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1 Introduction

Along the line of modifying gravity in a scalar-tensor way, many proposals have been made
to write down theories whose dynamics stem from second order equations of motion for both
the tensor and the scalar degrees of freedom [1–5], thus generalizing an old proposal [6];
such theories have been dubbed Galileons. The obvious next move consists in obtaining
a similar general action for a vector field [7] (see also in refs. [8–11]), thereby forming the
vector Galileon case [12, 13], which was investigated thoroughly [14–21]. Demanding U(1)
invariance led to a no-go theorem [22] which can be by-passed essentially by dropping the
U(1) invariance hypothesis. Cosmological implications of such a model can be found e.g. in
refs. [23–35].

Recent papers [12, 36, 37] have derived the most general action containing a vector
field, with different conclusions as to the number of possible terms given the underlying
hypothesis. In refs. [12, 37], the Lagrangian was built from contractions of derivative terms
with Levi-Civita tensors, whereas ref. [36] used a more systematic approach based on the
Hessian condition. It appears that a consensus has finally been reached, suggesting only
a finite number of terms in the theory, all of them being given in an explicit form. To
describe this consensus and complete the discussion, we examine in the present paper an
alternative explanation for the presence of, allegedly, only a finite number of terms in the
generalized Proca theory, using the tools developed in ref. [36] where the infinite series of
terms was conjectured. This discussion also allows us to compare the systematic procedure
used in ref. [36] with the construction based on Levi-Civita tensors of refs. [12, 37]. We
then summarize these previously obtained results and settle the whole point in as definite a
manner as possible.

Focusing on the parity violating sector of the model, not thoroughly investigated in
refs. [12, 37], certain terms obtained in ref. [36] should not appear according to the above-
mentioned discussion. Indeed, we show that, because of an identity not taken into account in
ref. [36], those unexpected parity-violating terms are either merely vanishing or can be com-
bined into a simple scalar formed with the field Aµ, the Faraday tensor Fµν and its Hodge
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dual F̃µν . This closes the gap, hence providing an even firmer footing to the conjecture
according to which the most general theory is in fact given by eq. (6.2), which is, up to a
new term uncovered in this paper, eq. (12) of ref. [37] in Minkowski space, or eq. (28) in an
arbitrary curved spacetime.

In section 2, we summarize the results previously obtained, together with the associated
investigation procedures. We then present the generic structure in section 3, emphasizing
how it permits an automatic implementation of the Hessian condition, and argue that the
number of acceptable Lagrangian structures satisfying the usual physical requirements is
finite, up to arbitrary functions. Splitting the possible terms into parity conserving and
violating contributions, we motivate our conclusion in sections 4 and 5, resolving the apparent
disagreement between the present conjecture and the conclusions of a previous work [36]; we
conclude in section 6 by explicitly writing down the final 4D vector action.

2 Present status

Let us first introduce the vector theory, the hypothesis and results obtained thus far. We as-
sume in what follows the Minkowski metric to take the form gµν = ηµν = diag(−1,+1,+1,+1)
and set (∂ ·A) ≡ ∂µAµ and X = AµA

µ for simplification and notational convenience.

2.1 Generalized Abelian Proca theory

One seeks to generalize Proca theory, namely that stemming from the action

SProca =

∫
LProca d4x =

∫ (
−1

4
FµνF

µν +
1

2
m2
AX

)
d4x , (2.1)

with Aµ being a massive vector field, not subject to satisfy a U(1) invariance, and Fµν ≡
∂µAν − ∂νAµ being the associated Faraday tensor. The generalization of this action can be
made by considering all “safe” terms containing the vector field and its first derivative. To
explicit what safe means in this context, one decomposes the field into a scalar π and pure
vector Ā parts according to

Aµ = ∂µπ + Āµ or A = dπ + Ā , (2.2)

where π is commonly referred to as the Stückelberg field, and Āµ is divergence-free. One
then demands the equations of motion for Aµ, and for both π and Āµ, are second order,
and that the Proca field propagates only three degrees of freedom [38]. These conditions are
discussed in full depth in refs. [12, 36, 37]. The first condition ensures that the model can be
stable [39–41], while the second stems from the fact that a massive field of spin s propagates
2s+ 1 degrees of freedom.

