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The neutrino floor is a theoretical lower limit on WIMP-like dark matter models that are discoverable in
direct detection experiments. It is commonly interpreted as the point at which dark matter signals become
hidden underneath a remarkably similar-looking background from neutrinos. However, it has been known
for some time that the neutrino floor is not a hard limit, but can be pushed past with sufficient statistics. As a
consequence, some have recently advocated for calling it the “neutrino fog” instead. The downside of
current methods of deriving the neutrino floor are that they rely on arbitrary choices of experimental
exposure and energy threshold. Here we propose to define the neutrino floor as the boundary of the neutrino
fog, and develop a calculation free from these assumptions. The technique is based on the derivative of a
hypothetical experimental discovery limit as a function of exposure, and leads to a neutrino floor that is
only influenced by the systematic uncertainties on the neutrino flux normalizations. Our floor is broadly
similar to those found in the literature, but differs by almost an order of magnitude in the sub-GeV range,
and above 20 GeV.
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Introduction.—Modern experiments searching for dark
matter (DM) in the form of weakly interacting massive
particles (WIMPs) have become rather large [1,2]. It has
been anticipated for some time [3–6] that these underground
detectors might one day become large enough to detect not
just DM, but astrophysical neutrinos as well. In fact, it
appears as though the first detection of solar neutrinos in a
xenon-based detector is just around the corner [7]. Fittingly,
the community has begun to collate a rich catalog of novel
physics to be done with our expanding multipurpose net-
work of large underground detectors [8–27].
Unfortunately for WIMP enthusiasts, the impending

arrival of neutrinos in DM detectors is somewhat bitter-
sweet—being, as they are, essentially the harbingers of the
end of conventional searches. These experiments usually
look for signals of DM using nuclear recoils—a channel
through which neutrinos also generate events via coherent
elastic neutrino-nucleus scattering (CEνNS) [28–30]. It
turns out that the recoil signatures of DM and neutrinos
look remarkably alike, with different sources of neutrino
each masquerading as DM of varying masses and cross
sections [31].
Even an irreducible background like neutrinos may

not be so problematic were it not for the—sometimes

sizable—systematic uncertainties on their fluxes. The cross
section below which the potential discovery of a DM signal
is prohibited due to this uncertainty is what is usually, but
not always, labeled the “neutrino floor” [32]: a limit that
has since been the subject of many detailed studies
[22,23,33–44]. Since 2013 some form of neutrino floor
has been shown underneath all experimental results, often
billed as an ultimate sensitivity limit [45]. Methods of
circumventing the neutrino floor have been proposed
[46–48]. However, only directional detection seems to
be a realistic strategy for doing so with comparatively
low statistics [49–56].
One potentially misleading aspect of the name neutrino

floor is the fact that while it does pose an existential threat to
DM searches, the floor itself is not solid. First, the severity of
the neutrino background—and hence the height of the floor
in terms of cross section—is dependent crucially on neutrino
flux uncertainties, which are anticipated to improve over
time. Second, the DM and neutrino signals are never perfect
matches. Even for DMmasses and neutrino fluxes with very
closely aligned nuclear recoil spectra—like xenon scattering
with 8B neutrinos and a 6 GeV WIMP—they are not
precisely the same. This means that with a large enough
number of events, the spectra should be distinguishable [46].
This fact implies that neutrinos present not a floor, but
perhaps a “fog:” a region of the parameter space where a
clear distinction between signal and background is chal-
lenging, but not impossible.
The fogginess of the neutrino floor has become some-

what better appreciated recently [36,48,57]. However it is
something that is rarely visualized: usually just a single
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neutrino floor limit is plotted. The most common version
shown relies on an interpolation of several discovery limits
for a set of somewhat arbitrary thresholds and exposures. It
is true that given the softness of the neutrino fog, insisting
upon a hard boundary will always be slightly arbitrary,
however it should be possible to devise a simpler and self-
consistent definition.
Since direct detection experiments will venture into

the neutrino fog imminently, it is timely to update and
refine our definitions. In this Letter we propose a new
definition of the neutrino floor that situates it at the edge
of the neutrino fog. We aim for this definition to (i) not
depend upon arbitrary choices for experimental thres-
holds, or absolute numbers of observed neutrino events,
(ii) have a single consistent statistical meaning, and (iii) be
flexible to future improvements to neutrino flux measure-
ments. The result of this effort can be found in Fig. 1,
contrasted against previously used definitions. The tech-
nique for calculating this limit is explained graphically
in Fig. 2.
Neutrinos versus DM.—To begin, we need to define a

