
Prog. Theor. Exp. Phys. 2017, 043B02 (28 pages)
DOI: 10.1093/ptep/ptx026

Polyakov loop in a non-covariant operator
formalism

Makoto Sakamoto1 and Kazunori Takenaga2,∗
1Department of Physics, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
2Faculty of Health Science, Kumamoto Health Science University, Izumi-machi, Kita-ku, Kumamoto 861-5598,
Japan
∗E-mail: takenaga@kumamoto-hsu.ac.jp

Received December 26, 2016; Revised February 15, 2017; Accepted February 17, 2017; Published April 5, 2017

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We discuss a Polyakov loop in a non-covariant operator formalism that consists of only physical
degrees of freedom at finite temperature. It is pointed out that although the Polyakov loop is
expressed by a Euclidean time component of gauge fields in a covariant path integral formalism,
there is no direct counterpart of the Polyakov loop operator in the operator formalism because
the Euclidean time component of gauge fields is not a physical degree of freedom. We show
that by starting with an operator that is constructed in terms of only physical operators in the
non-covariant operator formalism, the vacuum expectation value of the operator calculated by
the trace formula can be rewritten into the familiar form of an expectation value of the Polyakov
loop in a covariant path integral formalism at finite temperature for the cases of the axial and
Coulomb gauge.
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1. Introduction

Gauge invariance is undoubtedly one of the fundamental principles in particle physics. Both local
and non-local gauge-invariant operators play an important role in gauge theory. An example of such
non-local operators is the Wilson loop, which will be given by a line integral along a rectangular
contour such that one side is taken to be in a space-like direction and another side to be in a time
direction. A non-trivial expectation value of the Wilson loop operator will provide a signal of “quark”
confinement in non-Abelian gauge theories [1].

Another example of non-local gauge-invariant operators is a Polyakov loop, which is similar to a
Wilson loop but is given by a line integral along a Euclidean time axis. In this paper, we will focus on
the Polyakov loop operator whose explicit form is given by tr P exp

(
ig
∫ β

0 dτAτ
)
, where P denotes

a path-ordered symbol, β is an inverse temperature, and Aτ is a Euclidean time component of gauge
fields. The Polyakov loop is known as an order parameter of the confinement–deconfinement phase
transition at finite temperature [2,3]. Furthermore, it could provide an order parameter of gauge
symmetry breakings [2,4–9].

In order to confirm that the Polyakov loop is a physical observable at finite temperature, one
might verify that a zero mode of the Euclidean time component Aτ in the Polyakov loop cannot
be eliminated by gauge transformations due to the periodicity with respect to the Euclidean time
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at finite temperature. However, the statement that the Polyakov loop is physical seems to be less
obvious than we thought.1

One reason why the above statement is not so obvious is that the Minkowski time component A0

of gauge fields2 is not a dynamical degree of freedom in gauge theory. The A0 component can be
removed in an operator formalism, and then the A0 degree of freedom disappears completely from
the Hilbert space of the theory, as explained below in some detail. One might stress that the A0 (or
Aτ ) component is included in a covariant path integral representation of gauge theory. However,
the A0 (or Aτ ) degree of freedom turns out to be introduced as an auxiliary field in a path integral
formalism (see Sect. 3).

Quantization of gauge theory cannot be performed in a straightforward fashion because it contains
redundant gauge degrees of freedom due to gauge invariance. Several ways to quantize it have been
described and are expected to be physically equivalent.3

One reliable method to quantize gauge theory is to remove all unphysical degrees of freedom by
explicitly imposing a gauge-fixing condition [13]. If the theory includes only physical degrees of
freedom, the quantization of the theory is rather straightforward, though the form of the Hamiltonian
would be messy.

For instance, in the axial gauge A3 = 0 [14,15], which will be discussed in this paper, the theory
can be described only by the physical degrees of freedom A1 and A2 for the gauge fields because A3

is taken to be zero by the axial gauge condition, and A0 is also removed by use of the equation of
motion for A0, which should be regarded as a constraint equation since it includes no time derivative
of A0.4 Therefore, the gauge part of the Hilbert space in the axial gauge formalism can be spanned
by the states { | A1, A2 〉 }, and any physical operators have to be constructed in terms of Ak (k = 1, 2)
and their conjugate momenta �k (and also fermion/scalar fields).

Now we can raise the issue of how to construct a Polyakov loop operator in the axial gauge operator
formalism. Since the time component is completely eliminated from the spectrum in the operator
formalism, it seems non-trivial to construct a Polyakov loop operator without A0 or Aτ .

One of our main purposes is to present an explicit operator form corresponding to a Polyakov loop
operator in the operator formalism that contains only physical degrees of freedom: Ak ,�k (k = 1, 2)
and matter fields. Another purpose of this paper is to show that an expectation value of the above
operator given in the non-covariant operator formalism can be rewritten into a familiar form of an
expectation value of a Polyakov loop in a covariant path integral formalism at finite temperature. In
the rewriting, we will see where the Euclidean time component Aτ comes from and also clarify how
the operator given by physical operators turns into the standard form of the Polyakov loop given
by Aτ .

1 One might notice that Wilson lines along non-contractible loops in extra dimensions [10,11] resemble a
Polyakov loop along the Euclidean time axis. Formally there seems no difference between them in a Euclidean
path integral formulation. However, there is an important difference. A Polyakov loop becomes meaningless
at zero temperature but Wilson lines do not. This is because the Euclidean time component of gauge fields can
be removed completely by gauge transformations at zero temperature but the extra dimensional components
cannot be.

2 In this paper, we will use Aτ and A0 for the Euclidean and Minkowski time components of gauge fields,
respectively.

3 We will not discuss the Gribov problem [12] in this paper. The problem is not expected to be related
directly to our issue.

4 If we take the temporal gauge A0 = 0 [16–18], A0 can be eliminated rather directly.
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This paper is organized as follows. In the next section, we take the axial gauge to quantize a
non-Abelian gauge theory, and remove all the unphysical degrees of freedom from a Lagrangian.
Then, we derive a Hamiltonian consisting of only physical ones. In Sect. 3, we first construct a finite
temperature path integral representation in the axial gauge by use of the trace formula [19,20], and
then rewrite it into a covariant path integral form with all the gauge degrees of freedom. We will
see that the Euclidean time component of the gauge fields is recovered as a Gaussian auxiliary field.
Our main results will be given in Sect. 4. We propose an operator that is expected to represent a
Polyakov loop operator in the axial gauge and is written in terms of physical operators only. We show
that the operator turns into the standard form of the Polyakov loop in a covariant Euclidean path
integral formula at finite temperature. In Sect. 5, we reformulate the analysis in the Coulomb gauge.
Section 6 is devoted to conclusions. Some details of the calculations will be given in the appendices.

2. Hamiltonian in the axial gauge

In this section, we present a canonical formulation of non-Abelian gauge theory coupled with a
fermion in the axial gauge. Although the results given in Sects. 2 and 3 will not be new [13], we
shall explain them to make our discussions in Sect. 4 comprehensible. We consider an SU (N ) gauge
theory whose Lagrangian is given by

L = −1

4
Fa
μνFaμν + ψ̄ iγ μDμψ , (2.1)

where

Fa
μν ≡ ∂μAa

ν − ∂νAa
μ + gf abcAb

μAc
ν , Dμψ ≡ (

∂μ − igAa
μT a)ψ . (2.2)

The representation of the fermion ψ under the SU (N ) gauge group can be arbitrary, but for
simplicity we take it to be the fundamental representation. Throughout this paper, we use the
convention that repeated indices are summed over (unless otherwise stated), and μ, ν, . . . =
0, 1, 2, 3 (or τ , 1, 2, 3); i, j = 1, 2, 3; k , l, . . . = 1, 2; a, b, . . . = 1, 2, . . . , N 2 − 1. The equation
of motion for the gauge field Aa

μ following from the Lagrangian (2.1) is

(Dμ)
abFbμν + J aν

F = 0, (2.3)

where J aν
F ≡ gψ̄γ νT aψ and (Dμ)ab = δab∂μ + gf acbAc

μ. We impose the axial gauge

Aa
3 = 0. (2.4)

Then, we can formally solve the ν = 0 component of the equation of motion for Aa
0 and obtain that

Aa
0 = (D−1)ab

(
(DkȦk)

b + J b0
F

)
(k = 1, 2). (2.5)

Here, the operator (D−1)ab is formally defined as the inverse of (D)ab ≡ (D2
k)

ab + δab(∂3)
2.

We define the canonical momentum for the gauge field Aa
k (k = 1, 2) by

�ak
A ≡ ∂L(Ak ,ψ)axial

∂Ȧa
k

, (2.6)

where L(Ak ,ψ)axial is obtained by imposing the axial gauge on the Lagrangian (2.1) and eliminating
Aa

0 in the Lagrangian (2.1) by using Eq. (2.5), so that it is written in terms of only physical degrees

3/28



PTEP 2017, 043B02 M. Sakamoto and K. Takenaga

of freedom. The explicit form of L(Ak ,ψ)axial is given by Eq. (A.1) in Appendix A, from which the
canonical momentum for Aa

k is calculated as

�ak
A = (M )ab

kl Ȧb
l − (DkD−1J 0

F)
a (l = 1, 2), (2.7)

where

(M )ab
kl = δabδkl − (DkD−1Dl)

ab. (2.8)

By solving Eq. (2.7) for Ȧa
k , we have

Ȧa
k = (M−1)ab

kl

(
�bl

A + (DlD−1J 0
F)

b
)

, (2.9)

where (M−1)ab
kl is defined as the inverse of (M )ab

kl , whose explicit form is

(M−1)ab
kl = δabδkl + (Dk(∂3)

−2Dl)
ab. (2.10)

It is straightforward to check that (MM−1)ab
km = δabδkm by using (D)ab = (D2

k)
ab + δab(∂3)

2. As for
the fermionψ , we take the right derivative with respect to the Grassmann variable, and the canonical
momentum for ψ is

�ψ ≡ ∂L(Ak ,ψ)axial

∂ψ̇
= ψ̄ iγ 0. (2.11)

Then, the Hamiltonian is

Haxial ≡ �ak
A Ȧa

k +�ψψ̇ − L(Ak ,ψ)axial

= 1

2
�ak

A (M
−1
kl �

l
A)

a +�ak
A (M

−1
kl DlD−1J 0

F)
a

+ 1

2
(DkD−1J 0

F)
a(M−1

kl DlD−1J 0
F)

a − 1

2
J a0

F (D−1J 0
F)

a

+ 1

4
Fa

klF
a
kl + 1

2
∂3Aa

k∂3Aa
k − ψ̄ iγ kDkψ − ψ̄ iγ 3∂3ψ . (2.12)

In deriving the Hamiltonian, we have performed the partial integration with respect to (M−1)ab
kl .

