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1 Introduction

Cosmological data strongly indicates that our universe has a vanishingly small positive

cosmological constant Λ (vacuum energy density) as the dark energy, Λ ∼ 10−122 M4
P [2],

where the Planck mass MP = G
−1/2
N ' 1019 GeV. The smallness of Λ is a major puzzle

in physics. In general relativity, Λ is a free arbitrary parameter one can introduce, so its

smallness can be accommodated but not explained within the field theory framework.1

On the other hand, string theory has only a single parameter, namely the string scale

MS = 1/
√

2πα′, so everything else should be calculable for each string theory solution.

Since both MP and Λ are calculable, Λ can be determined in terms of MP dynamically

in each classically stable 4-d vacuum solution. So we may find an explanation for a very

small positive Λ. This happens if a good fraction of the meta-stable deSitter (dS) vacua

in the relevant regions of the string landscape tend to have a very small Λ, as is the case

in the racetrack Kähler uplift (RKU) scenario in flux compactification in string theory [1].

Note that both the Kähler uplift model [3–7] and the racetrack model [8–10] are scenarios

well explored in string phenomenology.

To simplify the discussion, let us focus on flux compactification of Type IIB theory to

4 dimensional spacetime. Start with the four-dimensional low energy supergravity effective

potential V (F i, φj), where F i are the field strengths and φj are the moduli (and dilaton)

describing the size and shape of the compactified manifold as well as the coupling. It

is known that the field strengths F i in flux compactification in string theory take only

quantized values [11], and all parameters like masses and couplings are now functions of

discrete flux parameters F i. The string landscape is generated as we scan over all discrete

values of F i. That is, V (F i, φj) has no free parameter, though it does contain (in principle)

calculable quantities like α′ corrections and geometric quantities like Euler index χ etc. .

With no parameters to adjust, the radiative instability problem is absent [12], as ranges of

flux parameters scanned over have already included the values to be fixed both before and

after radiative corrections.

1If the dark energy comes from another source, e.g., quintessence, the Λ parameter in Einstein theory

has to be even smaller.
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For a given set of flux parameters F i, we can solve V (F i, φj) for its meta-stable vacuum

solutions via finding the values φj,min(F i) at each solution and determine its vacuum energy

density Λ = Λ(F i, φj,min(F i)) = Λ(F i). Collecting all such solutions and feeding in a

properly normalized probability distribution Pi(F
i) for each F i, we can determine the

properly normalized probability distribution P (Λ) of Λ of these meta-stable solutions as we

sweep through all discrete values of the flux parameters F i. Assuming a “dense discretuum”

for each F i, we may treat each Pi(F
i) as a continuous function. For smooth Pi(F

i), simple

probability properties show that P (Λ) easily diverges at Λ = 0 [13], implying that a small Λ

is statistically preferred. Ref. [1] finds that the resulting P (Λ) in the racetrack Kähler uplift

scenario diverges (i.e., peaks) sharply at Λ = 0. That is, an overwhelmingly large number

of meta-stable vacua have an exponentially small positive Λ, so statistically, we should end

up in one of them. In short, a dS vacuum with a very small Λ is statistically natural.

Remarkably, taking the median value Λ50 in this racetrack Kähler uplift model to

match the observed value, a natural scale emerges,

Λ50 ' 10−122M4
P ⇒ m ∼ 102 GeV (1.1)

Can this scale m correspond to the electroweak scale (the Higgs mass mH)? In this paper,

we give an explicit string theory scenario to realize this property in a concrete statistical

way. Namely, we explicitly show how to introduce a Higgs-like field in the racetrack Käher

uplift model such that mH ∼m. We argue that, in the absence of fine-tuning, statistically,

the electroweak scale mH ∼ m. This suggests that string phenomenology should focus in

regions of the landscape where Λ is naturally very small.

Notice that, following the standard supergravity formalism, the F-term effective poten-

tial V and its minimum are quadratic in the superpotential W and/or its derivative. So it

should not be a surprise that dimensional arguments alone suggest m ∼ |W |1/3 ∼ |ΛM2
P |1/6.

Also note that the emergence of the scale m does not entail any knowledge of the actual

standard electroweak model.