DM model to frame our discussion around. We adopt the
following DM-nucleus scattering rate,

dRχ

dEr
¼ ρ0

Cσ
2mχμ

2
F2ðErÞgðvminÞ; ð1Þ

where ρ0 is the local DM density, mχ is the DM mass, σ is
some DM-nucleon cross section, μ is the DM-nucleon
reduced mass, C is a nucleus-dependent constant that
coherently enhances the rate, and FðErÞ is the form factor
that suppresses it at high energies. Finally, gðvminÞ is the
mean inverse DM speed above the minimal speed required to
produce a recoil with energy Er. The latter is found by
integrating the lab-frame DM velocity distribution. We
assume the time-averaged standard halo model, with para-
meters summarized in Ref. [73]. Alternative halo models
will lead to different neutrino floors, and including the
unknown velocity distribution as an additional systematic
uncertainty will act to raise the neutrino floor in general [33].
For this initial explanation we will frame the discussion
around the spin-independent (SI) isospin-conserving DM-
nucleon cross section σ ≡ σSIp , which is the canonical cross
section that experimental collaborations most frequently set
exclusion limits on. The scattering rate for this model is
enhanced by C ¼ A2, for a target with A nucleons.
Neutrinos can scatter elastically off nuclei and produce

recoils with very similar spectra to the ones found by
evaluating Eq. (1). Currently, the only measurement of
CEνNS is by COHERENT [74,75], but it is well under-
stood in the standard model [28,29]. Theoretical uncer-
tainties, for example, from the running of the Weinberg

FIG. 1. Present exclusion limits on the spin-independent DM-
nucleon cross section (assuming equal proton or neutron cou-
plings) [7,58–71]. Beneath these limits we show three definitions
of the neutrino floor for a xenon target. The previous discovery-
limit-based neutrino floor calculation shown by the dashed line is
taken from the recent APPEC report [72] (based on the technique
of Ref. [32]). The envelope of 90% C.L. exclusion limits seeing
one expected neutrino event is shown as a dotted line. The result
of our work is the solid orange line. We define this notion of the
neutrino floor to be the boundary of the neutrino fog, i.e., the
cross section at which any experiment sensitive to a given value of
mχ leaves the standard Poissonian regime and begins to be
saturated by the background.

FIG. 2. A graphical description of the technique we adopt to
map the neutrino fog and plot its boundary. In the main panel
we show the spin-independent DM parameter space, coloring
the section below the neutrino floor by the value of n, defined as
the index with which a discovery limit scales with the number
of background events, i.e., σ ∝ N−1=n. The neutrino fog is
defined to be the regime for which n > 2, with the neutrino
floor being the cross section for a given mass where this
transition occurs. The top right panel shows the evolution of σ
with N at mχ ¼ 5.5 GeV between the two cross sections labeled
“a” and “b” on the main panel.
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angle [76], or the nuclear form factor [38], are subdominant
to those on the neutrino fluxes [44]. We assume a Weinberg
angle of sin2θW ¼ 0.2387, and for both neutrino and SI
DM scattering we use the standard Helm form factor [77].
Summaries of the calculation of the CEνNS cross section
dσνNðEνÞ=dEr can be found in, e.g., Refs. [32,46,54,78].
The recoil energy spectra are then found by integrating

the differential CEνNS cross section multiplied by the
neutrino flux. We adopt the same neutrino flux model as in
Ref. [54] (Table I), so we will only briefly summarize some
pertinent details. Further information about neutrino fluxes
can be found in Ref. [79].
Solar neutrinos generated in nuclear fusion reactions in