The Hamiltonian is written in terms of only physical degrees of freedom Aa
k , �ak

A , ψ , and �ψ as
it should, though it is messy, including the non-local terms. It may be appropriate to mention here
that one is able to rewrite Eq. (2.12) into another form presented by Eq. (A.6) in Appendix A, in
which the self-energy of the color charge densities of the fermion manifestly appears. We shall use
the Hamiltonian (2.12) in the discussions given below.

3. Trace formula in the axial gauge at finite temperature

Let us first define the vacuum expectation value of an operator Ô at finite temperature by the trace
formula,

〈Ô〉β ≡ Tr
(
Ô e−βĤ

)
with Ĥ ≡

∫
d3x Ĥ, (3.1)
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where β stands for the inverse of the temperature T . If one chooses a non-covariant gauge such as
the axial or Coulomb gauge, the operator Ô and the Hamiltonian Ĥ are written in terms of only
physical degrees of freedom, i.e. Âa

k , ψ̂ and their canonical momenta, �̂ak
A , �̂ψ , so that the trace in

Eq. (3.1) must be taken over the physical states alone, denoted here by Aphys = {Aa
k ,ψ}:

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

gauge

=
∫

DAphys〈Aphys|O(�̂ak
A , Âa

k , �̂ψ , ψ̂) e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)|Aphys〉gauge. (3.2)

It should be understood that bosons (fermions) must obey the (anti-) periodic boundary condition
for the Euclidean time direction because of the quantum statistics at finite temperature.

Our aim is to find the operator O(�̂ak
A , Âa

k , �̂ψ , ψ̂) which satisfies

Tr
(
O(Âa

k , ψ̂ , �̂ak
A , �̂ψ)e−βH (Âa

k ,ψ̂ ,�̂ak
A ,�̂ψ )

)
gauge

=
∫

DAμDψ̄Dψ det(M gauge
FP )

∏
x,a

δ(χa
gauge(x))

× tr
(
P eig

∫ β
0 dτAτ (τ ,x0)

)
exp

∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

, (3.3)

where M gauge
FP and δ(χa

gauge(x)) are the Faddeev–Popov determinant and the gauge condition for the
chosen gauge, respectively, andμ, ν = τ , 1, 2, 3.We shall consider the cases of the axial and Coulomb
gauges in this paper. The right-hand side of Eq. (3.3) is nothing but the vacuum expectation value of
the Polyakov loop operator in the covariant path integral form under the chosen gauge condition. It
should be noticed that the left-hand side of Eq. (3.3) is given by the trace formula in the non-covariant
operator formalism by use of the physical degrees of freedom alone, not including Aτ , particularly
that the operator O(�̂ak

A , Âa
k , �̂ψ , ψ̂) has to be constructed by the physical operators only. Therefore,

it seems to be a non-trivial problem whether or not there exists such an operator O(�̂ak
A , Âa

k , �̂ψ , ψ̂)
satisfying Eq. (3.3). Furthermore, we need to clarify where the unphysical degree of freedom Aτ
comes from in deriving the right-hand side of Eq. (3.3) from its left-hand side, and manage the
path-ordered product of the Polyakov loop in the trace formula.

Before we construct the operator Ô explained above, let us first study the partition function at
finite temperature, say Ô = 1̂, in the case of the axial gauge. In this case, what we would like to
show is that for the Hamiltonian (2.12) the equation

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
axial

=
∫

DAμDψ̄Dψ det(∂3)
∏
x,a

δ(Aa
3) exp

∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

(3.4)

holds, where the right-hand side of Eq. (3.4) is the standard path integral representation for the
partition function at finite temperature in the axial gauge. This may be too pedagogical, but helpful
for the later discussions. Using the completeness relation for the canonical momenta �ak

A and �ψ ,
the left-hand side of Eq. (3.4) can be written in the path integral form as

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
axial

=
∫

D�ak
A DAa

kD�ψDψ exp
∫ β

0
dτ
∫

d3x
{

i�ak
A Ȧa

k + i�ψψ̇ − Haxial

}
, (3.5)
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where Haxial is given by Eq. (2.12) and Ȧa
k , ψ̇ stands for the derivative with respect to the Euclidean

time τ , Ȧa
k = ∂τAa

k , ψ̇ = ∂τψ . This notation will be used hereafter. Let us note that the imaginary
unit i in front of �ak

A Ȧa
k and �ψψ̇ does not come from the Euclideanization, but from taking the

inner product of the “coordinate” φ(x) and the “momentum” �φ(x),

〈φ|�φ〉 ∝ exp
{

i
∫

d3x �φ(x)φ(x)
}

. (3.6)

The exponent of the right-hand side of Eq. (3.5) is quadratic with respect to �ak
A , whose explicit

form is given by Eq. (A.7) in Appendix A, so that we can perform the Gaussian integration D�ak
A .

Then, we arrive at

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
axial

=
∫

DAa
kD�ψDψ det−

1
2 (M−1) exp

∫ β

0
dτ
∫

d3x

×
{
−1

2
Ȧa

k Ȧa
k − 1

2
(DkȦk)

a(D−1DlȦl)
a − iȦa

k(DkD−1J 0
F)

a + 1

2
J a0

F (D−1J 0
F)

a

− 1

4
Fa

klF
a
kl − 1

2
∂3Aa

k∂3Aa
k + i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3∂3ψ

}
. (3.7)

In order to restore the Aτ degree of freedom, let us consider the Gaussian integral given by

1 =
∫

DAa
τ det

1
2 (D) exp

∫ β

0
dτ
∫

d3x
{
−1

2

(
iAa
τ − (D−1)ac(i(DkȦk)

c + J c0
F

))

× (D)ad
(

iAd
τ − (D−1)de(i(DlȦl)

e + J e0
F

))}
. (3.8)

By inserting Eq. (3.8) into Eq. (3.7), some of the terms in the exponent in Eqs. (3.7) and (3.8) cancel
each other, as shown in Appendix A.2, where we explicitly present the expansion of the exponent in
the Gaussian integral (3.8) by Eq. (A.9). Then, we obtain that

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
axial

=
∫

DAa
τDAa

kD�ψDψ det−
1
2 (M−1)det

1
2 (D)

× exp
∫ β

0
dτ
∫

d3x
{
−1

2
Ȧa

k Ȧa
k − 1

4
Fa

klF
a
kl − 1

2
∂3Aa

k∂3Aa
k

− 1

2
(DkAτ )

a(DkAτ )
a − 1

2
∂3Aa

τ ∂3Aa
τ + Ȧa

k(DkAτ )
a

+ i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3∂3ψ + iAa
τ J a0

F

}
. (3.9)

Note that Aa
τ is recovered as the auxiliary field through the Gaussian integral (3.8). We finally

introduce the factor

1 =
∫

DAa
3

∏
x,a

δ(Aa
3) (3.10)

in order to restore the Aa
3 degree of freedom. By inserting it into Eq. (3.9), the exponent in Eq. (3.9)

is summarized into the covariant form of the Lagrangian thanks to the delta function in Eq. (3.10).
The determinants in Eq. (3.9) are evaluated as

det−
1
2 (M−1)det

1
2 (D) = det(∂3), (3.11)
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which is shown in Appendix C.1. Hence, we finally obtain that

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
axial

=
∫

DAa
μDψ̄Dψ det(∂3)

∏
x,a

δ(Aa
3) exp

∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

, (3.12)

where we have used D�ψ = Dψ̄ and defined γτ ≡ −iγ 0. This is Eq. (3.4) that we would like to
prove.

4. Polyakov loop in the axial gauge

Let us discuss the Polyakov loop operator in the axial gauge, which is one of our main purposes
in the paper. As explained in Sect. 1, the gauge part of the Hilbert space in the axial gauge does
not contain the gauge field Aτ , from which the Polyakov loop operator is usually defined. Thus, the
problem is how to construct the operator written in terms of only physical degrees of freedom in the
axial gauge, corresponding to the Polyakov loop operator. Our aim is to present an explicit form of
the operator O(�̂ak

A , Âa
k , �̂ψ , ψ̂) that satisfies

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

axial

=
∫

DAa
μDψ̄Dψ det(∂3)

∏
x,a

δ(Aa
3) tr

(
P exp

{
ig
∫ β

0
dτAτ (τ , x0)

})

× exp
∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

, (4.1)

where the operator O(�̂ak
A , Âa

k , �̂ψ , ψ̂)must be written in terms of only physical degrees of freedom
in the axial gauge. The trace of the left-hand side is taken over the physical state alone in the
axial gauge where there is no Aa

τ degree of freedom. The right-hand side is, of course, the vacuum
expectation value of the Polyakov loop operator in the covariant path integral form with the axial
gauge.

In our trials to find operators satisfying Eq. (4.1), we have observed that the non-Abelian nature of
the path-ordered product of the Polyakov loop in Eq. (4.1) is an obstacle to rewriting the expectation
value of the operator O(�̂ak

A , Âa
k , �̂ψ , ψ̂) in the trace formula of the left-hand side of Eq. (4.1) into

the covariant path integral form in the right-hand side of Eq. (4.1). Thus, it seems to be necessary to
transform the right-hand side of Eq. (4.1) into a path integral form without the path-ordered product.

