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Abstract In this work we consider point-like monopole
production via photon-fusion and Drell–Yan processes in
the framework of an effective U (1) gauge field theory
obtained from conventional models describing the interaction
of spin 0, 1/2, 1 magnetically-charged fields with ordinary
photons, upon electric-magnetic dualisation. We present
arguments based on such dualities which support the conjec-
ture of an effective monopole-velocity-dependent magnetic
charge. For the cases of spin-1/2 and spin-1 monopoles, we
also include a magnetic-moment term κ , which is treated as
a new phenomenological parameter and, together with the
velocity-dependent coupling, allows for a perturbative treat-
ment of the cross-section calculation. We discuss unitarity
issues within these effective field theories, in particular we
point out that in the spin-1 monopole case only the value
κ = 1 may restore unitarity. However from an effective-
field-theory point of view, this lack of unitarity should not
be viewed as an impediment for the phenomenological stud-
ies and experimental searches of generic spin-1 monopoles,
given that the potential appearance of new degrees of freedom
in the ultraviolet completion of such models might restore
it. The second part of the paper deals with an appropriate
implementation of photon-fusion and Drell–Yan processes
based on the above theoretical scenarios into MadGraph
UFO models, aimed to serve as a useful tool in interpreta-
tions of monopole searches at colliders such as LHC, espe-
cially for photon fusion, given that it has not been considered
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by experimental collaborations so far. Moreover, the experi-
mental implications of such perturbatively reliable monopole
searches have been laid out.

1 Introduction

Eighty seven years since its concrete formulation by Dirac [1,
2] as a quantum mechanical source of magnetic poles,
the magnetic monopole remains a hypothetical particle.
Although there are concrete field-theoretical models beyond
the Standard Model (SM) of particle physics which contain
concrete monopole solutions [3–10,13], these are extended
objects with complicated substructure, and their produc-
tion at collider is either impossible, as their mass range is
beyond the capabilities of the latter [3,4,13], or extremely
suppressed, due to their underlying composite nature [14].
On the other hand, point-like monopoles, originally envis-
aged by Dirac, are sources of singular magnetic fields for
which the underlying theory, if any, is completely unknown,
even though in principle (due to their point-like nature) they
could avoid suppression in production.

In this respect, the spin of the monopole remains a free
parameter. One may attempt to obtain an, admittedly heuris-
tic, understanding of their production by considering effec-
tive field theoretic models for such production mechanisms
based on electric-magnetic duality. That is deriving the cor-
responding cross sections from perturbative field-theoretical
models describing the interaction of fields of various spins,
S = 0, 1/2 and 1 with photons, upon the replacement of the
electric charge qe by the magnetic charge g, the latter obeying
Dirac’s quantisation rule
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gqe = 1

2
n (4πε0c)

ξ h̄c, n ∈ Z, (1)

where c is the speed of light in vacuo, h̄ is the reduced
Planck constant, ε0 is the vacuum permittivity and Z is the
set of integers (with n = 0 denoting the absence of mag-
netic charge). The quantity ξ depends on the system of units
used, with ξ = 0 representing the CGS Gaussian system of
units, and ξ = 1 the SI system of units. In natural SI units
(h̄ = c = ε0 = 1), which we adopt here, the fine-structure
constant at zero energy scales is given by α = e2

4π
= 1

137
with e > 0 the positron charge, from which (1) yields

g = 1

2α
n

(
e

qe

)
e = 68.5e

(
e

qe

)
n ≡ n

e

qe
gD, n ∈ Z,

(2)

with gD = 68.5e the fundamental Dirac charge. (We note,
for completeness, that in composite monopole models [3–5],
the magnetic charge can be viewed as a collective coupling
of 1/α quanta of constituent (non-Abelian W±-boson and
Higgs) fields to a soft photon [14], which is consistent with
the charge quantisation condition (2).)

The electric-magnetic duality replacement, which obeys
the quantisation rule (1), may be used as a basis for the eval-
uation of monopole-production cross sections from colli-
sions of SM particles (quarks and leptons). Unfortunately,
due to the large value of the magnetic charge (2), such
a replacement renders the corresponding production pro-
cess non-perturbative, consequently the strong-magnetic-
coupling limit dual theory is not well defined. Nevertheless,
one may attempt to set benchmark scenarios for the cross sec-
tions by using tree-level Feynman-like graphs from such dual
theories. This is standard practice in all point-like monopole
searches at colliders so far [15].