the Sun form the largest flux at Earth for Eν ≲ 11 MeV.
These will be the primary source of CEνNS events for
most DM detectors and will limit discovery around
mχ ∼ 10 GeV. The Sun’s nuclear energy generation is well
understood, and in the case of the most important flux of
neutrino from 8B decay, the corresponding flux normali-
zation, is also measured precisely [80–86]. For the less
well-measured components, several theoretical calculations
of the solar neutrino fluxes are on the market (see, e.g.,
Ref. [87] for a recent review). Here we adopt the Barcelona
2016 calculation of the GS98 high-metallicity standard
solar model [88]. We adopt the quoted uncertainty on each
flux normalization, with the exception of 8B which we give
a 2% uncertainty in line with global fits of neutrino data
[89]. After 8B neutrinos, the most important solar fluxes are
the two neutrino lines from electron capture by 7Be, which
mimic the signal for sub-GeV masses—these come with
6% uncertainties.
Geoneutrinos are a constant flux of antineutrinos pro-

duced in radioactive decays of mainly uranium, thorium, and
potassium in the Earth. For concreteness, we use spectra
from Ref. [90] and normalize our geoneutrino fluxes to
Gran Sasso, with corresponding uncertainties ranging from
17%–25% [91]. Geoneutrinos impede the discovery at
mχ ∼ GeV, but only for cross sections σSIp ≲ 10−47 cm2.
Nuclear reactors generate another source of antineutrinos

and influence the floor at slightly higher masses. We
assume the fission fractions and average energy releases
from Ref. [92] combined with the spectra from Ref. [93]
before summing over all nearby nuclear reactors to Gran
Sasso [94].
The diffuse supernova neutrino background (DSNB) is

the cumulative flux of neutrinos from the cosmological
history of core-collapse supernovae, and is relevant for the
neutrino floor in a small mass window around 20 GeV. We
adopt the fluxes parameterised in terms of three effective
neutrino temperatures for the different flavour contributions,
and place a 50% uncertainty on the all-flavor flux [95].
Atmospheric neutrinos originate from the scattering of

high-energy cosmic rays. The low-energy tail of the flux is
small Φ ∼ 10 cm−2 s−1, but is the dominant background at
high recoil energies. We use the theoretical flux model for

13 MeV–1 GeV atmospheric neutrinos from FLUKA
simulations [96], placing the recommended 20% theoretical
uncertainty. The final exposures of experiments like
DARWIN [97] and Argo [98], may reach the high mass
section of the neutrino floor set by this background. Since
many WIMP-like models with viable cosmologies (see,
e.g., Refs. [99–107] for a truncated sample) populate the
neutrino fog in this regime, it is a critical part to try to reach.
Statistics.—Our parameters of interest are the DM

mass and cross section, as well some nuisance parameters
in the form of the neutrino flux normalizations Φ ¼
fΦ1;…;Φnνg. We use a binned likelihood written as the
product of the Poisson probability in each bin, multiplied
by Gaussian likelihood functions for the uncertainties on
each neutrino flux normalization:

Lðσ;ΦÞ¼
YNbins

i¼1

P
�
Ni

obsjNi
χþ

Xnν

j¼1

Ni
νðΦjÞ

�Ynν

j¼1

GðΦjÞ: ð2Þ

The Gaussian distributions have standard deviations given
by the systematic uncertainties that we just discussed. The
Poisson probabilities at the ith bin are taken for an observed
number of events Ni

obs, given an expected number of signal
events Ni

χ and the sum of the expected number of neutrino
events for each flux Ni

νðΦjÞ. We bin events logarithmically
between 10−4 and 150 keV. The former threshold is clearly
not in any way realistic, however the main advantage of our
definition of the neutrino floor will be that it is not based on
absolute numbers of events. Our choice of threshold is
simply to allow us to map the neutrino floor down to
mχ ¼ 0.1 GeV, but crucially it does not impact the height
of the limit at other masses.
If we have two models, a background-only modelMσ¼0,