To this end, let us consider gauge transformations such as

Aa
τ (τ , x)T a = U (τ )

(
A′a
τ (τ , x)T a + i

g
∂τ

)
U †(τ ), (4.2)

Aa
i (τ , x)T a = U (τ )A′a

i (τ , x)T aU †(τ ), (4.3)

ψ(τ , x) = U (τ )ψ ′(τ , x), (4.4)

where the unitary matrix U (τ ) is assumed to depend only on the Euclidean time τ with the periodic
boundary condition U (τ + β) = U (τ ) in order not to contradict with the quantum statistics at
finite temperature. We notice that there is no inhomogeneous term in the right-hand side of Eq. (4.3)
because U (τ ) does not depend on the spatial coordinate x. If we formally write the delta functions
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∏
x,a

δ(Aa
3(τ , x)) as

∏
x

δ(A3(τ , x)) with A3 = Aa
3T a, it will be obvious that the delta functions are

invariant under the gauge transformation (4.3), i.e.∏
x

δ(A3(τ , x)) =
∏

x

δ(A′
3(τ , x)). (4.5)

We choose the unitary matrix U (τ ) to diagonalize the Polyakov loop by the gauge transforma-

tion (4.2) as follows: The path-ordered product P eig
∫ β

0 dτAa
τ (τ ,x0)T a

transforms under the gauge
transformation (4.2) as

P eig
∫ β

0 dτAa
τ (τ ,x0)T a = U (β)

[
P eig

∫ β
0 dτA′a

τ (τ ,x0)T a
]

U †(0)

= U (0)
[
P eig

∫ β
0 dτA′a

τ (τ ,x0)T a
]

U †(0). (4.6)

Since P eig
∫ β

0 dτA′a
τ (τ ,x0)T a

is a unitary matrix fixed at x0, it can be diagonalized by a unitary matrix
U (0). Then, we can rewrite the Polyakov loop into the form

tr
(
P eig

∫ β
0 dτAa

τ (τ ,x0)T a
)

= tr
(

exp
{

ig
∫ β

0
dτA′ã

τ (τ , x0)T
ã
})

=
D∑
α=1

exp
{

ig
∫ β

0
dτA′ã

τ (τ , x0)(T
ã)αα

}
, (4.7)

where {T ã, ã = 1, 2, . . . , N −1} are generators of the Cartan subalgebra of SU (N )with the diagonal
form

(T ã)αβ = (T ã)ααδαβ (α,β = 1, 2, . . . , D). (4.8)

Here, D stands for the dimension of the representation of {T a} (D = N for the fundamental represen-
tation). Thus, the Polyakov loop turns out to reduce to the one defined for the U (1) subgroups in the
SU (N ) gauge group. Thanks to the reduction, the trace in the original expression (4.1) is replaced by
the summation with respect to the Abelian part of the Polyakov loop in Eq. (4.7) (note that (T ã)αα is
just a number) and one does not need to take care of the path-ordered integral because of the Abelian
nature of the U (1) gauge group.

It is convenient for transparent calculations to use the notation defined by

(T̃ a)αα ≡
{
(T ã)αα for a = ã (not summed over α),

0 for a �= ã.
(4.9)

By taking account of the above discussions, Eq. (4.1) becomes

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

axial

=
D∑
α=1

∫
DAa

μDψ̄Dψ det(∂3)
∏
x,a

δ(Aa
3) exp

{
ig
∫ β

0
dτAa

τ (τ , x0)(T̃
a)αα

}

× exp
∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

, (4.10)
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where we have removed the prime ′ from all the fields. Thus, our aim is now to find the operator
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) that satisfies the above relation.

We propose the operator O(�̂ak
A , Âa

k , �̂ψ , ψ̂) satisfying Eq. (4.10) as

O(�̂ak
A , Âa

k , �̂ψ , ψ̂) =
D∑
α=1

exp
{

g
∫ β

0
dτ
∫

d3x(T̃ a)ααδ
(3)(x − x0)

(
(∂3)

−2((D̂k�̂
k
A)

a + Ĵ a0
F

))}
,

(4.11)
where (T̃ a)αα is defined in Eq. (4.9). It should be emphasized that the above operator is described
by only the physical operators but not Aτ . This is a main result of our paper. The above form of the
operator might be guessed from Eqs. (2.5) and (2.9), but the proof that Eq. (4.11) leads to the relation
(4.10) seems to be far from trivial, as we will see below.

For the operator (4.11), the path integral representation for the left-hand side of Eq. (4.10) is

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

axial
=

D∑
α=1

∫
D�ak

A DAa
kD�ψDψ

× exp
∫ β

0
dτ
∫

d3x
{

g(T̃ a)ααδ
(3)(x − x0)

(
(∂3)

−2((Dk�
k
A)

a + J a0
F

))

+ i�ak
A Ȧa

k + i�ψψ̇ − Haxial

}
, (4.12)

where the Hamiltonian Haxial is given by Eq. (2.12). Since the exponent of the right-hand side
in Eq. (4.12) is quadratic with respect to �ak

A , whose explicit calculations and forms are given in
Appendix A.3, we can perform the Gaussian integration D�ak

A , and we obtain that

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

axial

=
D∑
α=1

∫
DAa

kD�ψDψ det−
1
2 (M−1) exp

∫ β

0
dτ
∫

d3x

×
{
−1

2
Ȧa

k Ȧa
l − 1

2
(DkȦk)

a(D−1DlȦl)
a − iȦa

k(DkD−1J 0
F)

a + 1

2
J a0

F (D−1J 0
F)

a

− 1

4
Fa

klF
a
kl − 1

2
∂3Aa

k∂3Aa
k + i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3∂3ψ

+ g(T̃ a)ααδ
(3)(x − x0)(D−1J 0

F)
a + ig(T̃ a)ααδ

(3)(x − x0)(D−1DkȦk)
a

− g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(∂3)

−2(T̃ a)ααδ
(3)(x − x0)

)
+ g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(D−1)ab(T̃ b)ααδ

(3)(x − x0)
)}

. (4.13)

We next insert the Gaussian integral,

1 =
∫

DAa
τ det

1
2 (D) exp

∫ β

0
dτ
∫

d3x

{
−1

2

(
iAa
τ − (D−1)ac(i(DkȦk)

c + J c0
F + g(T̃ c)ααδ

(3)(x − x0)
))

× (D)ad
(

iAd
τ − (D−1)de(i(DlȦl)

e + J e0
F + g(T̃ e)ααδ

(3)(x − x0)
)}

, (4.14)
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into Eq. (4.13) in order to recover the Aa
τ degree of freedom. Note that we add new terms of the

point color charge densities g(T̃ c)ααδ(x − x0), compared with Eq. (3.8). If we expand the exponent
of Eq. (4.14), which is given by Eq. (A.16) in Appendix A, we see that some of the terms in the
exponent of Eq. (4.13) cancel with those in Eq. (4.14). Then, we have

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

axial

=
D∑
α=1

∫
DAa

τDAa
kD�ψDψ det−

1
2 (M−1)det

1
2 (D) exp

∫ β

0
dτ
∫

d3x

{
−1

2
Ȧa

k Ȧa
k − 1

4
Fa

klF
a
kl − 1

2
∂3Aa

k∂3Aa
k + i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3∂3ψ + iAa

τ J a0
F

− 1

2
(DkAτ )

a(DkAτ )
a − 1

2
∂3Aa

τ ∂3Aa
τ + Ȧa

k(DkAτ )
a

+ igAa
τ (T̃

a)ααδ
(3)(x − x0)

− g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(∂3)

−2(T̃ a)ααδ
(3)(x − x0)

)}
. (4.15)

We note that Aa
τ is recovered as the auxiliary field through the Gaussian integral (4.14). The fourth

line of Eq. (4.15) is just what we wanted, and corresponds to the Polyakov loop in Eq. (4.10). Since
the term comes from the cross terms in the Gaussian integral (4.14), it turns out to be difficult to get
the Polyakov loop in the original path-ordered form of Eq. (4.1) from the above procedure. This is
the reason why we rewrite the Polyakov loop of Eq. (4.1) into the Abelian form given in Eq. (4.10).

We finally restore the Aa
3 degree of freedom by Eq. (3.10), and the terms in the exponent (4.15) are

summarized into the covariant form of the Lagrangian. The determinants are evaluated, as before,
like Eq. (3.11). Then, we arrive at

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

axial

=
D∑
α=1

∫
DAa

μDψ̄Dψ det(∂3)
∏
x,a

δ(Aa
3) exp

{
ig
∫ β

0
dτAa

τ (τ , x0)(T̃
a)αα

}

× exp
∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

. (4.16)

Hence, we have proved Eq. (4.10) for the operator Ô defined by Eq. (4.11). One can come back
to Eq. (4.1) by the inverse gauge transformations for Eqs. (4.2)–(4.4). One can say that we prove
Eq. (3.3) in the axial gauge for the operator O defined by Eq. (4.11).

Before closing this section, let us discuss the last term in Eq. (4.15), which is the divergent self-
energy of the point color charge densities due to introducing the Polyakov loop operator (4.11). If we
define a new operator Ônew in such a way that we subtract the self-energy part from the beginning
by the counter term, δa

self ,

Ônew ≡
D∑
α=1

exp
{

g
∫ β

0
dτ
∫

d3x(T̃ a)ααδ
(3)(x − x0)

(
(∂3)

−2((D̂k�̂
k
A)

a + Ĵ a0
F + δa

self

))}
, (4.17)
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where

δa
self ≡ g

2
(T̃ a)ααδ

(3)(x − x0), (4.18)

then the divergent term does not appear in the expression (4.15). We note that the term subtracted
by the counter term, (∂3)

−2δa
self , obviously does not depend on the field.

5. Hamiltonian in the Coulomb gauge

In this section, the following two subsections reformulate the analyses done in Sects. 2, 3, and 4 for
the case of the Coulomb gauge.

The Coulomb gauge is given by

∂iA
ai = 0 (i = 1, 2, 3). (5.1)

One of the components, say Aa
3, is eliminated by Eq. (5.1) like

Aa
3 = −(∂3)

−1∂kAa
k . (5.2)

We impose the Coulomb gauge on the ν = 0 component of the equation of motion (2.3) and formally
solve it for Aa

0. Then, we have

Aa
0 = (D−1)ab

(
(CkȦk)

b + J b0
F

)
(k = 1, 2). (5.3)

The operator (D−1)ab is defined as the inverse of (D)ab ≡ (D2
i )

ab. We find it useful to leave Aa
3 in the

covariant derivative (D3)
ab as it is, in order to perform calculations as clearly as possible, keeping

Eq. (5.2) in mind. (Ck)
ab in Eq. (5.3) is defined by

(Ck)
ab ≡ (Dk)

ab − (D3)
ab(∂3)

−1∂k . (5.4)

The partial integration with respect to (Ck)
ab yields a new operator, accompanying a minus sign,

given by

(C̃k)
ab ≡ (Dk)

ab − ∂k(∂3)
−1(D3)

ab (5.5)

and vice versa.
As in the case for the axial gauge, we eliminate Aa

0 by Eq. (5.3) and Aa
3 by Eq. (5.2) in the

Lagrangian (2.1). Then, we obtain the Lagrangian L(Ak ,ψ)Coul written in terms of only physical
degrees of freedom, whose explicit form is presented by Eq. (B.5) inAppendix B. Then, the canonical
momentum for Aa

k is given by

�ak
A ≡ ∂L(Ak ,ψ)Coul

∂Ȧa
k

= (N )ab
kl Ȧb

l − (C̃kD−1J 0
F)

a, (5.6)

where

(N )ab
kl ≡ (δkl + ∂k(∂3)