Depending on the spin of the monopole field M , typical
graphs participating in monopole-antimonopole pair produc-
tion at LHC from proton-proton (pp) collisions are given in
Fig. 1. There are two kinds of such processes: the Drell–Yan
(DY) (see Fig. 1b) and the photon-fusion (PF) induced pro-
duction (see Fig. 1c, d). We also mention, to be complete,
that in photon-photon production we have not only elastic
but also semi-elastic and inelastic photon-fusion processes.
For spin-1/2 monopoles relevant in this discussion, a com-
parison between the respective perturbative cross sections
has been provided first in Ref. [16,17] for p p̄ collisions at
a centre-of-mass energy

√
s = 1.96 TeV, and subsequently

for pp collisions of
√
s up to 14 TeV in Ref. [18]. The con-

clusion from such analyses was that for
√
s = 1.96 TeV the

two cross sections are of comparable magnitude [18], whilst
for

√
s = 14 TeV PF dominates DY by a factor > 50, thus

stressing the need to utilise the latter in monopole-search
interpretations.

In this work we extend such combined (DY plus PF)
studies to also incorporate spin-0 and spin-1 monopoles.
In Ref. [16,17], the authors have calculated (in appropri-
ate dualised models) the total cross sections for monopole
pair production by photon fusion for three different spin
models, spins 0, 1/2 and 1. Theoretically, the cross sections
increase with increasing spin, for a fixed (common) value
of the monopole mass. It should be stressed that the expres-
sions for the cross sections are specific to particular defini-
tions of the monopole interactions. Specifically, the spin-1/2

model fixes the particle in a minimally coupled theory, dual to
standard QED, thus mirroring the observed behaviour of the
electron with a gyromagnetic ratio gRe = 2. The correspond-
ing magnetic moment κ is assumed zero. The magnetically
charged monopole with spin 1 considered in [16,17], on the
other hand, is characterised by a non zero magnetic moment
term κ = 1, which is the value that characterises the charged
W± bosons in the SM. In fact the model mirrors the inter-
actions of such bosons with a photon, but in the dual theory,
where the electric charge is replaced by the magnetic charge.
The value κ = 1 is the only one that respects unitarity [19].
For spin-0 monopoles, the dual theory of which resembles
the Scalar Quantum Electrodynamics (SQED), no magnetic
moment is allowed.

In this work, we generalise the discussion to include
an arbitrary value for the magnetic dipole moment for
monopoles with spin. The detailed reasoning for this is given
in the next section. Hence, we shall treat κ as a new phe-
nomenological parameter.1 We note that, setting the issue
of unitarity aside, phenomenological models of charged W -
bosons interacting with photons with κ �= 1 have been con-
sidered in the past [20], where it was demonstrated that the
behaviour of the total cross section for the W -boson pair pro-
duction for the κ = 1 case is quite distinct from the κ �= 1
cases. In the current work, we shall dualise such models to
use them as effective theories for the κ �= 1 spin-1 monopole
case, generalising the work of [16,17]. As we shall see, one
may allow for some formal large-κ limit where, despite the
strong magnetic coupling, the associated monopole-pair pro-
duction cross sections can be made finite. In fact one may
give meaning – under some circumstances to be specified
below (specifically, the production of slow monopoles) – to
the perturbative tree-level Feynman-like graphs of the effec-
tive theory. The relevant formalism for arbitrary κ and var-
ious monopole spins will then be used as a guide for the
construction of appropriate MadGraph [21] algorithms that
can be used as tools for data analyses in monopole searches at
colliders. We remark for completeness that, for fast relativis-
tic monopoles (characterised by a relative velocity β � 1)

1 In general one should also add electric dipole moment terms as well. In
this work we shall ignore them, assuming them suppressed for brevity,
although our analysis can be readily extended to include such terms.
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Fig. 1 Feynman-like tree-level
graphs for production processes
of monopoles with generic spin
S. a Typical SM Drell–Yan
process describing charged
lepton production from
quark-antiquark annihilation; b
DY monopole-antimonopole
pair production from quark
annihilation; c
monopole-antimonopole pair
production via photon fusion
(for monopole spins 0, 1/2 and
1); d additional (contact)
diagram for
monopole-antimonopole pair
production via photon-fusion
(for spins 0, and 1). The
quantities qe and g denote the
electric and magnetic charge,
respectively

(a) (b)

(c) (d)

passing through materials, the (large) number of electron-
positron pairs produced can be used as a signal for the pres-
ence of the monopole [22]. The perturbativity conditions dis-
cussed in the present article, which pertain to slowly moving
monopoles (with β � 1), of relevance to MoEDAL-LHC
searches [23,24], do not apply to such cases, the study of
which requires non-perturbative treatments.

