Þ

where Ai and Bi are homogeneous Airy functions. However,
Bi goes to infinity for ω⟶∞, and this solution is not rel-
evant; so, C2 = 0 [71]. In this case, the solution of the Eq.
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(14) is reduced to [71]

ψ q, pð Þ = C1Ai
λ2

8m

 !−1/3
p2

2m + λq − E
� �" #

, ð16Þ

where ψðq, pÞ is a real function. As consequence, by virtue of
associativity, ψ⋆ψ∝ ψ, we write the solution of Wigner
function in terms of the Airy function

f w q, pð Þ =NAi
λ2

8m

 !−1
3 p2

2m + λq − E
� �24 35, ð17Þ

where N is a normalization constant. By condition f wð
q, pÞ = 0, we can determine the energy levels

Ai
λ2

8m

 !−1/3
p2

2m + λq − E
� �" #

= 0: ð18Þ

So, the energy of system are determined by

E = p2

2m − α1/3ri, ð19Þ

where ri is the zero of the Airy function. In our case, we con-
sider only the energy for ground state

E = p2

2m −
λ2

8m

 !1/3

r0: ð20Þ

In consequence, the normalization factor, see Ref. [71], is
determined by ð∞

0

ðp
−p
f w q, pð Þdqdp = 1: ð21Þ

Then, we get

f w q, pð Þ =NAi
λ2

8m

 !−1
3 p2

2m + λq − E
� �24 35, ð22Þ

where N = α−1/3 and m are the reduced mass of the con-
stituent quark and antiquark. In the sequence, we analyze
the solution above of the Wigner function for c�c meson.
The behavior of the Wigner function for the strong interac-
tion of the heavy quarks is shown in (Figures 1 and 2).

For the c�c meson, we are taking into account Eq. (22).
The c�c meson is shown in Figure 1 represented by Wigner
function for ground state. The experimental parameter, λ
linear confinement parameter, m reduced mass, and q max-
imum relative distance between quark and antiquark are all
in units of MeV from c�c meson which is shown in Table 1.
Figure 1 is observed for ground state of charmonium meson
which the Wigner function provides values negative in the
phase space. This behavior is related to the character quan-
tum. Then, it was make cut in graph 3D as illustrated in
Figure 2. Figure 2 shows that when = 0MeV, the Wigner
function presents negative values, curve (a). This is because
of quantum interference, also visualized in the curves (b)
and (c). In particular, p = 0MeV corresponds a limit. It is
worth noting that when p = 0, the energy is E = 9:7MeV.
When varying the kinetic energy to = 100MeV, the Wigner
function is displaced to the left, curve (b). We can keep
increasing the kinetic energy for p = 200MeV, which further
evidences the distance for the left of the graph of the Wigner
function, curve (c). By varying the kinetic energy for = 400
MeV, it is noticed that the graph of the Wigner function is
moved away visibly to the left side, curve (d). Thus, it is
observed that there is a limit to the right for the existence
of the Wigner function not to be zero. This limit approaches
the experimental value that refers maximum relative dis-
tance q = 4077MeV−1 (Table 1). Then, a boundary condition
is placed at zero. Consequently, the c�c meson only exists
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Figure 1: Wigner function for ground state of the c�c meson.
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between zero and where Wigner function decay. Note that
the analysis in phase space is revealing that for the variation
of the kinetic energy there is an upper limit of existence of
the charm-anticharm meson (Figure 2). Although it is sim-
ple to describe the quark case through a linear potential,
the confinement is observed, which is not seen with the con-
figuration space solution.

4. Cornell Potential and Schrödinger
Equation in Phase Space

In this section, we analyze the quark-antiquark interaction
in phase space context. For this purpose, we consider the
Cornell potential given in Eq. (1). In this way, we present
a solution for the Schrödinger equation with Cornell
potential in phase space and the associated Wigner func-
tion. The two-dimensional Hamiltonian for the c�c meson
is given as