2 A racetrack Kähler uplift model of flux compactification

To be specific, let us review the racetrack Kähler uplift model studied in ref. [1], with the

addition of a Higgs-like field. We consider a 6-dimensional Calabi-Yau (CY) manifold M

with a single (h1,1 = 1) Kähler modulus T and two (or three, i.e., h2,1 = 2 or 3) complex

structure moduli Ui, so the manifold M has Euler number χ(M) = 2(h1,1−h2,1) < 0. This

simplified model of interest is motivated by orientifolded orbifolds [14, 15], and it is given

by (setting MP = 1),

V = eK
(
KIJ̄DIWDJ̄W − 3 |W |2

)
, (2.1)

K = KK +Kd +Kcs +KH = −2 ln(V + ξ/2)− ln(S + S̄)−
h2,1∑
i=1

ln(Ui + Ūi) +KH ,

W = W0(Ui, S, φ) +WNP , W0(Ui, S, φ) = W0(Ui, S) +W0(φ),

W0(Ui, S) = c1 − Sc2 +
h2,1∑
i=1

(bi − Sdi)Ui, WNP = Ae−aT +Be−bT .
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Here, V ≡ vol/α′3 = (T+T̄ )3/2, ξ ∝ −χ(M)(S+S̄)3/2 > 0, and M2
P ' V/α′. The two terms

in the non-perturbative WNP form the racetrack (and stabilise T [16]). They are given

by gaugino condensates with coefficients a = 2π/N1, b = 2π/N2 for SU(N1), SU(N2) gauge

symmetry respectively. The flux parameters ci, bi, di, A, B are to be treated as independent

(real) variables with smooth probability distributions that allow the zero values, while the

dilation S and the complex structure moduli Ui are to be determined dynamically. W0(φ)

and KH for the Higgs-like φ will be discussed later. The model also includes the first

α′-correction (the ξ term) to the Kähler potential to lift the supersymmetric solution to

de Sitter space [17, 18]. This lifting to dS space is different from the KKLT scenario [16].

Moreover, this model is valid in the weakly coupled regime gs = 1/ReS � 1, where string

loops can be safely neglected. The Kähler uplift model has been well studied [6, 7, 19], and

so has the racetrack model [8–10]. They are merged into the model where all parameters

are replaced by flux parameters to be scanned over [1].

The superpotential W0(Ui, S) and its supersymmetric solutions (DUiW0 = DSW0 = 0)

have been studied in some detail [5, 7]. Here we simply state that W0(Ui, S, φ) takes

some value W0 ≡ W0(Ui, S, φ) = W0(Ui, S, φ)|sol after the equations have been solved. It

turns out that the solved value of W0 varies little by the Kähler uplift, i.e., solving the

equation for T . Our goal here is to show that W0 is expected to be exponentially small.

Here we closely follow ref. [1], where more details can be found. Validity of a number of

approximations taken can also be found in refs. [5, 7].

In the large volume region, ReT � 1, the resulting potential may be approximated to,

with T = t+ iτ ,

V '
(
−a

3AW0

2

)
λ(x, y),

λ(x, y) = −e
−x

x2
cos y − β

z

e−βx

x2
cos(βy) +

Ĉ

x9/2
, Ĉ = −3a3/2W0 ξ

32
√

2A
, (2.2)

with x = at, y = aτ , z = A/B, β = b/a = N1/N2 > 1. Extrema can be found by imposing

∂tV = ∂τV = 0, where the latter is immediately satisfied for y = 0 (extrema with y 6= 0

are not minima, see ref. [1]), while the former yields

1

z
=
eβ−1

(
9Ĉex − 2x5/2(2 + x)

)
2x5/2β(2 + βx)

, (2.3)

where the T -dependence of W0 in the Kähler uplift is negligible [5]. Plugging (2.3) into

the Hessian (mass squared) components, and recasting the result in terms of λ(x, y), we

find ∂x∂yλ|ext = 0 and

∂2
xλ|ext ' e−x

(
β − 1

x2
− 5(β − 1)

2x3

)
+ λ

(
−9β

2x
− 9

2x2

)
+ · · · = m2

x ≥ 0, (2.4)

∂2
yλ|ext ' e−x

(
−β − 1

x2
+

5(β − 1)

2x3

)
+ λ

(
9β

2x
+

45

4x2

)
+ · · · = −m2

x + λ

(
27

4x2

)
+ · · · ≥ 0.