The structure of the article is the following: Sect. 2 is
a review of the formal procedure to construct perturbative
cross sections from the scattering amplitudes relevant to
monopole production. Particular attention is given to a dis-
cussion of a rather unresolved current issue, regarding point-
like monopole production through scattering of SM particles,
namely the use of an effective magnetic charge coupling that
depends on the relative velocity β between the monopole
and the centre-of-mass of the producing particles (quarks in
the case of interest here, see Fig. 1). We also motivate the
introduction of the magnetic dipole moment for monopoles
with spin. In Sect. 3, the differential and total cross sections
for monopole-antimonopole pair production via PF and DY
processes are derived for various monopole spins. Combined
limits of large magnetic-moment parameter κ and small β can
lead to finite perturbatively valid results, providing some sup-
port for the effective formalism. The pertinent Feynman rules
are implemented in a dedicated MadGraph model, which

is described in detail in Sect. 4. In Sect. 5, the monopole
phenomenology at the LHC is discussed, utilising the Mad-
Graph UFO models developed in this work, in the context
of the above theoretical considerations. Conclusions and out-
look are given in Sect. 6, while details on the calculations are
provided in appendices A and B.

2 From amplitudes to kinematic distributions

We are interested in the electromagnetic interactions of a
monopole of spin S = 0, 1/2, 1 with ordinary photons. The
corresponding theory is an effectiveU (1)gauge theory which
is obtained after appropriate dualisation of the pertinent field
theories describing the interactions of charged fields of spin-
S with photons. However, there is a subtle issue here, which
we now proceed to discuss, and which will be relevant to
our subsequent studies. It concerns a potential dependence
of the effective magnetic charge on the relative velocity of
the monopole pair and the centre-of-mass of the producing
particles, as noted in [25,26].

To this end, we need first to recall some basic facts of the
theory of point-like monopole-matter scattering. Classical
(tree-level) scattering of charged particles off massive mag-
netic monopoles has been studied extensively, using modern
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quantum field theory (even relativistic) treatments [25–28].
As the monopoles of interest are relatively heavy compared
to electrons, with masses of order at least TeV, the use of
non-relativistic scattering suffices for our purposes in this
section. The differential cross section for the classical (non-
relativistic) scattering of electrons, representing matter with
electric charge e and mass m, off a magnetic monopole, with
magnetic charge g and mass M , reads [25,27]:

dσ

d	
=
(

eg

cμv0

)2∑
χ

1

4 sin4
(χ

2

)
∣∣∣∣ sin χ

sin θ

dχ

dθ

∣∣∣∣ , (3)

in a frame where the monopole is initially at rest and the
electron has an initial velocity v0. In the above formula, c
denotes the speed of light in vacuo and θ is the scattering

angle, given in [25]: cos( θ
2 ) = cos(χ

2 )

∣∣∣sin
(

π/2
cos(χ/2)

)∣∣∣. μ =
m M
m+M is the reduced mass of the two body problem at hand,
with μ � m in the cases of monopoles where M � m which
is of interest here. The angle χ = 2 arccot (μv0b/|κ|) defines
the (Poincaré) cone on which the (classical) trajectory of the
electron in the background of the monopole is confined, with
b the impact parameter. We note for completeness, that the
cross section diverges in two occasions:

(i) sin θ = 0 and sin χ �= 0, θ = π , which occurs for a
certain discrete set of cone angles [25,26], and

(ii) when dθ
dχ

= 0, which occurs for a certain discrete set of
scattering angles θ [25,26].

For small scattering angles, θ � 1, the differential cross
section (3) can be approximated by:

dσ

d	
=
(

eg

2μv0c

)2 1

(θ/2)4 , θ � 1 . (4)

The reader should notice that this exhibits a scaling with the
inverse square power of the velocity v0, which is different
from the standard Rutherford formula of the scattering of
electrically-charged particles entailing a v−4

0 scaling.

2.1 Velocity-dependent magnetic charge

As can be readily seen from (4), this expression reduces to the
standard Rutherford formula for electron-electron scattering
upon the replacement

g

c
→ e

v0
. (5)

This prompted some authors, including Milton, Schwinger
and collaborators [25,26], to conjecture, upon invoking
electric-magnetic duality, that when discussing the inter-
action of monopole with matter (electrons or quarks), e.g.

when discussing propagation of monopoles in matter media
used for detection and capture of monopoles, or considering
monopole-antimonopole pair production through DY or PF
processes, a monopole-velocity dependent magnetic charge
has to be considered in the corresponding cross section for-
mulae:

g → g
v

c
≡ g β. (6)

We stress again that the above substitution is based on the
assumption of electric-magnetic duality, which would lead
to the equivalence of the electron-monopole scattering cross-
section (4) with the corresponding Rutherford formula upon
applying (6). It is not known at present how to derive such
an effective magnetic charge in the context of effective field
theories (one might think of applying Schwinger-Dyson tech-
niques which could resum the (large) magnetic charge cou-
plings, but such theories are not available, and one can-
not simply extend a strongly coupled QED model to the
monopole case, upon replacing the electric charge with a
magnetic one). Hence the substitution (6) should only be
viewed at present as a conjecture, motivated by electric-
magnetic duality symmetry.