−2∂l)δ
ab − (C̃kD−1Cl)

ab. (5.7)
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We obtain from Eq. (5.6) that

Ȧa
k = (N−1)ab

kl

(
�bl

A + (C̃lD−1J 0
F)

b
)

, (5.8)

where (N−1)ab
kl is defined as the inverse of (N )ab

kl and its explicit form is

(N−1)ab
kl = (δkl − ∂k


−1∂l)δ
ab + (

C̃ ′
k
̃

−1C ′
l

)ab, (5.9)

where

(C̃ ′
k)

ab = (Dk)
ab − ∂k


−1∂ · (D)ab, (5.10)

(C ′
k)

ab = (Dk)
ab − (D)ab · ∂
−1∂k , (5.11)


̃−1 ≡ (
D · ∂
−1∂ · D

)−1, (5.12)


−1 ≡ (∂2
i )

−1. (5.13)

We have also used the notation ∂ ·D ≡ ∂iDi. Let us note that ∂ ·D = D ·∂ in the Coulomb gauge. We
present the relations among the operators, (5.4), (5.5), (5.10), (5.11), and the proof of Eq. (5.9) in
Appendix B. As for the fermion, we take the right derivative with respect to the Grassmann variable,
so that we have

�ψ ≡ ∂L(Ak ,ψ)Coul

∂ψ̇
= ψ̄ iγ 0. (5.14)

Then, the Hamiltonian is obtained as

HCoul = �ak
A Ȧa

k +�ψψ̇ − L(Ak ,ψ)Coul

= 1

2
�ak

A (N
−1
kl �

l
A)

a +�ak
A (N

−1
kl C̃lD−1J 0

F)
a

+ 1

2
(C̃kD−1J 0

F)(N
−1
kl C̃lD−1J 0

F)
a − 1

2
J a0

F (D−1J 0
F)

a

+ 1

4
Fa

klF
a
kl + 1

2
Fa

3kFa
3k − ψ̄ iγ kDkψ − ψ̄ iγ 3D3ψ . (5.15)

This Hamiltonian is written in terms of only physical degrees of freedom, as it should. If we compare
the Hamiltonian (5.15) with that in the axial gauge (2.12), we observe the correspondences among
the operators in the Hamiltonians such as M−1 ↔ N−1, Dk ↔ C̃k , even though their explicit forms
are quite different. The similarity between them may be the consequence of the fact that in both
cases the physical degrees of freedom are Ak , �ak

A , ψ , and �ψ alone. The Hamiltonian (5.15) can
be recast into another form, which is presented by Eq. (B.17) in Appendix B, and the self-energy of
the point color charge densities of the fermion in the Coulomb gauge becomes manifest. We shall
use the Hamiltonian (5.15) in the discussions below.

5.1. Trace formula in the Coulomb gauge at finite temperature

In this section we would like to repeat the same analyses as in the case of the axial gauge in Sect. 3.
We first show that the Hamiltonian (5.15) can reproduce the well-known path integral representation
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for the partition function in the Coulomb gauge at finite temperature,

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
Coul

=
∫

DAa
μDψ̄Dψ det(∂iDi)

∏
x,a

δ(∂iA
a
i )

× exp
∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

. (5.16)

The discussions here may be too pedagogical again, but are helpful for the discussions in the next
subsection. The path integral representation for the left-hand side of Eq. (5.16) is

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
Coul

=
∫

D�ak
A DAa

kD�ψDψ exp
∫ β

0
dτ
∫

d3x
{

i�ak
A Ȧa

k + i�ψψ̇ − HCoul

}
. (5.17)

Since the exponent in Eq. (5.17) is quadratic with respect to �ak
A , one can perform the Gaussian

integration. The detailed expression for the quadratic form is given by Eq. (B.18) in Appendix B.
Then, we have

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
Coul

=
∫

DAa
kD�ψDψ det−

1
2 (N−1) exp

∫ β

0
dτ
∫

d3x

×
{
−1

2
Ȧa

k Ȧa
k − 1

2

(
(∂3)

−1∂k Ȧa
k

)(
(∂3)

−1∂l Ȧ
a
l

)+ 1

2
Ȧa

k(C̃kD−1ClȦl)
a

− iȦa
k(C̃kD−1J 0

F)
a + 1

2
J a0

F (D−1J 0
F)

a

− 1

4
Fa

klF
a
kl − 1

2
Fa

3kFa
3k + i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3D3ψ

}
. (5.18)

We next consider the Gaussian integral given by

1 =
∫

DAa
τ det

1
2 (D) exp

∫ β

0
dτ
∫

d3x
{
−1

2

(
iAa
τ − (D−1)ac(i(CkȦk)

c + J c0
F

))

× (D)ad
(

iAd
τ − (D−1)de(i(ClȦl)

e + J e0
F

))}
(5.19)

in order to restore the Aτ degree of freedom. Inserting the Gaussian integration (5.19) into Eq. (5.18),
some of the terms in the exponents of Eqs. (5.18) and (5.19) cancel each other. We present the
expansion of the exponent of Eq. (5.19) in Eq. (B.20) in Appendix B. Then, we have

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
Coul

=
∫

DAa
τDAa

kD�ψDψ det−
1
2 (N−1) det

1
2 (D)

× exp
∫ β

0
dτ
∫

d3x
{
−1

2
Ȧa

k Ȧa
k − 1

2

(
(∂3)

−1∂k Ȧa
k

)(
(∂3)

−1∂l Ȧ
a
l

)− 1

4
Fa

klF
a
kl − 1

2
Fa

3kFa
3k

− 1

2
(DiAτ )

a(DiAτ )
a + Ȧa

k(DkAτ )
a − (D3Aτ )

a((∂3)
−1∂k Ȧa

k)

+ i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3D3ψ + iAa
τ J a0

F

}
. (5.20)
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As in the case of the axial gauge, Aτ is recovered as the auxiliary field through the Gaussian integral
(5.19). In order to restore the Aa

3 degree of freedom, let us consider the identity

1 =
∫

DAa
3

∏
x,a

δ(Aa
3 + (∂3)

−1∂kAa
k)
(
=
∫

DAa
3 det(∂3)

∏
x,a

δ(∂iA
a
i )
)

. (5.21)

Then, the exponent (5.20) is summarized into the covariant form of the Lagrangian thanks to the
delta function in Eq. (5.21). And as shown in Appendix C.2, the determinants are evaluated as

det−
1
2 (N−1)det

1
2 (D)det(∂3) = det(∂iDi). (5.22)

Hence, we obtain that

Tr
(

e−βH (�̂k
A,Âk ,�̂ψ ,ψ̂)

)
Coul

=
∫

DAa
μDψ̄Dψ det(∂iDi)

∏
x,a

δ(∂iA
a
i )

× exp
∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

, (5.23)

where we have used D�ψ = Dψ̄ and defined γτ ≡ −iγ 0. We have finished proving Eq. (5.16).

5.2. Polyakov loop in the Coulomb gauge

Let us proceed to discuss the Polyakov loop in the Coulomb gauge.5 We no longer have the Aτ
degree of freedom, from which the Polyakov loop is usually defined, in the operator formalism of
the Coulomb gauge. Nevertheless, it is natural to expect that the operator written in terms of only
physical degrees of freedom corresponding to the Polyakov loop should exist and is to be defined.

Our aim is to present the operator Ô satisfying Eq. (3.3) for the case of the Coulomb gauge, that
is, it satisfies

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

Coul

=
D∑
α=1

∫
DAa

μDψ̄Dψ det(∂iDi)
∏
x,a

δ(∂iA
a
i ) exp

{
ig
∫ β

0
dτAa

τ (τ , x0)(T̃
a)αα

}

× exp
∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

, (5.24)

where, as in the case of the axial gauge, the Polyakov loop is reduced to the U (1) gauge sector of the
SU (N ) gauge group by the gauge transformations (4.2)–(4.4). Note again that Ô should be written
in terms of only physical degrees of freedom.

We shall show that

Ô ≡
D∑
α=1

exp
{

g
∫ β

0
dτ
∫

d3x(T̃ a)ααδ
(3)(x − x0)

(
(
ˆ̃

−1)ab((Ĉ ′

k�̂
k
A)

b + Ĵ b0
F + δb

self

))}
(5.25)

satisfies Eq. (5.24). Here we have inserted the counter term defined by

δb
self ≡ g

2
(T̃ b)ααδ

(3)(x − x0) (5.26)

5 As a different approach from ours, a Polyakov loop in the temporal gauge has been discussed in Ref. [21]
and treated as a Wilson line of the Hosotani mechanism [10,11] by exchanging the role of a spatial coordinate
and the Euclidean time.
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in the definition (5.25). Note that the counter term (5.26) is the same form as the one for the axial
gauge (4.18), and it does not depend on fields. δb

self cancels the divergent self-energy of the point color
charge densities arising from introducing the operator (5.25), that is, the Polyakov loop operator as
we will see below. It may be worthwhile pointing out that the term subtracted by the counter term is
(
̃−1)abδb

self , so that, unlike the case for the axial gauge, it depends on the gauge field through the
operator 
̃−1. The above form of the operator (5.25) might be guessed from Eqs. (5.3) and (5.8),
but it seems to be far from trivial that the operator actually satisfies Eq. (5.24), as we will see below.