Note that the scalar field will appear in two different parts, one containing only the
Stückelberg field itself, and one containing also the pure vector contribution Ā. Examining
the decoupling limit of the theory, one recovers for the pure scalar part of the Lagrangian
the exact requirements of the Galileon theory [1–4], and so this part of the Lagrangian must
reduce to this well-studied class of model.

2.2 Investigation procedures

Two different but equivalent procedures have been devised to write down the most general
theory sought for. The first, originally proposed and explained in refs. [12, 37], consists in
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a systematic construction of scalar Lagrangians in terms of contractions of two Levi-Civita
tensors with derivatives of the vector field. This permits an easy comparison with the Galileon
theory, as the same structure automatically ensues. The condition that only three degrees of
freedom propagate is then verified on the relevant terms.

The second procedure, put forward in ref. [36], works somehow the other way around
by systematically constructing all possible scalar Lagrangians propagating only three degrees
of freedom. To achieve this requirement, a condition on the Hessian of the Lagrangian L (or
each independent such Lagrangian) considered, namely

Hµν =
∂2L

∂(∂0Aµ)∂(∂0Aν)
, (2.3)

is imposed. As discussed in ref. [36], in order that the timelike component of the vector field
does not propagate in non trivial theories, the components H0µ must vanish. All possible
terms satisfying this constraint are considered at each order.

There are two crucial points concerning the latter method that still need to be checked
once the terms satisfying all other requirements have been obtained: not only they must
reduce to the scalar galileon Lagrangians in the pure scalar sector, but they must imply
second class constraints. Moreover, given that it is a systematic expansion in terms of scalars
built out of vectors with derivatives, one must make sure they are not either identically
vanishing or mere total derivatives. In other words, although the method ensures that all
possible terms will be found, they are somehow too numerous and there may remain some
redundancy that must be tracked down and eliminated.

3 Generic structure

As all contractions between vector derivatives and δ and ε can always be written in terms
of ε only, a complete basis for expanding the general category of Lagrangians of interest is
made up with terms of the form

T iN = ε−−ε
−
− · · ·︸ ︷︷ ︸

N

∂�A�∂�A� · · · , (3.1)

where indices appearing in the field derivatives are contracted only with corresponding indices
in the Levi-Civita tensors, the remaining indices being contracted possibly in between Levi-
Civita tensors in such a way as to yield a scalar. Each index i reflects the fact that there can
be more than one way to contract the N Levi-Civita tensor to form a scalar. These terms
form a complete basis for the Lagrangians containing an arbitrary number of field derivatives.

The general Lagrangian will then be of the form

L =
∑
i,N

f iN (X)T iN , (3.2)

where we consider only prefactors that are functions of X: one could envisage contracting a
vector field itself with the derivative terms involved in eq. (3.2), but that would lead to an
equivalent basis up to integrations by parts [36].1 When written in terms of the Stückelberg

1We have found one special case, discussed below eq. (6.1), for which the total derivative of the integration
by parts would actually vanish for symmetry reasons; we included and discussed this special term in our final
form of the action.
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field only, i.e. setting Aµ → ∂µπ, and restricting attention to N = 2, eq. (3.2) automatically
yields the subclass of the generalised galileon theory [3] containing only derivatives of the
scalar field.2

The terms thus built in eq. (3.1) now fall into two distinct categories, depending on how
they behave under a U(1) gauge transformation. Those invariant under such transformations
contracts all field derivative indices to one and only one Levi-Civita tensor, i.e. they take
the form

εµν−ερσ− · · · ∂µAν∂ρAσ · · · ,

which can all be equivalently expressed as functions of scalar invariants made out of the
Faraday tensor Fµν and its Hodge dual F̃µν = 1

2ε
µναβFαβ. Indeed, written in this form, one

can identically replace all ∂µAν by 1
2Fµν . Conversely, since the following identities