and a signalþ background modelM, we can test for σ > 0
using the following statistic,

q0 ¼
(
−2 ln

h
Lð0; ˆ̂ΦjMσ¼0Þ
Lðσ̂;Φ̂jMÞ

i
σ̂ > 0

0 σ̂ ≤ 0;
ð3Þ

where L is maximized at ˆ̂Φ when σ is set to 0, and ðσ̂; Φ̂Þ
when σ is a free parameter. The model Mσ¼0 is a special
case of M, obtained by fixing one parameter to the
boundary of its allowed space. Therefore Chernoff’s
theorem [108] holds, and q0 should be asymptotically
distributed according to 1

2
χ21 þ 1

2
δð0ÞwhenM is true [109].

Evaluating q0 while avoiding the need to collect many
Monte Carlo realizations for every point in the parameter
space, we exploit the Asimov dataset [110]. This is a
hypothetical scenario in which the observation exactly
matches the expectation for a given model, i.e., Ni

obs ¼
Ni

exp for all i. The test statistic computed assuming this
dataset asymptotes towards the median of the chosen
model’s q0 distribution [110]. In high-statistics analyses
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such as ours, this turns out to be an extremely good
approximation, and has been demonstrated multiple times
in similar calculations [33,54,57]. We fix Nobs to be the
expected number of neutrino and DM events, and require a
threshold test statistic of q0 > 9. Therefore our limits are
defined as the expected 3σ discovery limits.
The neutrino fog.—We can now explain how the neutrino

background impacts the discovery of DM. The critical
factor to understand is the systematic uncertainty on the
background. The way to think about this is to imagine a
very feeble DM signal that closely matches one of the
background components. Such a signal is saturated not just
when the number of signal events is simply less than the
background, but when that excess of events is smaller than
the statistical fluctuations of the background. The regime of
parameter space where this occurs is what we define as the
neutrino fog.
We can quantify the neutrino fog by considering how

some discovery limit σ decreases as the exposure or the
number of observed background events N, increases. The
limit evolves through three distinct scalings. Initially, when
the experiment is essentially background free, N < 1, the
limit evolves as σ ∝ N−1. Then, as N increases, the limit
transitions into Poissonian background subtraction:
∝ 1=

ffiffiffiffi
N

p
. Eventually, as the number of events increases

further, any would-be detectable DM signal disappears
beneath the scale of potential background fluctuations, and
the limit is stalled at σ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ NδΦ2Þ=N

p
[32].

If the DM signal and CEνNS background were identical,
the saturation regime would persist for arbitrarily large N.
However there is rarely a value of mχ for which the
background perfectly matches the signal. In theory one
could always collect enough statistics to distinguish the two
via their tails or some other broad spectral features. So
eventually the limit will emerge from saturation, and the
σ ∝ N−1=2 scaling returns, but only by the time N has
grown very large. In fact, reaching beyond the saturation
regime across the mass range studied here would consume
the entire world’s supply of atmospheric xenon.
The “opacity” of the neutrino fog can therefore be

visualized by plotting some gradient of this discovery
limit. Let us define the index n ¼ −ðd ln σ=d lnNÞ−1, so
that n ¼ 2 under normal Poissonian subtraction, and n > 2
when there is saturation (see also Refs. [111–114] for
analyses in other contexts that introduce quantities similar
to this). The value of this index for each point in the
neutrino fog is shown by the color scale in Fig. 2. Seeing as
for every value ofmχ there is a value of σ where n crosses 2,
we can join these points together in a contour to form the
boundary of the neutrino fog, or neutrino floor.
The result of this procedure is the solid line in Fig. 1.