The path integral representation for the left-hand side of Eq. (5.24) is

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

Coul

=
D∑
α=1

∫
D�ak

A DAa
kD�ψDψ

× exp
∫ β

0
dτ
∫

d3x
{

g(T̃ a)ααδ
(3)(x − x0)

(
(
̃−1)ab((C ′

k�
k
A)

b + J b0
F + δb

self

))

+ i�ak
A Ȧa

k + i�ψψ̇ − HCoul

}
, (5.27)

where the Hamiltonian HCoul is given by Eq. (5.15). The exponent in Eq. (5.27) is quadratic with
respect to �ak

A , so that we can perform the integration D�ak
A . The detailed calculations and the

explicit quadratic form for the exponent in Eq. (5.27) are given in Appendix B.3. Then, we have

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

Coul
=

D∑
α=1

∫
DAa

kD�ψDψ det−
1
2 (N−1)

× exp
∫ β

0
dτ
∫

d3x
{
−1

2
Ȧa

k Ȧa
k − 1

2

(
(∂3)

−1∂k Ȧa
k

)(
(∂3)

−1∂l Ȧ
a
l

)+ 1

2
Ȧa

k(C̃kD−1ClȦl)
a

− iȦa
k(C̃kD−1J 0

F)
a + 1

2
J a0

F (D−1J 0
F)

a − 1

4
Fa

klF
a
kl − 1

2
Fa

3kFa
3k

+ i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3D3ψ

+ g(T̃ a)ααδ
(3)(x − x0)(
̃

−1)abδb
self

+ g(T̃ a)ααδ
(3)(x − x0)(D−1J 0

F)
a + ig(T̃ a)ααδ

(3)(x − x0)(D−1CkȦk)
a

− g2

2
(T̃ a)ααδ

(3)(x − x0)
(
(
̃−1)ab(T̃ b)ααδ

(3)(x − x0)
)

+ g2

2
(T̃ a)ααδ

(3)(x − x0)
(
(D−1)ab(T̃ b)ααδ

(3)(x − x0)
)}

. (5.28)

In order to recover the Aa
τ degree of freedom, we insert the Gaussian integral defined by

1 =
∫

DAa
τ det

1
2 (D) exp

∫ β

0
dτ
∫

d3x

×
{
−1

2

(
iAa
τ − (D−1)ac(i(CkȦk)

c + J c0
F + g(T̃ c)ααδ

(3)(x − x0)
))

× (D)ad
(

iAd
τ − (D−1)de(i(ClȦl)

e + J e0
F + g(T̃ e)ααδ

(3)(x − x0)
))}

(5.29)
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into Eq. (5.28). We have added new terms of the point color charge densities g(T̃ c)ααδ(x − x0),
compared with Eq. (5.19). In Eq. (B.28) of Appendix B, we explicitly present the expansion of the
exponent of Eq. (5.29) and we find that some of the terms in the exponent of Eq. (5.29) cancel with
those in Eq. (5.28). Then, we obtain that

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

Coul

=
D∑
α=1

∫
DAa

τDAa
kD�ψDψ det−

1
2 (N−1)det

1
2 (D) exp

∫ β

0
dτ
∫

d3x

×
{
−1

2
Ȧa

k Ȧa
k − 1

2

(
(∂3)

−1∂k Ȧa
k

)(
(∂3)

−1∂l Ȧ
a
l

)− 1

4
Fa

klF
a
kl − 1

2
Fa

3kFa
3k

− 1

2
(DiAτ )

a(DiAτ )
a + Ȧa

k(DkAτ )
a − (D3Aτ )

a((∂3)
−1∂k Ȧa

k)

+ i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3D3ψ + iAa
τ J a0

F + igAa
τ (T̃

a)ααδ
(3)(x − x0)

+ g(T̃ a)ααδ
(3)(x − x0)(
̃

−1)abδb
self

− g2

2
(T̃ a)ααδ

(3)(x − x0)
(
(
̃−1)ab(T̃ b)ααδ

(3)(x − x0)
)}

. (5.30)

The last two terms are found to cancel with the choice of Eq. (5.26). The Aτ degree of freedom is
recovered as the auxiliary field through the Gaussian integral (5.29). The last term in the fourth line
of Eq. (5.30) just corresponds to the Polyakov loop in Eq. (5.24).

We finally restore the Aa
3 degree of freedom by Eq. (5.21). As before, the exponent is summarized

into the covariant form of the Lagrangian and the determinant is evaluated as Eq. (5.22). The result
is

Tr
(
O(�̂ak

A , Âa
k , �̂ψ , ψ̂) e−βH (�̂k

A,Âk ,�̂ψ ,ψ̂)
)

Coul
=

D∑
α=1

∫
DAa

μDψ̄Dψ det(∂iDi)
∏
x,a

δ(∂iA
a
i )

× exp
{

ig
∫ β

0
dτAa

τ (τ , x0)(T̃
a)αα

}
exp

∫ β

0
dτ
∫

d3x
{−1

4
Fa
μνFa

μν − ψ̄ iγμDμψ
}

. (5.31)

Thus, we have proved Eq. (5.24), and this implies that we have verified Eq. (3.3) in the Coulomb
gauge for the operator Ô defined by Eq. (5.25).

It may be worth mentioning here the equivalence between the axial gauge and the Coulomb
gauge. The Faddeev–Popov method guarantees the equivalence among different gauge choices in
the path integral formalism even at finite temperature. Although the equivalence is believed to be true
even in the operator formalism at finite temperature, the operator correspondence between operator
formalisms with different gauge choices seems to be less obvious. Actually, our final results (4.16)
and (5.31) show that their right-hand sides are mutually transformed by the Faddeev–Popov manner.
This fact implies that the results may prove indirectly the equivalence between the axial gauge and
the Coulomb gauge in the operator formalism at finite temperature with the corresponding Polyakov
loop operators.

6. Conclusions

In quantizing the non-Abelian gauge theory with a non-covariant gauge fixing such as the axial and
Coulomb gauges, any physical operator such as the Hamiltonian is written in terms of only physical
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degrees of freedom, by which the Hilbert space is spanned. A0 is not a dynamical variable, so it
disappears in the Hilbert space. Then, one may wonder how one should define the operator, written
in terms of only physical degrees of freedom, corresponding to the Polyakov loop operator when
one considers the theory in these gauge fixings.

In order to answer the question, we have first studied the canonical formulation of the non-Abelian
gauge theory in the axial and Coulomb gauges, in which the physical degrees of freedom are clarified.
We started with the Lagrangian obtained by imposing the gauge condition and by eliminating Aa

0
through the equation of motion, from which the canonical momentum for the gauge field is defined.
The Hamiltonian obtained in this way is written in terms of only physical degrees of freedom as it
should, though it has a complicated form including the non-local operator.

We have constructed the operator corresponding to the Polyakov loop operator in terms of only
physical degrees of freedom in the axial and Coulomb gauges. In order to confirm that the defined
operator is actually the standard Polyakov loop operator, we have evaluated the trace formula for
the operator at finite temperature and showed that it can be rewritten into the covariant path integral
form for the usual Polyakov loop operator with all the gauge degrees of freedom under the chosen
gauge fixing.

We have encountered a divergent quantity in the process to obtain the covariant path integral
form. It is the self-energy of the point color charge densities owing to introducing the operator Ô,
which corresponds to the Polyakov loop. Introducing the Polyakov loop is essentially the same as
considering the point color charge densities of a fermion. This manifestly appears in the Hamiltonians,
(A.6) and (B.17) in the appendices. In the case of the axial gauge the divergent self-energy does not
depend on the field, while in the case of the Coulomb gauge it does. One can subtract the self-energy
by introducing the counter term, δa

self , in the definition of the operator Ô, and the self-energy does
not appear in the final expression of the covariant path integral form.

In proposing the operators (4.17) and (5.25), we have taken into account the fact that the Polyakov
loop operator has the same physical effect of introducing a color charge density. In fact, we have
guessed the forms of the operators (4.17) and (5.25) from the second and third terms in the Hamilto-
nians (A.6) and (B.17). It is also very important and interesting to investigate the theoretical aspects
of the non-Abelian gauge theory at finite temperature based on the present work in addition to giving
the complete physical interpretation of the operator.
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Appendix A. Axial gauge

In this appendix we present some details of the calculations and formulae necessary in order to derive
the results in the text.

17/28



PTEP 2017, 043B02 M. Sakamoto and K. Takenaga

A.1. Hamiltonian in the axial gauge

The Lagrangian L(Aa
k ,ψ)axial is obtained by imposing the axial gauge Aa

3 = 0 and eliminating Aa
0

by using the constraint (2.5) in the Lagrangian (2.1). Straightforward calculations yield

L(Aa
k ,ψ)axial = 1

2
Ȧa

k(MklȦl)
a − Ȧa

k(DkD−1J 0
F)

a + 1

2
J a0

F (D−1J 0
F)

a

− 1

4
Fa

klF
a
kl − 1

2
∂3Aa

k∂3Aa
k + ψ̄ iγ 0ψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3∂3ψ , (A.1)

where we have used the definition for (M )ab
kl , (2.8). In deriving (A.1), we have formally performed the

partial integration with respect to Dk and D. The partial integration with respect to Dk accompanies
a minus sign, while that with respect to D does not. And we also note that the partial integration with
respect to (M )ab

kl , (M−1)ab
kl does not accompany a minus sign.

As mentioned in Sect. 2, the Hamiltonian (2.12),

Haxial = �ak
A Ȧa

k +�ψψ̇ − L(Ak ,ψ)axial

= 1

2
�ak

A (M
−1
kl �

l
A)

a +�ak
A (M

−1
kl DlD−1J 0

F)
a

+ 1

2
(DkD−1J 0

F)
a(M−1

kl DlD−1J 0
F)

a − 1

2
J a0

F (D−1J 0
F)

a

+ 1

4
Fa

klF
a
kl + 1

2
∂3Aa

k∂3Aa
k − ψ̄ iγ kDkψ − ψ̄ iγ 3∂3ψ , (A.2)

can be rewritten into another form, which is obtained by using the explicit form of (M−1)ab
kl for the

second and the third terms in Eq. (A.2) after the partial integration with respect to M−1
kl , Dk , and

D−1. These two terms are written as

− (D−1DlM
−1
lk �

k
A)

aJ a0
F − 1

2
J a0

F (D−1DkM−1
kl DlD−1J 0

F)
a

= �ak
A

(
Dk(∂3)

−2J 0
F

)a − 1

2
J a0

F

((
(∂3)

−2δab − (D−1)ab)J b0
F

)
, (A.3)

where we have used the relations

(D−1DlM
−1
lk )

ab = (∂3)
−2(Dk)

ab (A.4)

and (
D−1DkM−1

kl DlD−1
)ab = (∂3)

−2δab − (D−1)ab, (A.5)

which can easily be shown by using the explicit form of (M−1)ab
kl given by Eq. (2.10). Finally, we

have performed the partial integration with respect to Dk and (∂3)
−2 in order to obtain the result

(A.3). Then, we find that

Haxial = 1

2
�ak

A (M
−1
kl �

l
A)

a +�ak
A (Dk(∂3)

−2J 0
F)

a − 1

2
J a0

F (∂3)
−2J a0

F

+ 1

4
Fa

klF
a
kl + 1

2
∂3Aa

k∂3Aa
k − ψ̄ iγ kDkψ − ψ̄ iγ 3∂3ψ . (A.6)

Note that the third term in the first line in Eq. (A.6) is well known to be the self-energy of the point
color charge densities of a fermion in the axial gauge. The self-energy manifestly appears in this
form of the Hamiltonian.