FµνFµν = −εµναβερσαβ∂µAν∂ρAσ , (3.3)

and
F̃µνFµν = 2εµνρσ∂µAν∂ρAσ , (3.4)

hold, any function of F and F̃ can be expressed as a term such as discussed above.
This leads to the first Lagrangian compatible with our requirements, namely the so-

called L2, containing all possible scalars made by contracting Aµ, Fµν and F̃µν . Such terms
can always be expressed [42] as functions of the scalars X, F 2 ≡ FµνFµν , F ·F̃ ≡ FµνF̃µν and(

A · F̃
)2
≡ AαF̃ασAβF̃ βσ = AαAβε

ασµνεβσκδ∂µAν∂
κAδ , (3.5)

again up to integrations by part. The Lagrangian L2 always satisfies the conditions discussed
in the previous section, and in particular yields a trivially vanishing Hessian condition H0µ:
varying L2 with respect to ∂0A0 [see eq. (2.3)] yields a factor containing ε00−, which vanishes
identically. It also gives second order equation of motion both for π and Āµ as it contains
neither ∂∂π nor ∂∂Āµ terms. We should emphasize at this point that L2 contains parity
conserving as well as parity violating terms; we shall not consider them any more, but they
should be assumed always present in the forthcoming discussion.

All the terms contained in eq. (3.2) but not of the form discussed in the previous
paragraph read

LiN = f iN (X) εµ− · · · εν−︸ ︷︷ ︸
N

∂µAν · · · , (3.6)

where at least one field derivative has indices contracted with two distinct Levi-Civita tensors
and the f iN (X) are arbitrary functions of the gauge vector magnitude X = A2. For N ≤ 2,
the Hessian condition is automatically satisfied: H0µ stems for a variation of the Lagrangian
with respect to ∂0A0 and ∂0Aµ. This demands three equal “0” indices distributed on at most
two Levi-Civita tensors, resulting in a vanishing contribution for symmetry reasons. The
other requirements, such as the order of the equations of motion these terms lead to, are
discussed in length in sections 4 and 5.

For N > 2, the situation is less clear, as the Hessian does not then identically vanish.
Instead, the condition H0µ = 0 then implies that the coefficients of all the linearly indepen-
dent terms stemming from this condition vanish. The number of such linearly independent
terms increases with the number of field derivatives allowed for in the Lagrangian, and it

2The full generalized galileon theory is recovered if one also makes the replacement f i
N (X) → f i

N (π, ∂π).

– 4 –



J
C
A
P
0
9
(
2
0
1
6
)
0
2
6

is therefore to be expected that, above a given threshold value N > Nthr, up to unforesee-
able fortuitous cancellations, no new term will be obtainable that could possibly satisfy the
requirements of a safe theory. We conjecture that, as in the scalar galileon case, Nthr = 2;
the following sections detail the reasons hinting to such a conjecture, splitting into parity
conserving (N even) and violating (N odd) contributions. Note that there exists a gen-
eral argument, based on the fact that the Lagrangian contains second-order derivatives of
the field, for which the scalar galileon theory automatically stops at N = 2 [3], whereas in
the vector case, no such argument can be found, the Lagrangian containing only first-order
derivatives and there could exist terms which vanish when Aµ → ∂µπ while still satisfying all
other hypothesis. As a result, the arguments below are different from those needed to show
Nthr = 2 in the scalar galileon case.

4 Parity conserving terms

Previous works discussed parity conserving actions with N = 2 including up to 4 field deriva-
tives ∂A, the so-called Ln, with n = 3, · · · , 5 [12], and n = 6 [36], n counting the number
of field derivative plus two (this convention, bizarre in the vector case, is meaningful in the
original galileon construction). Up to n = 5, the Lagrangians satisfy the condition that the
scalar part of the vector field corresponds only to non trivial total derivative interactions,
a condition which, once relaxed, yields the extra n = 6 term: in the latter situation, one
can always factorize the action by some factors involving the Faraday tensor and its dual,
ensuring it vanishes in the pure scalar sector. All these terms were shown to be of the form
presented in eq. (3.6) above with N = 2, thus agreeing with our conjecture. They also comply
with all the necessary requirements we asked for the theory to be physically meaningful, with
second-order equations of motion and only three propagating degrees of freedom [36, 37].