So the stability condition (positive mass squared for both x = at and y = aτ at the

extremum) puts a strong constraint on the value of λ = −2V |ext/a
3AW0 ≥ 0. Requiring
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both of them to be positive (hence the extremum is a minimum) gives 0 < λmin . λ . λmax,

or more precisely

e−x
2(β − 1)

9βx

(
1− 5(β + 1)

2βx
· · ·
)

. λ . e−x
2(β − 1)

9βx

(
1− 5(β + 1)

2βx
+

3

2βx
· · ·
)
, (2.5)

and AW0 < 0. Here we have in mind W0 > 0 and A < 0, β & 1 and x ∼ O(100)

respectively. So we see that a positive but small Λ is guaranteed together with the large

volume V and β & 1. For large x, λmin → λmax so at leading order,

λ ' e−x 2(β − 1)

9βx
, Ĉ ' e−x 2(β − 1)

9β
x7/2 (2.6)

and therefore Λ approaches an exponentially small positive value at the large volume

(x→∞) limit. Using Ĉ (2.2), one can show that in this limit,

W0 ∼ −
64
√

2A(β − 1)

27a3/2βξ
e−xx7/2 , (2.7)

where the x7/2 term is crucial to satisfy the assumption |A|e
−x

|W0| � 1. Using (2.6) and (2.7),

we can easily obtain,

Λ ' 64
√

2a3/2A2(β − 1)2

243β2ξ
e−2xx5/2 ' 3ξW2

0

4(2t)9/2
. (2.8)

As it might be expected from the exponential terms in (2.8) and (2.7), the bigger the

volume modulus, the smaller W0 and Λ have to be in order to find a solution. Note that

ξ = 0 implies Λ = 0, a property of the no-scale structure in supergravity.

As explained in ref. [1], we can analyze the probability distribution of the cosmological

constant, P (Λ). After randomizing A, B and W0, we collect all the classically stable solu-

tions and find that the probability distribution P (Λ) for small positive Λ is approximately

given by [1],

P (Λ)
Λ→0∼ 243β1/2

16(β − 1)

1

Λ
β+1
2β (− ln Λ)5/2

. (2.9)

So for β & 1, we see that the diverging behavior of the properly normalized P (Λ) is very

peaked as Λ → 0. We see that the expected value of Λ is very sensitive to the value of

β. Due to tadpole-cancellation and other constraints in F-theory, we expect the value of

Nmax to be bounded. Ref. [20] finds that Nmax can easily exceed a hundred. In principle,

we should also scan through all allowed values of N in the SU(N) gauge groups, i.e.,

N = 2, 3, 4, . . . Nmax. It turns out that the divergence of P (Λ) at Λ = 0 is dominated by

the most divergent term, i.e., the smallest β, or β = Nmax/(Nmax − 1). For simplicity, we

shall simply use the smallest allowed β to perform our estimates.

It is informative to introduce ΛY , defined as
∫ ΛY

0 dΛP (Λ) = Y%. Here, Λ50 is the

median. It is interesting that one can find very simple formulae for Λ10 and Λ50 as a

function of Nmax,

Λ10 ' 101.57−1.91Nmax , Λ50 ' 10−2.61−0.59Nmax (2.10)

when Nmax is large. In tables 1 and 2, we present two cases, namely Λ10,Λ50 matching the

observed Λ ∼ 10−122.
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Nmax Λ10 Λ50 〈Λ〉

65 0.263× 10−122 1.1× 10−41 6.11× 10−8

202 5.62× 10−385 1.62× 10−122 3.79× 10−9

Table 1. Estimates for Λ in units of MP , where ξ ' 10−3.

Nmax β x t z Ĉ |W0|

65 1.016 142 1470 −0.114 2.53× 10−57 4.23× 10−53

202 1.005 141 4530 −0.504 2.49× 10−57 1.24× 10−51

Table 2. Estimates for other parameters and modulus values when Λ10 or Λ50 ' 10−122, where

ξ ' 10−3.

Setting the median Λ50 equal to the observed Λ ∼ 10−122M4
P , and recalling that the

superpotential has mass dimension 3, eq. (2.8) gives |W0(Ui, S, φ)| ' 10−51M3
P yielding a

new mass scale

m = |W0|1/3 ∼ 10−17MP ∼ 100 GeV (2.11)

If we match the observed Λ to Λ10, that is, there is only a 10% probability that Λ has a

value smaller or equal to the observed value, we find that m drops by less than one order

of magnitude.