18/28



PTEP 2017, 043B02 M. Sakamoto and K. Takenaga

A.2. Trace formula in the axial gauge

In order to perform the integration D�ak
A , we complete the square with respect to�ak

A in the exponent
of Eq. (3.5),

i�ak
A Ȧa

k + i�ψψ̇ − Haxial

= −1

2

(
�ak

A − i(MklȦl)
a + (DkD−1J 0

F)
a
)
(M−1)ab

km

(
�bm

A − i(MmnȦn)
b + (DmD−1J 0

F)
b
)

− 1

2
Ȧa

k(MklȦl)
a − iȦa

k(DkD−1J 0
F)

a + 1

2
J a0

F (D−1J 0
F)

a − 1

4
Fa

klF
a
kl − 1

2
∂3Aa

k∂3Aa
k

+ i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3∂3ψ . (A.7)

The first term in the third line of Eq. (A.7) can be written as

−1

2
Ȧa

k(MklȦl)
a = −1

2
Ȧa

k Ȧa
k − 1

2
(DkȦk)

a(D−1DlȦl)
a (A.8)

by using the explicit form for (M )ab
kl , (2.8), and by performing the partial integration for Dk . Then, we

obtain Eq. (3.7). If we expand the exponent of the Gaussian integral (3.8), we have, after performing
the partial integration with respect to D,

− 1

2

(
iAa
τ − (D−1)ac(i(DkȦk)

c + J c0
F

))
(D)ad

(
iAd
τ − (D−1)de(i(DlȦl)

e + J e0
F

))

= −1

2
(DkAτ )

a(DkAτ )
a − 1

2
∂3Aa

τ ∂3Aa
τ + iAa

τ J a0
F + Ȧa

k(DkAτ )
a

+ 1

2
(DkȦk)

a(D−1DlȦl)
a + iȦa

k(DkD−1J 0
F)

a − 1

2
J a0

F (D−1J 0
F)

a. (A.9)

We observe that some of the terms in the second line of the right-hand side of Eq. (A.7) and the
right-hand side of Eq. (A.9) cancel each other to yield the result (3.9).

A.3. Polyakov loop in the axial gauge

In order to perform the integration D�ak
A , we need to complete the square with respect to�ak

A in the
exponent of Eq. (4.12), which is given by

− 1

2

(
�ak

A − (M )ab
kl

(
iȦb

l − g(Dl)
bd(∂3)

−2(T̃ d)ααδ
(3)(x − x0)

)+ (DkD−1J 0
F)

b
)
(M−1)

ag
km

×
(
�

gm
A − (M )

gc
mn
(
iȦc

n − g(Dn)
cf (∂3)

−2(T̃ f )ααδ
(3)(x − x0)

)+ (DmD−1J 0
F)

g
)

. (A.10)

There are new terms containing the gauge coupling g, due to introducing the operator (4.11), which
do not appear in Eq. (A.7). According to the perfect square with respect to �ak

A , we should add the
following terms:

− g(T̃ a)ααδ
(3)(x − x0)

(
(∂3)

−2(Dk�
k
A)

a)+ ig(T̃ a)ααδ
(3)(x − x0)

(
(∂3)

−2DkMklȦl
)a

+ g(M )ab
kl (Dl)

bd(∂3)
−2(T̃ d)ααδ

(3)(x − x0)
(
(M−1)

ag
km(DmD−1J 0

F)
g)

− g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(∂3)

−2(DkMklDl)
ab(∂3)

−2(T̃ b)ααδ
(3)(x − x0)

)
, (A.11)

where we have performed the partial integration with respect to (∂3)
−2, Dk , and (M )ab

kl . They can be
rewritten into simple forms by using the explicit form of M ab

kl given by Eq. (2.8). It is easy to check
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that

(DlMlk)
ab = (Dl)

ac(δcbδlk − (DlD−1Dk)
cb) = (Dk)

ab − (D2
l D−1Dk)

ab

= (Dk)
ab − (

(D − (∂3)
2)D−1Dk

)ab = (∂3)
2(D−1Dk)

ab (A.12)

and

(DkMklDl)
ab = (DkMkl)

ac(Dl)
cb (A.12)= (∂3)

2(D−1Dl)
ac(Dl)

cb

= (∂3)
2(D−1(D − (∂3)

2)
)ab = (D2

k)
ab − (D2

kD−1D2
l )

ab

= (∂3)
2δab − (∂3)

2(D−1)ab(∂3)
2. (A.13)

Then, Eq. (A.11) becomes

− g(T̃ a)ααδ
(3)(x − x0)

(
(∂3)

−2(Dk�
k
A)

a)+ ig(T̃ a)ααδ
(3)(x − x0)

(
(∂3)

−2DkMklȦl
)a

+ g(M )ab
kl (Dl)

bd(∂3)
−2(T̃ d)ααδ

(3)(x − x0)
(
(M−1)

ag
km(DmD−1J 0

F)
g)

− g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(∂3)

−2(DkMklDl)
ab(∂3)

−2(T̃ b)ααδ
(3)(x − x0)

)
= −g

(
(T̃ a)ααδ

(3)(x − x0)
)(
(∂3)

−2((Dk�
k
A)

a + J 0
F

)a)
+ g

(
(T̃ a)ααδ

(3)(x − x0)
)(D−1J 0

F

)a + ig(T̃ a)ααδ
(3)(x − x0)(D−1DkȦk)

a

− g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(∂3)

−2(T̃ b)ααδ
(3)(x − x0)

)
+ g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(D−1)ab(T̃ b)ααδ

(3)(x − x0)
)
, (A.14)

where the first term, aside from the minus sign, in the right-hand side is nothing but the exponent of
the operator (4.11). Therefore, the exponent of the right-hand side of Eq. (4.12) is written into the
quadratic form with respect to �ak

A as

g(T̃ a)ααδ
(3)(x − x0)

(
(∂3)

−2((Dk�
k
A)

a + J a0
F

))+ i�ak
A Ȧa

k + i�ψψ̇ − Haxial

= −1

2

(
�ak

A − (M )ab
kl

(
iȦb

l − g(Dl)
bd(∂3)

−2(T̃ d)ααδ
(3)(x − x0)

)+ (DkD−1J 0
F)

b
)
(M−1)

ag
km

×
(
�

gm
A − (M )

gc
mn
(
iȦc

n − g(Dn)
cf (∂3)

−2(T̃ f )ααδ
(3)(x − x0)

)+ (DmD−1J 0
F)

g
)

− 1

2
Ȧa

k(MklȦl)
a − iȦa

k(DkD−1J 0
F)

a + 1

2
J a0

F (D−1J 0
F)

a − 1

4
Fa

klF
a
kl − 1

2
∂3Aa

k∂3Aa
k

+ i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3∂3ψ

+ g(T̃ a)ααδ
(3)(x − x0)(D−1J 0

F)
a + ig(T̃ a)ααδ

(3)(x − x0)(D−1DkȦk)
a

− g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(∂3)

−2(T̃ a)ααδ
(3)(x − x0)

)
+ g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(D−1)ab(T̃ b)ααδ

(3)(x − x0)
)
. (A.15)

We see that Eq. (4.13) is obtained after the integration D�ak
A . Let us note that the first term in the

fourth line of Eq. (A.15) is rewritten by Eq. (A.8). If we expand the exponent of the Gaussian integral
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(4.14), we have

− 1

2

(
iAa
τ − (D−1)ac(i(DkȦk)

c + J c0
F + g(T̃ c)ααδ

(3)(x − x0)
))

× (D)ad
(

iAd
τ − (D−1)de(i(DlȦl)

e + J e0
F + g(T̃ e)ααδ

(3)(x − x0)
))

= −1

2
(DkAτ )

a(DkAτ )
a − 1

2
∂3Aa

τ ∂3Aa
τ + iAa

τ J a0
F + Ȧa

k(DkAτ )
a

+ 1

2
(DkȦk)

a(D−1DlȦl)
a + iȦa

k(DkD−1J 0
F)

a − 1

2
J a0

F (D−1J 0
F)

a

+ igAa
τ (T̃

a)ααδ
(3)(x − x0)

− g(T̃ a)ααδ
(3)(x − x0)(D−1J 0

F)
a − ig(T̃ a)ααδ

(3)(x − x0)(D−1DkȦk)
a

− g2

2

(
(T̃ a)ααδ

(3)(x − x0)
)(
(D−1)ab(T̃ b)ααδ

(3)(x − x0)
)
. (A.16)

We find that some of the terms in Eqs. (A.15) and (A.16) cancel each other, and we obtain the result
(4.15). The fifth line in Eq. (A.16) corresponds to the Polyakov loop, as it should. Note that the last
term in Eq. (A.16) is canceled with the last term in Eq. (A.15). As for the term with the two delta
functions, only the seventh line in Eq. (A.15) is left, which is the divergent self-energy of the point
color charge densities owing to introducing the operator (4.11), as discussed in the text.

Appendix B. Coulomb gauge

We present the formulae and relations in order to obtain the results of Sect. 5.

B.1. Hamiltonian in the Coulomb gauge

Let us recall the operators defined in Eqs. (5.4) and (5.5), from which we obtain new operators given
by Eqs. (5.10) and (5.11). These are proved by using ∂2

l = 
− (∂3)
2:

(C̃ ′
k)

ab ≡ (δkl − ∂k

−1∂l)(C̃l)

ab = (δkl − ∂k

−1∂l)

(
(Dl)

ab − ∂l(∂3)
−1(D3)

ab)
= (Dk)

ab − ∂k

−1∂ · (D)ab, (B.1)

(C ′
k)

ab ≡ (Cl)
ab(δlk − ∂l


−1∂k) = (
(Dl)

ab − (D3)
ab(∂3)

−1∂l
)
(δlk − ∂l


−1∂k)

= (Dk)
ab − (D)ab · ∂
−1∂k , (B.2)

where we have used the notation ∂i(Di)
ab = ∂ · (D)ab, which is also (D)ab · ∂ due to the Coulomb

gauge, ∂iAai = 0.
We also find the useful formulae given by

(CkC̃ ′
k)

ab = (
(Dk)

ac − (D3)
ac(∂3)

−1∂k
)(
(Dk)

cb − ∂k

−1∂ · (D)cb)

= (D2
k)

ab + (D2
3)

ab − (Dj∂j

−1∂iDi)

ab

= Dab − (
̃)ab, (B.3)

(C ′
k C̃k)

ab = (
(Dk)

ac − (D)ac · ∂
−1∂k
)(
(Dk)

cb − ∂l(∂3)
−1(D3)

ac)
= (D2

k)
ab + (D2

3)
ab − (Di∂i


−1∂jDj)
ab

= Dab − (
̃)ab, (B.4)

where 
̃ is defined by Di∂i

−1∂jDj, whose inverse operator is given by Eq. (5.12).
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The Lagrangian L(Aa
k ,ψ)Coul is obtained by imposing the Coulomb gauge ∂iAai = 0 and elimi-

nating Aa
0 by using the constraint (5.3) in the Lagrangian (2.1), and after straightforward calculations

we have

L(Aa
k ,ψ)Coul = 1

2
Ȧa

k(NklȦl)
a − Ȧa

k(C̃kD−1J 0
F)

a + 1

2
J a0

F (D−1J 0
F)

a

− 1

4
Fa

klF
a
kl − 1

2
Fa

3kFa
3k + ψ̄ iγ 0ψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3D3ψ , (B.5)

where we have used the definition (5.7). In deriving (B.5), we have formally performed the partial
integration with respect to C̃k and D. The partial integration with respect to C̃k gives a new operator
Ck , accompanying a minus sign, and vice versa. Incidentally, the partial integration with respect to
(N )ab

kl , (N−1)ab
kl does not accompany a minus sign.