In ref. [36], new terms were also suggested which, similarly to L6, were of the form
(∂A)pF qF̃ r (with r even to ensure parity conservation), and therefore vanishing in the pure
scalar sector. It was even argued that an infinite tower of such terms could be generated. A
further examination of these terms however revealed a different, and somehow more satisfac-
tory, picture: some new terms, by virtue of the Cayley-Hamilton theorem, vanish identically
in 4 dimensions, a conclusion that can also be reached by rewriting the relevant terms in the
form presented in eq. (3.6), but with Levi-Civita tensors having more than 4 indices [37],
explaining why the new terms identically vanish in 4 dimensions to which the present analysis
is restricted: in a way similar to Lovelock theory for a spin 2 field [43], one can imagine that
for each number of dimensions, a finite number of new terms can be generated.

In conclusion of this short section, suffices it to say that extra parity preserving terms
involving more fields and not already present in L2 have been actively searched for, and
never found; although this does not prove that such terms cannot be found, this provides
a sufficiently solid basis to assume this statement as a conjecture, which will only make
sense provided a similar conclusion can be reached for the parity-violating terms to which
we now turn.

5 Parity violating terms

Parity-violating terms can be written as in eq. (3.6) with an odd number N of Levi-Civita
tensors. For N = 1, it leads to an action built from eq. (3.4), and hence is already included
in L2 discussed above. One thus expects no terms not included in L2 since those terms would
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contain at least three Levi-Civita symbols. In ref. [36] however, two extra such terms were
found to satisfy all the physically motivated requirements, obtained through the systematic
Hessian method. They read

Lε5 = FµνF̃
µν (∂ ·A)− 4

(
F̃ρσ∂

ρAα∂
αAσ

)
, (5.1)

and
Lε6 = F̃ρσF

ρ
βF

σ
α∂

αAβ . (5.2)

According to our conjecture, they should either vanish or be contained in the previous terms
up to a total derivative. We show below that it is indeed the case, and for that purpose we
first recall an identity derived and first reported, to our knowledge, in ref. [42]; this completes
the proof that the systematic procedure could not find terms having up to 4 field derivatives
that are not contained in L2.

5.1 A useful identity

Let Aµν and Bµν be two antisymmetric tensors in a four-dimensional spacetime with mostly
positive signature. One has

AµαB̃να +BµαÃνα =
1

2

(
BαβÃαβ

)
δµν , (5.3)

where X̃µν = 1
2ε
µναβXαβ is the Hodge dual of X [42].

In order to prove this identity, one uses the relation (see, e.g., ref. [44])

εα1...αkδ(k+1)...δnεβ1...βkδ(k+1)...δn = (−1)s(n− k)!k!δ
[α1...
β1...

δ
αk]
βk

, (5.4)

where s counts the number of minus signs in the signature of the metric and n the dimension
of spacetime. One gets

εα1α2α3δεβ1β2β3δ = −3!δ
[α1

β1
δα2
β2
δ
α3]
β3

, (5.5)

and
εα1α2δ1δ2εβ1β2δ1δ2 = −2!2!δ

[α1

β1
δ
α2]
β2

, (5.6)

in the n = 4-dimensional case, leading to

Xαβ = −1

2
εµναβX̃µν , (5.7)

to express a tensor from its Hodge dual.
Beginning from the left-hand side of the identity we wish to prove, we get

AµαB̃να = −1

4
εγεµαενσραÃγεB

σρ , (5.8)

which, upon using eq. (5.5), yields AµαB̃να =
3

2
δ[γν δ

ε
σδ
µ]
ρ ÃγεB

σρ. Expanding and simplifying

the relevant terms, one finally obtains eq. (5.3), as desired.
As a direct consequence, we can easily deduce the identities