3 The Higgs-like sector

Perhaps the simplest way to implement a Higgs-like field in the effective theory for the

racetrack Kähler uplift model [1] is via D3-brane separation. Let us briefly review the

setup we have in mind. Dynamical flux compactification introduces warp geometry due to

branes, O-planes and background fluxes [21]. That is, in Einstein frame,

ds2
10 = e2w(y)gµνdx

µdxν + e−2w(y)g̃mn(y)dymdyn ,

where e−4w(y) is the warp factor, the 4-dimensional metric gµν is either Minkowski, AdS or

dS, while the 6-dimensional metric g̃mn is the underlying CY-like metric. A realistic picture

envisions a bulk with warped throats attached to it. A D3-brane tends to sit at the bottom

of a warped throat, the geometry of which may be described by a deformed conifold. Let

the complexified D3-brane position for the I-th D3-brane be ZiI (i = 1, 2, 3), where we

choose the co-ordinate where Zi = 0 at the tip of a particular conifold. However, because

of the deformation, the bottom of that deformed (or resolved) conifold ends at r0 (in the

g̃ metric), and so all D3 positions must be |ZiI | ≥ r0. While the brane positions are good

Kähler moduli for the effective field theory, the presence of D3-branes leads a redefinition

of both the Kähler coordinate T and the term KK in the Kähler potential (2.1). Using

– 5 –
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Φi = Zi/2πα′ and setting momentarily ξ = 0, we have [22–24]

T = t+ iτ +
α′

2

∑
I∈D3

k(ΦI , Φ̄I) ' t+ iτ +
α′

2

∑
I∈D3

Φi
IΦ̄

i
I , (3.1)

K = −3 ln

[
T + T̄ − α′

∑
I∈D3

k(ΦI , Φ̄I)

]
' −3 ln(T + T̄ ) + 3α′

∑
I∈D3

Φi
IΦ̄

i
I

T + T̄
+ · · · ,

where the sum over i is implied, and k(Φ, Φ̄) is the “little” Kähler potential of the under-

lying internal metric g̃ which we approximated to δij̄Φ
iΦ̄j̄ . The expansion of the Kähler

potential (3.1) is valid in the regime where for each I-th brane

3α′|ΦI |2

2t
� 1 . (3.2)

This situation is indeed realized in the large volume limit, t� 1, with the branes sitting at

the bottom r0 of a warped throat, where α′|Φ|2 ' (2π)−2α′−1r2
0 ∼ r2

0/R
2 is minimum (we

used the fact that the size of the throat R is typically of string scale R ∼ α′1/2 � r0). In

particular, α′|Φ|2 ∼ 10−26 if Φ ∼ 100 GeV and α′ ∼ GUT scale). To leading approximation

we can thus treat (3.2) as a perturbation, alongside the α′ correction ξ.

Now, consider two branes I = 1, 2 and define φi = (Φi
1−Φi

2)/2, ϕi = (Φi
1+Φi

2)/2. Since

these are linear combinations of Φi
1,Φ

i
2, they are good Kähler coordinates. φi corresponds

to the D3 separation and we identify one of its directions as our Higgs-like field φ. Focusing

only on φ for simplicity and recovering the ξ term, the Kähler potential (3.1) becomes

−2 log

[
(T + T̄ )3/2 +

ξ

2

]
+

3α′|φ|2

T + T̄
,

and so

KH =
3α′|φ|2

T + T̄
, (3.3)

is the Higgs-like KH in (2.1) which is relevant for us. The picture is complete by choosing

the following superpotential for φ:

W0(φ) = cφ + µφ2 + ρφ3 (3.4)

where cφ, µ and ρ are independent flux parameters (or functions thereof) to be scanned over.

Let us now insert this W0(φ) (3.4) and KH(φ) (3.3) into the F-term potential V (2.1)

and compute mφ and Λ. First, S,Ui, φ are stabilized supersymmetrically, DSW = DUiW =

DφW = 0, and this is followed by the stabilization of T via ξ,WNP . Due to (3.2), to leading

order DφW ' ∂φW0(φ), and this has two solutions: in the absence of SSB, with φ = 0, or

in case of spontaneous symmetry breaking (SSB), with φ = −2µ/3ρ 6= 0 (at leading order).

When φ = 0, it is clear that the analysis of the vacuum energy proceeds exactly as in

the previous discussion. Indeed, since t, τ are much lighter than S,Ui, φ (whose masses are

determined by fluxes), one can focus the attention on the effective theory in T , treating

S,Ui, φ as already stabilized to their vevs. The only change with respect to the previous

– 6 –
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discussion is c1 → c = c1 + cφ in W0(Ui, S, φ). On the other hand, in order to find

the order of magnitude of mφ, we can totally neglect α′ and non-perturbative corrections.

Using (3.3), the computation of the mass matrix gives at leading order (after canonicalising

kinetic terms)

m2
φ '

2µ2

9t
. (3.5)

Taking into account ξ,WNP will confer a small mass to t, τ while shifting all other

mass values by negligible amounts. The moduli masses mt and mτ are typically much

lighter than φ and are closer to Λ/M2
P [12]. Without fine-tuning, we see that µ sets the

electroweak-like scale.