Let us show that (N−1)ab
kl is given by Eq. (5.9). To this end, we first introduce a new operator

defined by

(N ′)ab
km ≡ (δkl − ∂k


−1∂l)(N )
ab
lm. (B.6)

(N )ab
km is defined by Eq. (5.7). Since it is easy to show that

(δkl − ∂k

−1∂l)(δlm + ∂l(∂3)

−2∂m) = δkm, (B.7)

Eq. (B.6) becomes

(N ′)ab
km = δkmδ

ab − (C̃ ′
kD−1Cm)

ab, (B.8)

where we have used the definition (B.1). From Eq. (B.6), we obtain that

(N−1)ab
kl = (N−1′)ab

km(δml − ∂m

−1∂l). (B.9)

The explicit form of (N−1′
)ab
kl is easily found to be

(N−1′
)ab
kl = ∂klδ

ab + (C̃ ′
k
̃

−1Cl)
ab. (B.10)

This is, by using the relation (B.3), because

(N ′)ac
kl (N

−1′)cb
lm

= (
δklδ

ac − (C̃ ′
kD−1Cl)

ac)(∂lmδ
cb + (C̃ ′

l
̃
−1Cm)

cb)
= δkmδ

ab + (C̃ ′
k
̃

−1Cm)
ab − (C̃ ′

kD−1Cm)
ab − (C̃ ′

kD−1ClC̃
′
l
̃

−1Cm)
ab

= δkmδ
ab + (C̃ ′

k
̃
−1Cm)

ab − (C̃ ′
kD−1Cm)

ab − (C̃ ′
kD−1(D − 
̃)
̃−1Cm)

ab

= δkmδ
ab. (B.11)

Then, Eq. (B.9) is evaluated as

(N−1)ab
kl = (

δkmδ
ab + (C̃ ′

k
̃
−1Cm)

ab)(δml − ∂m

−1∂l)

= (δkl − ∂k

−1∂l)δ

ab + (C̃ ′
k
̃

−1C ′
l)

ab, (B.12)

where we have used the definition (B.2) for C ′
l . We have finished proving Eq. (5.9).
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As in the case for the axial gauge, the Hamiltonian (5.15),

HCoul = �ak
A Ȧa

k +�ψψ̇ − L(Ak ,ψ)Coul

= 1

2
�ak

A (N
−1
kl �

l
A)

a +�ak
A (N

−1
kl C̃lD−1J 0

F)
a

+ 1

2
(C̃kD−1J 0

F)(N
−1
kl C̃lD−1J 0

F)
a − 1

2
J a0

F (D−1J 0
F)

a

+ 1

4
Fa

klF
a
kl + 1

2
Fa

3kFa
3k − ψ̄ iγ kDkψ − ψ̄ iγ 3D3ψ , (B.13)

can be rewritten into another form. The second and the third terms in Eq. (B.13) after the partial
integration with respect to N−1

kl , C̃k , and D−1 are rewritten as

− (D−1ClN
−1
lk �k

A)
aJ a0

F − 1

2
J 0a

F (D−1CkN−1
kl C̃lD−1J 0

F)
a

= �ak
A

(
C̃ ′

k
̃
−1J 0

F

)a − 1

2
J a0

F

(((

̃−1)ab − (D−1)ab)J b0

F

)
, (B.14)

where we have used the relations

(D−1ClN
−1
lk )ab = (
̃−1C ′

k)
ab (B.15)

and (
D−1CkN−1

kl C̃lD−1
)ab = (
̃−1)ab − (D−1)ab. (B.16)

The above relations can be shown by using Eqs. (B.3) and (B.4) and the explicit form of (N−1)ab
kl

given by Eq. (B.12). Finally, we have performed the partial integration with respect to 
̃−1 and C ′
k in

order to arrive at Eq. (B.14). Note that the partial integration with respect to C ′
k yields a new operator

C̃ ′
k , accompanying a minus sign, and vice versa, while the partial integration of 
̃−1 does not have

a minus sign. Then, we find that

HCoul = 1

2
�ak

A (N
−1
kl �

l
A)

a +�ak
A (C̃

′
k
̃

−1J 0
F)

a − 1

2
J a0

F (
̃−1J 0
F)

a

+ 1

4
Fa

klF
a
kl + 1

2
Fa

3kFa
3k − ψ̄ iγ kDkψ − ψ̄ iγ 3D3ψ . (B.17)

Note that the third term in the first line of Eq. (B.17) is well known to be the self-energy of the point
color charge densities of a fermion in the Coulomb gauge. Unlike the case for the axial gauge, it
depends on the gauge field through the operator 
̃−1. We also point out the correspondence of the
Hamiltonians (A.6) and (B.17) such as M−1 ↔ N−1, Dk ↔ C̃ ′

k , and (∂3)
−2 ↔ 
̃−1, though the

explicit forms for the operators are quite different.

B.2. Trace formula in the Coulomb gauge

We complete the square with respect to �ak
A in the exponent of Eq. (5.17) in order to perform the

integration D�ak
A ,

i�ak
A Ȧa

k + i�ψψ̇ − HCoul

= −1

2

(
�ak

A − i(NklȦl)
a + (C̃kD−1J 0

F)
a
)
(N−1)ac

km

(
�cm

A − i(NmnȦn)
c + (C̃mD−1J 0

F)
c
)
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− 1

2
Ȧa

k(NklȦl)
a − iȦa

k(C̃kD−1J 0
F)

a + 1

2
J a0

F (D−1J 0
F)

a − 1

4
Fa

klF
a
kl − 1

2
Fa

3kFa
3k

+ i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3D3ψ . (B.18)

The first term in the third line of Eq. (B.18) is rewritten as

−1

2
Ȧa

k(NklȦl)
a = −1

2
Ȧa

k Ȧa
k − 1

2

(
(∂3)

−1∂k Ȧa
k

)(
(∂3)

−1∂l Ȧ
a
l

)+ 1

2
Ȧa

k(C̃kD−1ClȦl)
a, (B.19)

where we have used the explicit form for (N )ab
kl , Eq. (5.7), and performed the partial integration with

respect to (∂3)
−1 and ∂k .

The expansion of the exponent of the Gaussian integral (5.19) yields

− 1

2

(
iAa
τ − (D−1)ac(i(CkȦk)

c + J c0
F

))
(D)ad

(
iAd
τ − (D−1)de(i(ClȦl)

e + J e0
F

))

= −1

2
(DiAτ )

a(DiAτ )
a + iAa

τ J a0
F + Ȧa

k(DkAτ )
a − 1

2
Ȧa

l (C̃lD−1CkȦk)
a

+ iȦa
k(C̃kD−1J 0

F)
a − 1

2
J a0

F (D−1J 0
F)

a. (B.20)

Note that the third and the fourth terms in Eq. (B.20) come from one of the terms obtained by
expanding the exponent of Eq. (B.20),

−Aa
τ

(
CkȦk

)a = (
DkAτ

)aȦa
k − (

D3Aτ
)a(
(∂3)

−1∂k Ȧa
k

)
, (B.21)

where we have used Eq. (5.4), and the partial integration with respect to Dk has been done. We see
that some of the terms in Eqs. (B.18) and (B.20) cancel each other to yield the result (5.20) in the
text.

B.3. Polyakov loop in the Coulomb gauge

We need to complete the square with respect to�ak
A in the exponent of Eq. (5.27) in order to perform

the integration D�ak
A . It is given by

− 1

2

(
�ak

A − (N )ab
kl

(
iȦb

l − g(C̃ ′
l
̃

−1)bd(T̃ d)ααδ
(3)(x − x0)

)+ (C̃kD−1J 0
F)

b
)
(N−1)

ag
km

×
(
�

gm
A − (N )gc

mn
(
iȦc

n − g(C̃ ′
n
̃

−1)cf (T̃ f )ααδ
(3)(x − x0)

)+ (C̃mD−1J 0
F)

g
)

. (B.22)

New terms appear with the gauge coupling g because of introducing the operator (5.25), which we
do not have in Eq. (B.18). According to the perfect square with respect to �ak

A , we should add the
following terms:

− g(T̃ a)ααδ
(3)(x − x0)

(

̃−1C ′

k�
k
A

)a + ig(T̃ a)ααδ
(3)(x − x0)(
̃

−1C ′
kNklȦl)

a

+ g(N )ab
kl (C̃

′
l
̃

−1)bd(T̃ d)ααδ
(3)(x − x0)

(
(N−1)

ag
km(C̃kD−1J 0

F)
g)

− g2

2

(
(T̃ a)αα(∂3)

−2δ(3)(x − x0)
)(
(
̃−1C ′

kNklC̃
′
l
̃

−1)ab(T̃ b)ααδ
(3)(x − x0)

)
, (B.23)

where we have performed the partial integration with respect to 
̃−1, C̃ ′
k , and (N )ab

kl . They can be
rewritten into simple forms by using the explicit form of N ab

kl . With the help of Eqs. (B.2), (B.3),
(B.4), and (B.7), we obtain that

(
̃−1C ′
kNkl)

ab = (
̃−1C ′
k)

ac(δcb(δkl + ∂k(∂3)
−1∂l)− (C̃kD−1Cl)

cb)
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= (
̃−1)ac(Cl)
cb − (
̃−1)ac(C ′

k C̃k)
cd(D−1Cl)

db

= (
̃−1)ac(Cl)
cb − (
̃−1)ac(D − 
̃)cd(D−1Cl)

db

= (D−1Cl)
ab (B.24)

and

(
̃−1C ′
kNklC̃

′
l
̃

−1)ab = (
̃−1C ′
kNkl)

ac(C̃ ′
l
̃

−1)cb (B.24)= (D−1Cl)
ac(C̃ ′

l
̃
−1)cb

= (D−1)ac(ClC̃
′
l)

cd(
̃−1)db = (D−1)ac(D − 
̃)cd(
̃−1)db

= (
̃−1)ab − (D−1)ab. (B.25)