FµαFνα − F̃µαF̃να =
1

2

(
FαβFαβ

)
δµν , (5.9)

and

FµαF̃να =
1

4

(
FαβF̃αβ

)
δµν , (5.10)

which follows from substituting Aµν = Fµν , Bµν = F̃µν and Aµν = Bµν = Fµν respectively
in eq. (5.3).
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5.2 Simplification of Lε5 and Lε6
We now use the above identities to first expand Lε5. One has

Lε5 = FµνF̃
µν∂ ·A− 4F̃ρσ∂

ρAα∂αA
σ = FµνF̃

µν∂ ·A− 4F̃ρσ(F ρα + ∂αAρ)∂αA
σ , (5.11)

whose last term can be transformed into

F̃ρσ (F ρα + ∂αAρ) ∂αA
σ =

1

4
FF̃δασ∂αA

σ + F̃ρσ∂
αAρ∂αA

σ , (5.12)

so that, finally, one ends up with

Lε5 = −4F̃ρσ∂
αAρ∂αA

σ = 0 , (5.13)

being a contraction between a fully symmetric and a fully antisymmetric tensor.

As for Lε6, one has

Lε6 =
(
F̃ρσF

σα
)
F ρβ∂αAβ =

(
−1

4
FF̃δαρ

)
F ρβ∂αAβ . (5.14)

A few straightforward manipulations then yield

Lε6 = −1

8

(
FF̃
)
F 2 , (5.15)

showing Lε6 is not in fact a new term but is already included in the Lagrangian L2.

6 Final model

The two extra parity-violating terms obtained in ref. [36] have been shown here to be either
vanishing or already included in a previous Lagrangian. As mentioned below eq. (3.2), we
also found that the term

Lbis4 = g4(X)AµAλF̃µν∂
λAν = g4(X)AµAλεµνρσ∂

ρAσ∂λAν , (6.1)

is compatible with all the conditions we demand and could therefore be included in the
general analysis. The corresponding term in eq. (3.2) would be proportional to F̃µνS

µν , with
Sµν = ∂µAν + ∂νAµ being the symmetric counterpart of the Faraday tensor which clearly
vanishes identically. The line of reasoning leading to a small number of possible terms of
the form (3.2) should apply to higher order terms of the kind (6.1); we did not find any
such terms.

According to all the above discussions, it seems safe to conjecture that the final complete
action for a Proca vector field involving only first-order derivatives in 4 dimensions is that
given by eq. (12) of ref. [37], together with eq. (6.1). The complete formulation of the parity-
conserving terms were also derived and written in a simple form in refs. [12, 36, 37]. We
merely repeat the full action below:

S =

∫
d4x
√
−g

(
−1

4
FµνF

µν +

6∑
i=2

Li + Lbis4

)
, (6.2)
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with

L2 = f2

(
Aµ, Fµν , F̃µν

)
= f2

[
X,F 2, F · F̃ ,

(
A · F̃

)2]
,

L3 = f3 (X) ∂ ·A =
1

2
f3 (X)Sµ

µ ,

L4 = f4 (X)
[
(∂ ·A)2 − ∂ρAσ∂σAρ

]
=

1

4
f4 (X)

{[
(Sµ

µ)2 − SρσSσρ
]

+ FµνF
µν
}
,

L5 = f5 (X)
[
(∂ ·A)3 − 3(∂ ·A)∂ρAσ∂

σAρ + 2∂ρA
σ∂γA

ρ∂σA
γ
]

+ g5 (X) F̃αµF̃ βµ∂αAβ

=
1

8
f5 (X)

[
(Sµ

µ)3 − 3 (Sµ
µ)Sρ

σSσ
ρ + 2Sρ

σSσ
γSγ

ρ
]
+

1

4
[2g5 (X)− 3f5 (X)] F̃αµF̃ βµSαβ ,

L6 = g6 (X) F̃αβF̃µν∂αAµ∂βAν =
1

4
g6 (X) F̃αβF̃µν (SαµSβν + FαµFβν) .