In the case of SSB, φ ' −2µ/3ρ ∈ R, the situation gets a bit more involved. It

turns out that, to a good approximation, m2
φ is still given by (3.5).2 The potential (2.1)

is also shifted by the KH term (3.3), but the correction is negligibly small. Let us briefly

illustrate how this works. We look for extrema and impose positivity of the Hessian to

find, for x� 1,

V ' −Aa
3W0

2

(
λ(x, y) +

dĈ

x4

)
, Ĉ → e−xx7/2 2(β − 1)

(8d
√
x+ 9)β

, d =
16
√

2α′µ2

9a1/2ξρ2
, (3.6)

with W0 =W0(U, S) + cφ + 4µ3/27ρ2 and

1

z
=
ex(β−1)

(
(9 + 8dx1/2)Ĉex − 2x5/2(2 + x)

)
2x5/2β(2 + βx)

. (3.7)

We see that the new term gives a negligible contribution to (3.7) if dx1/2 � 1, that is when

φ ∼ µ
ρ � 10−2Ms. Therefore, in this regime, (3.6) collapses to (2.6), and Λ is essentially

the same as in the φ = 0 case.

In short, in both vacua with φ = 0 and φ 6= 0, the order of magnitude of mφ is deter-

mined by µ (3.5). The only difference is inW0(φ): cφ for φ = 0, and cφ+4µ3/27ρ2 for φ 6= 0.

Note that smooth probability distributions P (W0(U, S)), P (W0(φ)) imply a smooth distri-

bution P (W0). In fact, P (W0) can remain smooth even if both P (W0(U, S)) and P (W0(φ))

peak at zero. In the absence of fine-tuning, one expects all the flux parameters c, c2, bi, di
(each with mass dimension 3) as well as µ3 to have comparable values. Assuming smooth

probability distributions for the flux parameters, P (W0) also has a smooth distribution [7].

In general, this W0 has a wide range. However, setting Λ50 equal to the observed value,

m3 =W0 ∼ 10−51M3
P is required to yield meta-stable solutions.

In the SSB case, there are 3 possible scenarios:

(a) mφ ∼m if m3 ' W0(φ) ' W0(Ui, S) or W0(φ) >W0(Ui, S);

(b) mφ �m, if m3 �W0(φ) ' W0(Ui, S) (when two terms (almost) cancel each other;

(c) mφ . m, if m3 ' W0(Ui, S) &W0(φ).

2In order to obtain (3.5), we again neglect ξ,WNP , and expand the mass matrix using (3.2). Moreover,

we neglect off-diagonal kinetic terms, mixing T, φ, which are sub-leading with respect to diagonal terms. In

this way, the canonicalisation proceeds as in the φ = 0 case.

– 7 –
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Since we have to scan over all values of the flux parameters, we expect that, in the absence

of fine-tuning,

µ ∼m ' 102 GeV

within some orders of magnitude.

In more realistic versions of the model, cφ, µ, ρ are expected to be functions of fluxes

and can depend on Ui and S [25], and so W0(φ) and W0(Ui, S) are actually coupled.

In general, coupling different sectors tend to render them to have comparable scales, so

statistically, we expect that they have the same magnitude, W0(φ) ' W0(Ui, S). In this

sense, having m3 ≡ W0(Ui, S, φ) ' W0(φ) ' W0(Ui, S) would be the most likely (and

statistically natural) scenario, yielding a natural explanation also for the EW scale µ.

As an illustration, let us consider a W (φ) that depends on S. Since the dilaton S dic-

tates all couplings (closed string coupling goes like 1/S so open string coupling ρ ∝ 1/
√
S),

let us consider the simple case where (ignoring some order one numerical factors),