Then, we have

− g(T̃ a)ααδ
(3)(x − x0)

(

̃−1C ′

k�
k
A

)a + ig(T̃ a)ααδ
(3)(x − x0)(
̃

−1C ′
kNklȦl)

a

+ g(N )ab
kl (C̃

′
l
̃

−1)bd(T̃ d)ααδ
(3)(x − x0)

(
(N−1)

ag
km(C̃kD−1J 0

F)
g)
)

− g2

2

(
(T̃ a)αα(∂3)

−2δ(3)(x − x0)
)(
(
̃−1C ′

kNklC̃
′
l
̃

−1)ab(T̃ b)ααδ
(3)(x − x0)

)
= −g(T̃ a)ααδ

(3)(x − x0)
(
(
̃−1)ab((C ′

k�
k
A)

a + J 0b
F

))
+ g(T̃ a)ααδ

(3)(x − x0)(D−1J 0
F)

a + ig(T̃ a)ααδ
(3)(x − x0)(D−1CkȦa

k)

− g2

2
(T̃ a)ααδ

(3)(x − x0)
(
(
̃−1)ab(T̃ b)ααδ

(3)(x − x0)
)

+ g2

2
(T̃ a)ααδ

(3)(x − x0)
(
(D−1)ab(T̃ b)ααδ

(3)(x − x0)
)
, (B.26)

where the first term, aside from the minus sign, in the right-hand side is the exponent of operator
(5.25). Hence, the exponent of the right-hand side of Eq. (5.27) is written into the quadratic form
with respect to �ak

A as

g(T̃ a)ααδ
(3)(x − x0)

(
(
̃−1)ab((C ′

k�
k
A)

b + J b0
F + δb

self

))+ i�ak
A Ȧa

k + i�ψψ̇ − HCoul

= −1

2

(
�ak

A − (N )ab
kl

(
iȦb

l − g(C̃ ′
l
̃

−1)bd(T̃ d)ααδ
(3)(x − x0)

)+ (C̃kD−1J 0
F)

b
)
(N−1)

ag
km

×
(
�

gm
A − (N )gc

mn
(
iȦc

n − g(C̃ ′
n
̃

−1)cf (T̃ f )ααδ
(3)(x − x0)

)+ (C̃mD−1J 0
F)

g
)

− 1

2
Ȧa

k(NklȦl)
a − iȦa

k(C̃kD−1J 0
F)

a + 1

2
J a0

F (D−1J 0
F)

a − 1

4
Fa

klF
a
kl − 1

2
Fa

3kFa
3k

+ i�ψψ̇ + ψ̄ iγ kDkψ + ψ̄ iγ 3D3ψ

+ g(T̃ a)ααδ
(3)(x − x0)(
̃

−1)abδb
self

+ g(T̃ a)ααδ
(3)(x − x0)(D−1J 0

F)
a + ig(T̃ a)ααδ

(3)(x − x0)(D−1CkȦk)
a

− g2

2
(T̃ a)ααδ

(3)(x − x0)
(
(
̃−1)ab(T̃ b)ααδ

(3)(x − x0)
)

+ g2

2
(T̃ a)ααδ

(3)(x − x0)
(
(D−1)ab(T̃ b)ααδ

(3)(x − x0)
)
. (B.27)
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We observe that the integration D�ak
A yields Eq. (5.28). Note that the first term in the fourth line

of Eq. (B.27) is rewritten by Eq. (B.19). As explained in the text, the counter term, the sixth line of
Eq. (B.27), exactly cancels the divergent self-energy, the eighth line of Eq. (B.27).

If we expand the exponent of the Gaussian integral (5.29), we have

− 1

2

(
iAa
τ − (D−1)ac(i(CkȦk)

c + J c0
F + g(T̃ c)ααδ

(3)(x − x0)
))

× (D)ad
(

iAd
τ − (D−1)de(i(ClȦl)

e + J e0
F + g(T̃ e)ααδ

(3)(x − x0)
))

= −1

2
(DiAτ )

a(DiAτ )
a + iAa

τ J a0
F − Aa

τ (CkȦk)
a

− 1

2
Ȧa

l (C̃lD−1CkȦk)
a + iȦa

k(C̃kD−1J 0
F)

a − 1

2
J a0

F (D−1J 0
F)

a

+ igAa
τ (T̃

a)ααδ
(3)(x − x0)

− g(T̃ a)ααδ
(3)(x − x0)(D−1J 0

F)
a − ig(T̃ a)ααδ

(3)(x − x0)(D−1CkȦk)
a

− g2

2
(T̃ a)ααδ

(3)(x − x0)
(
(D−1)ab(T̃ b)ααδ

(3)(x − x0)
)
. (B.28)

The third term in the first line of the right-hand side of Eq. (B.28) can be written by

−Aa
τ (CkȦk)

a = Ȧa
k(DkAτ )

a − (D3Aτ )
a((∂3)

−1∂k Ȧa
k), (B.29)

where we have performed the partial integration with respect to D3. We observe that some of the
terms in Eqs. (B.27) and (B.28) cancel each other to produce Eq. (5.30).

Appendix C. Evaluation of determinants
C.1. Axial gauge

Let us prove Eq. (3.11). We evaluate det(M ), where M is defined by Eq. (2.8). To this end, we write
M as

(M )ab
kl =

(
δab − (D1D−1D1)

ab −(D1D−1D2)
ab

−(D2D−1D1)
ab δab − (D2D−1D2)

ab

)
(a, b = 1, . . . , N 2 − 1). (C.1)

Introducing the relation given by

det

(
0 IN 2−1

IN 2−1 0

)
= (−1)N

2−1, (C.2)

where IN 2−1 is the (N 2 − 1)× (N 2 − 1) unit matrix, we have

(−1)N
2−1 det(M ) = det

[(
0 IN 2−1

IN 2−1 0

)
M

]

= det

(
−D2DD1 IN 2−1 − D2D−1D2

IN 2−1 − D1D−1D1 −D1D−1D2

)
. (C.3)

With help of the formula

det

(
A C
D B

)
= det

(
A 0
D I

)(
I A−1C
0 B − DA−1C

)
= det(A)× det(B − DA−1C), (C.4)
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Eq. (C.3) becomes

det(−D2DD1)det
(
−D1D−1D2 − (IN 2−1 − D1D−1D1)(−D2D−1D1)

−1(IN 2−1 − D2D−1D2)
)

= det
(

D2D−1(D1)
2D−1D2 − (D2D−1D1)(IN 2−1 − D1D−1D1)(D

−1
1 DD−1

2 )(IN 2−1 − D2D−1D2)
)

= det
(

D2D−1(D1)
2D−1D2 − IN 2−1 + D2D−1D2 + D2D−1(D1)

2D−1
2 − D2D−1(D1)

2D−1D2

)
= (−1)N

2−1 det(D−1
2 D2)det

(
IN 2−1 − D2D−1D2 − D2D−1(D1)

2D−1
2

)
= (−1)N

2−1 det
(

D−1
2

(
IN 2−1 − D2D−1D2 − D2D−1(D1)

2D−1
2

)
D2

)
= (−1)N

2−1 det(D−1(∂3)
2), (C.5)

where we have used D = (D1)
2 + (D2)

2 + (∂3)
2 in the last line in Eq. (C.5). Hence, we obtain that

det(M ) = det
(D−1(∂3)

2), (C.6)

which is Eq. (3.11).

C.2. Coulomb gauge

Instead of evaluating det(N ) directly, let us consider the determinant defined by

det

((
0 IN 2−1

IN 2−1 0

)
N ′
)

, (C.7)

where N ′ is given by Eq. (B.8) and is written as

(N ′)ab
kl =

(
IN 2−1 − C̃ ′

1D−1C1 −C̃ ′
1D−1C2

−C̃ ′
2D−1C1 IN 2−1 − C̃ ′

2D−1C2

)
. (C.8)

Equation (C.7) becomes, by using the formula (C.4),

(C.7) = det

(
−C̃ ′

2D−1C1 IN 2−1 − C̃ ′
2D−1C2

IN 2−1 − C̃ ′
1D−1C1 −C̃ ′

1D−1C2

)

= det
(
−C̃ ′

2D−1C1

)
× det

(
−C̃ ′

1D−1C2 − (IN 2−1 − C̃ ′
1D−1C1)(−C̃ ′

2D−1C1)
−1(IN 2−1 − C̃ ′

2D−1C2)
)

= det
(
−IN 2−1 + C̃ ′

2D−1C2 + C̃ ′
2D−1C1C̃ ′

1(C̃
′
2)

−1
)

= (−1)N
2−1 det(C̃ ′−1

2 C̃ ′
2)det

(
IN 2−1 − C̃ ′

2D−1C2 − C̃ ′
2D−1C1C̃ ′

1(C̃
′
2)

−1
)

= (−1)N
2−1 det(IN 2−1 − D−1C2C̃ ′

2 − D−1C1C̃ ′
1)

= (−1)N
2−1 det(D−1)det(D − C2C̃ ′

2 − C1C̃ ′
1)

= (−1)N
2−1 det(D−1)det(D − CkC̃ ′

k)

= (−1)N
2−1 det(D−1)det(
̃)

= (−1)N
2−1 det(D−1)det(
−1)(det(∂iDi))

2, (C.9)
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where we have used Eq. (B.3) and 
̃ = ∂ · D
−1∂ · D. Hence, we obtain that

det

((
0 IN 2−1

IN 2−1 0

)
N ′
)

= (−1)N
2−1 det(D−1)det(
−1)(det(∂iDi))

2. (C.10)

On the other hand, it is easy to see that

det
(
δkl − ∂k


−1∂l
) = det

(
1 −
−1(∂1)

2 −
−1∂1∂2

−
−1∂2∂1 1 −
−1(∂2)
2

)
= det(
−1(∂3)

2), (C.11)

so that we have

det

((
0 IN 2−1

IN 2−1 0

)
N ′
)

= (−1)N
2−1 det(N ′) (B.6)= (−1)N

2−1 det
((
δkl − ∂k


−1∂l
)
N
)

= (−1)N
2−1 det(
−1(∂3)

2)det(N ). (C.12)

From Eqs. (C.10) and (C.12), we obtain that

det(N ) = det(D−1)(det(∂iDi))
2

det((∂3)2)
. (C.13)

We have thus proved Eq. (5.22).
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