(6.3)
In eq. (6.3), f2 is an arbitrary function of all possible scalars made out of Aµ, Fµν and F̃µν ,
containing both parity violating and preserving terms, while f3, f4, f5, g5 and g6 are arbitrary
functions of X only. Note that this dependence is compatible with our basis choice in
eq. (3.2), so that any other choice, for instance gk(X,F

2), would spoil the Hessian condition.
We assume also that the standard kinetic term, −1

4FµνF
µν , does not appear in f2, in order

that the normalization of the vector field follows that of standard electromagnetism and thus
we have pushed it out in eq. (6.2). The Lagrangians of eq. (6.3) are expressed in terms of
either the ordinary derivatives ∂µAν , or in terms of its symmetric Sµν and antisymmetric
Fµν parts:3 the second formulation, obtained by setting ∂µAν = 1

2 (Sµν + Fµν) and making
use, in the case of L5, of eq. (5.9), induces extra terms in L4 and L6 which can be absorbed
in the parity-preserving part of L2, being functions of Aµ and Fµν .

The presence of the new term Lbis4 is not as surprising as it would appear at first sight
when one considers the generic structure of the terms contained in eq. (6.3). For the dynamics
of the Lagrangians to be non trivial, up to terms already contained in L2, the functions f3,
f4, f5 and g6 must contain at least one factor of X = gµνA

µAν (see also ref. [37]). Assuming
2g5 − 3f5 to also contain such a factor (generic situation, no fine-tuning of the arbitrary
functions), we conclude that each term can be written in the form4

Li = A2h(X)〈Oi〉 = h̃(X)〈AÕiA〉+ ∂µJ
µ
i , (6.4)

A2h standing for the relevant f or g function (this transformation is indeed not possible
for Lbis4 ). In eq. (6.4), the brackets indicate a trace over spacetime indices, Oi and Õi are
operators constructed from F̃ ’s (possibly none) and at least one S, and Jµi is the relevant
current to make the identity true.5 So, the terms vanishing in the purely scalar case, i.e.
those for which Oi contains at least one factor of F̃ , take the form 〈ASF̃A〉, 〈ASF̃ F̃A〉 and
〈ASF̃SF̃A〉. The first such term, which is nothing but our Lbis4 , is then seen to appear in a
totally natural way.

Our final action is, up to the new term Lbis4 , exactly the same as that of ref. [37]. There
is however a subtle difference in the fact that all possible parity-violating terms are also
written, being included in f2 and Lbis4 . Note that the curved space-time generalization of
this action is also given in ref. [37], the covariantization of Lbis4 being obtained by a trivial
replacement ∂ → ∇.

3The relation between our formulations and those in terms of the Levi-Civita tensors is given in ref. [37].
4Sometimes also up to terms included in L2.
5See ref. [4] for an extensive discussion of these equivalent formulations in the scalar galileon case.
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A legitimate question to ask is whether eq. (6.2) is indeed the most general theory
that can be written involving a vector field with three propagating degrees of freedom and
second-order equations of motion. This has already been conjectured in refs. [12, 37]. Now,
the discussion and calculations of the present article correct the conjecture made in ref. [36]
about an infinite tower of terms, and also suggests a finite number of terms, even in the
parity violating sector. So, there is finally a complete agreement on this point.

An additional indication of the correctness of this conjecture is that the systematic
investigation procedure of ref. [36] completed by the calculation of ref. [37] for the parity-
conserving sector, and by the present paper in the parity-violating sector, did not find any
term other than those shown above up to the orders of L6 (parity violating) and L7 (parity
conserving). However, if there were an infinite tower of possible Lagrangians, one would
expect such Lagrangians to appear in our systematic procedure, which is not the case. Note
especially that these works show that the parity violating sector contains no other terms than
Lbis4 and those contained in f2, which is a very strong constraint, and greatly strengthens the
conjecture we have made.

Finally, this work heavily relies on the postulate that spacetime is 4 dimensional. Relax-
ing this assumption permits to include the extra terms proposed in ref. [36] which, as shown
in ref. [37], can be expressed with higher dimensional Levi-Civita tensors. For a given space-
time dimensionality, one thus expects, just like in the Lovelock case for a spin 2 field [43],
a finite number of new terms to appear: in practice, in D dimensions, one expects terms
containing up to D first order derivatives of the vector field.
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