W0(φ, S) = cφ + 4µ3/27ρ2 ' cφ + Sµ3

where we have substituted in the vev for φ. Now we can solve the supersymmetric equations

for Ui and S, where W0(Ui, S, φ) is now given by W0(Ui, S) in eq. (2.1) with c1 → c = c1+cφ
and

c2 → ĉ2 = c2 − µ3 SSB (3.8)

and no change in c2 in the absence of SSB. The supersymmetric solution of W (Ui, S) has

been solved for real flux parameters [5, 7]. For example, for the h2,1 = 2 complex structure

moduli case, one finds that

W0 ≡ W0(Ui, S, φ) =
(c+ sĉ2)(b1 − sd1)(b2 − sd2)

s2d1d2 − b1b2
, (3.9)

s = c/ĉ2 and φ ' −µ
√
c/ĉ2. Here s = ReS = c/ĉ2 > 1 to stay in the weak coupling

approximation. To satisfy eq. (2.11), we can take W0 ∼ c. Since couplings in the standard

model is small but not vanishingly small, s & 1, which implies W0 ∼ ĉ2. Without fine-

tuning, eq. (3.8) suggests µ ∼m and this combined with eq. (2.11) yields eq. (1.1). Again,

the uncertainty of µ is hard to estimate: µ � m if c � µ3, and if (bi − sdi) → 0,

c and ĉ2 and so µ3 can be much bigger, i.e., µ � m. For h2,1 > 2, W0(Ui, S, φ) ∝
(c+ sĉ2)Πi(bi− sdi), and s→ c/ĉ2 if any of the factor (bi− sdi)→ 0. For more non-trivial

couplings within W0(Ui, S, φ), the analysis becomes more complicated. However, to get a

better determination of µ with respect to m, we need to determine the explicit functional

forms of the flux parameters and their dependence on the moduli.

4 Discussions and summary

It is shown that a very large fraction of the classically stable de Sitter vacua have an

exponentially small positive Λ in this racetrack Kähler uplift model [1], so it is likely that

our universe ends in a vacuum with an exponentially small positive Λ. Since this property
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is probabilistic, we cannot determine the precise value of Λ, but if we let the median Λ50

to match the observed Λ, we find that a mass scale of m ∼ 100 GeV emerges. While the

dilaton S, the complex structure moduli Ui and Kähler modulus T are all closed string

modes, a Higgs-like scalar open string mode φ is introduced so its mass scale matches

this intermediate scale, µ ∼ m ∼ 100 GeV. That is, we show for the first time how the

electroweak and the cosmological constant scales are related dynamically. It should be

intuitively clear that replacing φ by a more realistic Higgs doublet (or two Higgs doublet)

will not change this result by more than a few orders of magnitude.

Due to the relevance of this result, and especially in light of the recent conjectural

concerns raised against dS solutions in string theory, let us make few remarks here.

• RKU and dS vacua. In an examination of the racetrack Kähler uplift (RKU)

model [26], we note that only tiny ranges of some of the flux parameters lead to

classically stable de Sitter vacua. That is, large patches of the flux landscape have

no meta-stable de Sitter solution. In particular, for Nmax � 2, only a tiny range

of around a very small W0 yields solutions. It is clear that without a sufficiently

dense flux landscape, dS solutions may be not possible at all. See below for more

discussions on this point.

In the very small patch of flux landscape with de Sitter vacua, we find that the

probability distribution P (Λ) sharply peaks at Λ = 0 so Λ is typically exponentially

small, rendering the observed Λ to be natural. Precisely because of the smallness

of this “de Sitter” patch in the flux landscape, the observed Λ requires that the

superpotentialW0 of the standard or any other model to have a mass scale of 102 GeV.

It remains to be seen whether this is only a numerological accident or contains deep

physical implications.

• Rolling to dS vacua. If the patch with a de Sitter solution in the flux landscape is

so small, one may argue that the chance to end in such a patch is highly unlikely.

That is, a random choice of flux parameters in the string landscape will result in a

run-away solution [27]. This may well be the case. A better understanding of the

landscape is necessary before one can address this issue. However, we believe that

the history of our universe may make this less unlikely.

Since the universe probably started from an inflationary epoch, which had a large Λ,

rolling down to lower values of Λ towards Λ ≤ 0 must pass through regions with small

Λ > 0. With the string scale close to the GUT scale, the sharp peaking of P (Λ) at

Λ = 0 implies that there are exponentially many vacua with an exponentially small

positive Λ; so rolling towards Λ ≤ 0 may be intercepted by one of the exponentially

many meta-stable de Sitter vacua, before the universe can reach the vastly larger

region in field space with Λ ≤ 0. So ending in a meta-stable de Sitter vacuum may

not be that unlikely.

• RKU and its sisters. The racetrack Kähler uplift model [1] belongs to the same group

of stringy-inspired 4d effective field theory as the KKLT model [16], and the Kähler
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uplift (KU) [5, 19], of which it is a modification. In particular, the addition of a

second non-perturbative piece Be−bT with respect to the original KU, makes a big

difference. In fact, while dS vacua in the KU model are found where Λ needs not be

small, the presence of two more parameters b, B open up the possibility for dS vacua

at larger volume (e.g., t ∼ O(1000)) and an exponentially small Λ. This justifies

the use of the large volume limit and the fact that we neglect higher α′ corrections.