H =
P2
1x + P2

1y
2m +

P2
2x + P2

2y
2m +V rð Þ, ð23Þ

where m is reduced mass in units of the MeV. In order to
solve the Schrödinger equation for this Hamiltonian, the
Bohlin transformation is utilized. Then, the Bohlin map-

ping is defined by [52, 58, 59]

x + iy = q21 − q22
� �

+ i 2q1q2ð Þ, ð24Þ

x = q21 − q22, ð25Þ
y = 2q1q2, ð26Þ

by defining

Px + iPy =
p1 + ip2

2 q1 + iq2ð Þ , ð27Þ

which leads to

Px =
p1q1 + p2q2
2 q21 + q22
� � , ð28Þ

Py =
p2q1 − p1q2
2 q21 + q22
� � : ð29Þ

Substituting Eqs. (25), (26), (28), and (29) in Eq. (23)
leads to the Hamiltonian

H = 1
4

p21 + p21
� �

2m q21 + q22
� �" #

+ b

q21 + q22
� � + a q21 + q22

� �
: ð30Þ

0 1 2 3 4
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Figure 2: The curves (a)–(d) represent cut off graphics of Figure 1 for the ground state c�c meson with varying of the kinetic energy.

Table 1: The experimental values for linear confinement λ, reduced mass m, and maximum relative distance q for c�c meson [4, 72].

(a) (b) (c) (d)

p2/2m = 0MeV p2/2m = 100MeV p2/2m = 200MeV p2/2m = 400MeV
λ = 600MeV2 (Exp.) λ = 600MeV2 (Exp.) λ = 600MeV2 (Exp.) λ = 600MeV2 (Exp.)

m = 630MeV (Exp.) m = 630MeV (Exp.) m = 630MeV (Exp.) m = 630MeV (Exp.)

q = 4077MeV−1 (Exp.)
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Consequently, the hypersurface in phase space defined
by H = E leads to

p21 + p22
� �

2m − 4E q21 + q22
� �

+ 4a q21 + q22
� �2 = −4b, ð31Þ

where p1 and p2 are the canonical momenta conjugate. Eq.
(31) can be written as

p21 + p22
� �

2m − 4E q21 + q22
� �

+ 4a q21 + q22
� �2 + 4b

� 	
⋆ψ q1, p1, q2, p2ð Þ = 0:

ð32Þ

Observe that Eq. (32) is obtained from the classical
Hamiltonian through of the star product. Therefore, the
Bohlin mapping that leads to Eq. (31) is a classical trans-
formation. For this reason, the perturbation theory is used
to analyze the Eq. (32). So, the equation in phase space is
given by

cH0 + cH1
h i

⋆ψ q1, p1, q2, p2ð Þ = −4bψ q1, p1, q2, p2ð Þ, ð33Þ

where cH0 = ðp21⋆+p22⋆Þ/2 − 4Eðq21⋆+q22⋆Þ and cH1 = 4a
ðq21⋆+q22⋆Þ2.

The equation for cH0 has the form

cH0ψ
0ð Þ q1, p1, q2, p2ð Þ = b 0ð Þ

n1,n2ψ
0ð Þ q1, p1, q2, p2ð Þ, ð34Þ

where ψð0Þðq1, p1, q2, p2Þ corresponds the eigenfunction the
unperturbed Hamiltonian.

Defining the operators

â =
ffiffiffiffiffiffiffiffiffi
mW
2k

r
q1⋆+

ip1⋆
mW

� �
,

â† =
ffiffiffiffiffiffiffiffiffi
mW
2k

r
q1⋆−

ip1⋆
mW

� �
,

b̂ =
ffiffiffiffiffiffiffiffiffi
mW
2k

r
q2⋆+

ip2⋆
mW

� �
,

b̂
† =

ffiffiffiffiffiffiffiffiffi
mW
2k

r
q2⋆−

ip2⋆
mW

� �
,

ð35Þ

where −4E =mW2/2 and the star operators qi⋆, pi⋆ are
given by

qi⋆ = qi +
i
2

∂
∂pi

,

pi⋆ = qi −
i
2

∂
∂qi

:

ð36Þ

So, the Hamiltonian is

Ĥ = p21⋆+p22⋆
� �

2 − 4E q21⋆+q22⋆
� �

+ 4a q21⋆+q22⋆
� �2

: ð37Þ

The unperturbed Hamiltonian is defined as

cH0 =
p21⋆+p22⋆
� �

2 − 4E q21⋆+q22⋆
� �

, ð38Þ

and the perturbed part is

cH1 = 4a q21⋆+q22⋆
� �2

: ð39Þ

The equation that is to be analyzed is given by

Ĥ⋆ψ q1, p1, q2, p2ð Þ = −4bψ q1, p1, q2, p2ð Þ: ð40Þ

The unperturbed equation is

cH0ψ
0ð Þ q1, p1, q2, p2ð Þ = b 0ð Þ

n1,n2ψ
0ð Þ q1, p1, q2, p2ð Þ: ð41Þ

The unperturbed part cH0 has solutions given by

ψ0
n1,n2 q1, p1, q2, p2ð Þ =Φn1

q1, p1ð ÞΓn2
q2, p2ð Þ, ð42Þ

where Φn1
ðq1, p1Þ and Γn2

ðq2, p2Þ are solutions. The acting
operators in the states vectors is

âΦn1
= ffiffiffiffiffi

n1
p

Φn1−1, ð43Þ

â†Φn1
=

ffiffiffiffiffiffiffiffiffiffiffiffi
n1 + 1

p
Φn1+1, ð44Þ

b̂Γn2
= ffiffiffiffiffi

n2
p

Γn2−1, ð45Þ

b̂
†
Γn2

=
ffiffiffiffiffiffiffiffiffiffiffiffi
n2 + 1

p
Γn2+1:

ð46Þ

Utilizing the relations âΦ0 = 0, b̂Γ0 = 0, the ground state
solution is

ψ
0ð Þ
0,0 q1, p1, q2, p2ð Þ =Ne− q21+p21ð ÞLn1 q22 + p22

� �
e− q22+p22ð ÞLn2 q22 + p22

� �
,

ð47Þ

where Ln1 and Ln2 are Laguerre polynomials, and N is a nor-
malisation constant. The eigenvalue solutions obtained of
Eq. (41) are

b 1ð Þ
0,0 =

kW
4 n1 + n2 + 1ð Þ + 4ak2

mW2 : ð48Þ

The states excited are obtained from Eq. (47) using oper-
ators given in Eqs. (43)–(46). So, the solution for the first-
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order perturbed is given by

ψ 1ð Þ
n1,n2 q1, p1, q2, p2ð Þ = ψ 0ð Þ

n1,n2 q1, p1, q2, p2ð Þ

+ 〠
m1≠n1,
m2≠n2

ψ
0ð Þ
m1,m2 q1, p1, q2, p2ð Þ cH1

��� ���ψ 0ð Þ
n1,n2 q1, p1, q2, p2ð Þ

D E
b 0ð Þ
n1,n2 − b 0ð Þ

m1,m2

× ψ 0ð Þ
m1,m2

q1, p1, q2, p2ð Þ:
ð49Þ

Note that it is required to solve the following expression
before a solution for Eq. (49).

I = ψ 0ð Þ
m1,m2

q1, p1, q2, p2ð Þ ∣ a

W2 a† + a
� �2 + b† + b

� 
2� 	2
∣ ψ 0ð Þ

n1,n2 q1, p1, q2, p2ð Þ
* +

:

ð50Þ

Using the orthogonality relations,

Φ∗
n q1, p2ð Þ ∣Φm q1, p1ð Þh i = δn,m,

Γ∗
n q1, p2ð Þ ∣ Γm q1, p1ð Þh i = δn,m:

ð51Þ

The ground state of c�c meson is

ψ
1ð Þ
0,0 = ψ

0ð Þ
0,0 +

a

2W3 −4
ffiffiffi
2
p

ψ
0ð Þ
2,0 − ψ

0ð Þ
2,2 −

7
2
ffiffiffi
2
p

ψ
0ð Þ
0,2 −

ffiffiffi
6
p

2 ψ
0ð Þ
0,4

" #
:

ð52Þ

And for excited states of the c�c meson, the wave func-
tions are

ψ
1ð Þ
1,0 = ψ

0ð Þ
1,0 +

a

2W3 −
ffiffiffiffiffi
30
p

2 ψ
0ð Þ
5,0 +

−1 − 11
ffiffiffi
6
p

2 ψ
0ð Þ
3,0 − 3ψ 0ð Þ

3,2 − 5
ffiffiffi
2
p

ψ
0ð Þ
1,2 −

ffiffiffi
6
p

2 ψ
0ð Þ
1,4

" #
,

ψ
1ð Þ
0,1 = ψ

0ð Þ
0,1 +

a

2W3 −
ffiffiffiffiffi
30
p

2 ψ
0ð Þ
0,5 +

−1 − 11
ffiffiffi
6
p

2 ψ
0ð Þ
0,3 − 3ψ 0ð Þ

2,3 − 5
ffiffiffi
2
p

ψ
0ð Þ
2,1 −

ffiffiffi
6
p

2 ψ
0ð Þ
4,1

" #
:

ð53Þ

The Wigner function for the c�c meson is given by

f w q1, p1, q2, p2ð Þ = ψ 1ð Þ
n1,n2 q1, p1, q2, p2ð Þåψ† 1ð Þ

n1,n2 q1, p1, q2, p2ð Þ:
ð54Þ

To obtain the corrections of the first order of energy that
is requiring to solve the matrix,

W =
Waa Wab

Wba Wbb

 !
, ð55Þ

where Wij = hψð0Þi ∣H1 ∣ ψ
ð0Þ
j i. Hence, we get

W =

25ak2
m2W2

2ak2
m2W2

17ak2
m2W2

25ak2
m2W2

0BBB@
1CCCA: ð56Þ

The eigenvalue obtained is λ1 = 30, 83ðak2/m2W2Þ and
λ2 = 19, 17ðak2/m2W2Þ. Then, the corrections of the first
order of eigenvalue of Eq. (40) are

b 1ð Þ
1,0 =

−kW
4 n1 + n2 + 1ð Þ + 30, 83 ak2

m2W2

 !
,

b 1ð Þ
0,1 =

−kW
4 n1 + n2 + 1ð Þ + 19, 17 ak2

m2W2

 !
:

ð57Þ

Figures 3(a) and 3(b) show plots of the Wigner function
associated to the ground state and first excited state for c�c
meson. It should be noted that all plots consider the coordi-
nates q2 and p2 constant in order to show a three-
dimensional figure, while q1 = q, p1 = p. In Figure 3(b), one
clearly sees the presence of negative values for the Wigner
function at the level excited of the c�c meson. In
Figure 3(a), the Wigner function looks strictly positive to
the ground state.
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(a) Wigner function for ground state n = 0 of the c�c meson
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(b) Wigner function for first excited state n = 1 of the c�c meson

Figure 3: Wigner function for the energy levels n = 0 and 1 for the c�c meson.
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With the Wigner function determined for the c�c meson,
we can calculate the negativity parameter for this system,
and this parameter is correlated to the nonclassicality of
the system [73]. The results of this calculation are shown
in (Table 2). As can be seen in (Table 2), the negativity
parameter increases when n1 and n2 grow. The negativity
parameter is a relevant tool in the context of Wigner for-
malism because one is related to nonclassicality of physical
systems as soon as is also related to chaotic behavior. In
this way, by examining the negativity parameter, it is pos-
sible to investigate elements that the traditional wavefunc-
tion formalism does not permit. Then, the study in phase
space is crucial in order to understand more about the
chaotic nature.

5. Concluding Remarks

In this paper, we have studied heavy quarkonium bound
states using the Schrödinger-like equation with an
approach the Cornell potential in the Symplectic Quantum
Mechanics framework. In particular, this sector is charac-
terized by a linear potential which leads to the quark con-
finement plus one Coulomb-type potential. This is called
of Cornell potential that feature experimentally this sector
of quantum chromodynamics QCD. Initially, the Wigner
function was obtained for the c�c meson system. It was
observed that analyzing in the phase space allows for sim-
ple model to observe the mesons confinement and why it
is not seen into configuration space solution. We check
out through the analysis in the phase space that due to
the variation of kinetic energy, it has a maximum limit
of the existence to the meson systems given by graphics
obtained. After that, we have obtained the energy eigen-
values and the respective wave functions using perturba-
tion theory. Such that the states, denoted a
quasiamplitude of probability, are associated with Wigner
function by the Weyl product. Using the Wigner func-
tions, the negativity parameter for the ground state and
first excited state of the system was derived. Finally, we
observe through the analysis in the phase space that due
to the change of energy levels, the negativity parameter
increases Table 2. Which evidenced an increase in the
quantum character of the system. It was not seen in the
literature recent works.
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