There, we compared our result alongside two previous
definitions quoted frequently in the literature. The dashed
line shows the computation which follows the technique
described in Refs. [32,46], with this specific limit taken

from Ref. [72]. The technique invoked there involves the
interpolation of two limits: a low-threshold or low-exposure
one that captures solar neutrinos, and a high-threshold or
high-exposure one that excludes solar neutrinos and cap-
tures atmospheric and supernovae neutrinos. The two
discovery limits are for 400 observed neutrino events so
as to put them somewhere around the systematics domi-
nated part of the fog for certain masses.
We also showed a “one-neutrino” contour, which is

formed from the envelope of a series of background-free
90% C.L. exclusion limits (2.3 events) with increasing
thresholds that have exposures large enough to see one
expected neutrino event. These limits have a similar shape
but are higher in cross section. One-neutrino contours have
an advantage in that they are easy to calculate, but come
with the downside that they do not encode any information
about the DM or neutrino spectral degeneracy, and do not
incorporate systematic uncertainties.
We compare our new neutrino floors for six different

targets in Fig. S1 of the Supplemental Material [115]. In the
SI space, they are largely similar, with the general trend that
the kinematics of scattering off lighter target nuclei means
their floors are pushed to higher masses. Helium is the
extreme case, because Eq. (1) enters the asymptotic
Rχ ∝ ρ0=mχ scaling for much lighter masses than other
targets, hence why the neutrino floor above 10 GeV is
significantly higher, and is set by solar neutrinos rather than
atmospheric neutrinos. The broad features observed in
these figures largely persist for other interactions, such
as spin-dependent scattering. We show examples of these in
Fig. S2 [115].
Finally, in the right-hand panel of Fig. 3 we show how

our definition of the neutrino floor is adaptable to improve-
ments in the flux estimates. The dashed line imagines
that we have obtained a factor of 10 improvement in the
atmospheric neutrino uncertainty, i.e., down to ∼2%,
whereas the dot-dashed line imagines that all solar flux
estimates are improved by a factor of 10. These scenarios
are intended to be illustrative, rather than in anticipation
of any specific improvements. Nevertheless, with a flock
of large-scale neutrino observatories on the horizon
[116–120], it is not unreasonable to expect some improve-
ment to our knowledge of the neutrino fluxes [54,121–125].
Discussion.—Given the imminent arrival of the neutrino

background in underground WIMP-like DM searches, we
have decided to revisit and refine the neutrino floor, or
perhaps more appropriately, neutrino fog. Our floor can be
interpreted as the boundary of the neutrino fog in a
statistically meaningful way. It marks the point at which
any experiment will start to be limited by the background: a
cross section that is influenced only by overlap between the
DM and neutrino spectra, and the background’s systematic
uncertainties.
In contrast to prior calculations, our definition of the

neutrino floor is not based on arbitrary absolute numbers of
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events, but on the derivative of the discovery limit. As
such we arrive at a limit that does not depend upon the
recoil energy threshold, so long as one does not attempt to
calculate the limit for masses that only scatter below the
chosen threshold. This also means that we do not need to
interpolate multiple limits together to map the floor
across a wider mass range, and can do so with a single
calculation.
The main quantitative differences between our result and

those found in the literature are the following. First, we can
see, for instance, in Fig. 1, that our neutrino floor is
noticeably higher in the sub-GeV region where 7Be
neutrinos mimic the signal, as well as the high mass region
where the same is true of atmospheric neutrinos. Previous
calculations that used fixed exposures, ended up placing
the neutrino floor deeper into the systematics domi-
nated regime for those masses compared to others. On
the other hand, the shoulder in the neutrino floor around
6 GeV is lower in our case. This is because we have ado-
pted a systematic uncertainty on the 8B flux of 2% which
is based on a global fit of neutrino data [89]. The previ-
ous calculation of the neutrino floor assumed a 15%
systematic uncertainty coming from the solar model
estimation.
We have applied our new technique to map the neutrino

fog for a range of targets (Fig. S1 [115]) as well as a few
different DM interactions (Fig. S2 [115]). In the right-hand
panel of Fig. 3 we also showed how our neutrino floor can
be updated in the future as neutrino observatories make
continued refinements to measured fluxes. Our technique is

such that these improvements can be incorporated without
changing the definition of the neutrino floor.

Data available at [126].
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