Moreover, since Λ is exponentially suppressed with t, such vacua have smaller Λ.

This is reflected in the probability distribution P (Λ) which is very different from the

original KU model [7]. This same qualitative behavior persists if multiple NP terms

are added into the race-track superpotential, as shown in [26].

The (R)KU model shares also some similarities with the KKLT model, albeit being

different in many aspects. As in the KKLT model, before considering the uplift the

moduli stabilisation is achieved via NP effects. However, while in KKLT the AdS

space thus constructed is supersymmetric, in this model supersymmetry is broken [1].

The second is the uplift method. While KKLT uses an anti-D3 brane inside a warped

throat, and the stability of this configuration is still under discussion, (R)KU simply

uses the first and well-known α′ correction to the Kähler potential [17]. KKLT

and RKU also share the same need for an extremely small value of the on-shell

superpotential, W0. For instance, in our case, we need W0 ∼ 10−51M3
p . It is hard

to tell whether string theory allows for such small W0, and a bound is still lacking.

We hope to learn something from explicit numerical construction of flux vacua, see

ref. [28] and references therein.

• P (Λ), radiative corrections and soft/D-terms. Our analysis is purely classical in the

string coupling. This is because we assume to work in the weakly coupled regime

gs � 1, where string loops can be safely neglected. However, the solutions we found

can have gs . 0.8 and one may worry that radiative corrections are relevant and spoil

the exponentially small Λ. We can limit ourselves to smaller values of gs without

spoiling the exponentially small Λ preference. This possibility may also be checked

in the simpler setup of a φ3/φ4 toy model, where classically P (Λ) peaks. it was

found that corrections (radiative or higher orders φ5, φ6) do not change the peaking

behaviour of P (Λ) [12]. This is due to two facts. (1) Any convoluted function of

randomised (flux) parameters ai as Λ presents a peaking behaviour in its distribution,

independently on the parameter distributions Pi(ai) [13]. (2) We swipe through very

dense flux values, and so the range of Λ values before/after corrections is the same.

The result is that if Λ is complicated enough classically, corrections will not spoil

the peaking behaviour of P (Λ), but may rather change its details, e.g., shifting the

median value Λ50 by few orders of magnitude.

These considerations are expected to hold in general, and so also in any string inspired

EFT as our model. In particular, the same reasoning can be applied for φ soft terms

and D-terms, which we neglected in our model, but are expected to be present. In

fact, the Higgs-like field φ is coupled to the other moduli sectors and, as such, the

resulting Λ will still satisfy point (1) above. But what about the relation between Λ
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and m? Notice that the quadratic term in the Higgs potential can come from the

superpotential, while the quartic term may come from a D-term. Since the quadratic

(i.e., mass) term is the term that sets the mass scale µ in the electroweak model, it is

reasonable to link µ directly to m. The remarkable result relating Λ and m will then

still hold. It is however important to find out how a D-term (or some other term)

for the electroweak model couples to the moduli in the F-term V . This should put a

tight constraint on the possible origin of such terms.

As a side remark, note that radiative corrections are of order of Higgs mass scale

if supersymmetry breaking is of that order of magnitude. That is, supersymmetry

renders the mass hierarchy technically natural. However, it does not explain why the

tree-level Higgs mass is of order of m ∼ 100 GeV, so it is still not natural. Here we

provide a dynamical way within the string landscape to understand how the Higgs

mass is natural, not only technically natural.

• A “dense discretuum” of fluxes. From the above discussion, the importance of having

dense enough flux values should be clear. It this always the case in string theory?

In string theory, the fluxes take discrete values. For a particular set of discrete flux

values that yields a meta-stable vacuum with a specific Λ ≥ 0 value around the

observed dark energy value, ref. [11] proposes that neighboring meta-stable vacuua

(i.e., those vacua with Λ’s closest to the specific Λ, with difference ∆Λ) should be

close enough so that |∆Λ| ≤ |Λ|. If true, the observed Λ presumably can be reached.

Ref. [11] also estimates that this can be achieved if there are a dozen or more flux

parameters. In that case, the Λ values form a “dense discretuum” and it is reason-

able to allow a discrete flux value to be treated as a continuous parameter without

qualitatively changing the estimates. In the model (2.1) studied here, there are the

parameters A and B in the non-perturbative terms as well as the terms in the super-

potential W0(Ui, S, φ) involving the complex structure moduli Ui, the dilaton S and

Higgs like fields φ. Introducing more complex structure moduli and/or non-geometric

couplings among them makes little difference to the overall picture, but will intro-

duce more flux parameters so the number of flux parameters entering here can easily

be dozens. The resulting dense discretuum yields a close-to-continuous W0(Ui, S, φ),

which in turn yields a dense discretuum for Λ. So it is reasonable to assume a dense

discretuum in our analysis.

To simplify the analysis and because of a lack of better knowledge of the string theory

properties, we treat each parameter as a flux parameter with a flat probability distri-

bution. In the actual case, some parameters (e.g., A and B) are known to be functions

of flux parameters and other fields, so their probability distribution may not be flat.

String theory studies suggest that there is a preference for small values for A and

B. In this case, the discrete spacing ∆A will be substantially smaller than the string

scale, and we expect P (A) and P (B) to be smooth or peak at zero values. Ref. [7] has

investigated this issue and show that the qualitative behavior of P (Λ) will not change

much. Clearly a better understanding of the model will yield a more precise P (Λ).
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Possible hindrances to the above reasoning may regard compactification details we

neglected, e.g. the tadpole cancellation. These additional conditions may act as se-

lection rules, filtering allowed flux values. It remains to be understood whether this

can pose a real threat to the dicretuum density.

• No dS and other conjectures. It has been recently pointed out that not every EFT

one can write down can be embedded into string theory, and criteria have been

conjectured to distinguish the string Landscape from the Swampland [29]. Such con-

siderations kicked off a review of all stringy inspired 4d EFT’s. Here we would like

to clarify where our model stands with respect to these claims.

(a) No dS conjecture. More than twenty years ago, Dine and Seiberg proposed that

there is no stable de Sitter vacuum in string theory in the asymptotic regime

of weak coupling gs → 0 (s → ∞) [30]. Our solutions, at weakly but finite

coupling gs ∼ O(10−1) (s ∼ O(1)) are then untouched by this consideration.

More recently, the rationale of [30] has been extended to any modulus (e.g.,

the volume modulus t), and it has been conjectured that string theory does not

allow for (meta-)stable dS vacua at all [31, 32]. This is an extrapolation from the

asymptotic regime (e.g., t→∞), while explicit finite bounds are still absent. As

before, our solutions at large but finite volume do not clash with the conjecture,

and actually agree with it in the asymptotic t→∞ where we observe a runaway.

(b) SUSY breaking by fluxes. Ref. [27] raises the concern that in case supersym-

metry is broken by fluxes, i.e. W0 6= 0 (as in our case), all EFT’s built so far

are plagued by the same issue: truncation to any order in α′ is inconsistent,

the background is not static but rolling (with time), and therefore NP effects

have to be re-considered. In other words, it is not correct to use the NP effects

we are accustomed with (e.g., gaugino condensation on D7’s [8–10]) to stop the

runaway, since these are obtained from a computation on a static background.

The point raised is a good one, but unfortunately it kills any room for ma-

noeuvre. It would be first necessary to fully understand NP effect on non-static

backgrounds, as started in [33], and then apply it to string theory. In any case,

it would be very surprising if the right NP effects can never balance the runaway

and create a dS vacuum.

• How about other scales in nature? One is the inflaton scale in the inflationary uni-

verse scenario. It turns out that the scale of the inflaton potential is comparable to

the string scale, so new scale needs to be generated. Recent data indicates that the

brane inflation model, natural in string theory (where ∂2V < 0), provides an excel-

lent fit to the observation [34]. Another is the fuzzy dark matter mass scale, given

by a scalar field with mass ∼ 10−22 eV. It turns out that some string moduli [12], in

particular axionic modes [35], will fit in nicely. In short, the string theory landscape

with no explicit parameter except the string scale is a fruitful playground to explore

nature. We believe that the search for the standard model of electroweak and QCD

should only take place in regions of the landscape where Λ > 0 is exponentially small.
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In summary, both the Kähler uplift model and the racetrack model are well studied in

string phenomenology, so putting them together is natural [1]. A patch of the string theory

landscape, generated by treating all parameters not as free parameters but as flux param-

eters or functions of flux parameters that we scan over, is crucial in allowing the statistical

preference for an exponentially small Λ > 0 and the emergence of the electroweak scale

without knowing the specific electroweak model. It will be very interesting to embed the

known supersymmetric electroweak (phenomenological) model into this RKU framework.
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