The replacement (6) was then used to interpret the experi-
mental data in collider searches for magnetic monopoles [16–
18,25,29–32]. Due to the lack of a concrete theory for
magnetic sources, the results of the pertinent experimental
searches can be interpreted in terms of both a β-independent
and a β-dependent magnetic charges, and then one may com-
pare the corresponding bounds, as done in the recent searches
by the MoEDAL Collaboration [32]. The monopole velocity
β used in this work is given by the Lorentz invariant expres-
sion in terms of the monopole mass M and the Mandelstam
variable s (A8), where s representing the square of the centre-
of-mass energy of the fusing incoming particles (photons or
(anti)quarks) (

√
s = 2Eγ /q ):

β =
√

1 − 4M2

s
. (7)

The Lagrangian for each effective model describes the
propagation and interactions of a massive monopole field
and a photon field. The field theory is chosen according to
the spin of the monopole, S = 0, 1/2 or 1. As a result of (6),
the coupling of the monopole to the photon g(β) is linearly
dependant on the particle boost, β = | 
p|/Ep, where | 
p|
and Ep are the monopole’s three-momentum and energy,
respectively.

To incorporate in a unified way both the β-dependent
and β-independent magnetic couplings of the monopole to
photons, we define the magnetic fine structure constant as
αg = g2β2δ/(4π), where δ = 1(0) for β-(in)dependent cou-
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plings (6). The monopole Lagrangian of the effective theory
can then be recognised as the Lagrangian in an electromag-
netic field theory describing the interaction of a spin-S field
with photons, with the following substitutions:

e �→ g(β) , g2(β) = g2β2δ, δ = 0, 1 ,

αe = e2

4π
�→ αg(β) ≡ g2(β)

4π
= g2β2δ

4π
≡ α2

g β2δ . (8)

From such a Lagrangian, Feynman rules can be extracted
and observables are computed as in standard perturbative
treatments. But, as stressed above, this is only a formal pro-
cedure, since, given the large value of the magnetic charge,
as a consequence of the quantisation rule (2), the interaction
coupling is in the non-perturbative regime. Hence, truncated
processes, like DY or PF, have no meaning, unless, as we
shall discuss below, certain formal limits are considered in
some special cases.

An important remark is in order at this point. Since the
‘velocity’ β (7) is expressed in terms of Lorentz-invariant
Mandelstam variables, the Lorentz invariance of the effec-
tive field theory action of the monopole is not affected by the
introduction of the effective β-dependent magnetic charge
(8). However, there is a well known paradox, due to Wein-
berg [33], who pointed out that the amplitude for a single
photon exchange between and electric and a magnetic cur-
rent (of relevance to DY monopole-antimonopole produc-
tion processes) is neither Lorentz nor gauge invariant due
to the rôle played by the Dirac string, which contradicts the
fact that monopoles appear as consistent soliton solutions in
Lorentz and gauge invariant field theories [3,4]. It is only
recently [34], that this paradox was arguably resolved, albeit
within toy models of monopoles, coupled to photons, with
perturbative electric and magnetic couplings. The resolution
of Weinberg’s paradox in such models is provided by a resum-
mation of soft photons, which was possible due to the pertu-
batively small magnetic charges involved. Such a resumma-
tion resulted in the exponentiation of the Lorentz (and gauge)
non-invariant terms pointed out in [33] to a (Bohm-Aharonov
type) phase factor in the respective amplitude. In this sense,
the modulus of the amplitude (and hence the associated phys-
ical observables, such as cross sections) are Lorentz (and
gauge) invariant, with the important result that, upon Dirac
quantisation (1), the (resummed over soft photons) amplitude
itself is Lorentz invariant. It is in such Lorentz (and gauge)
invariant frameworks that, as we conjecture, the consider-
ations of the effective, velocity-dependent magnetic charge
(8), may apply, which by the way also implies perturbative
magnetic couplings for sufficiently small production veloci-
ties of the monopoles in the laboratory frame.

2.2 The magnetic dipole moment as a novel free parameter
for monopoles with spin

As already mentioned in the introductory Sect. 1, in previous
effective-field theory treatments of spin-1 Dirac monopoles
[16,17], a magnetic dipole moment with the value κ = 1
has been introduced mimicking the unitary SM case of W±
bosons (representing the monopoles), interacting with pho-
tons. Lacking an underlying microscopic model for point-like
monopoles, the above restrictions in the value of the magnetic
moment may not necessarily be applied to the monopole field.
Indeed, for monopoles with spin, such a parameter may arise,
e.g. by quantum corrections, in similar spirit to the electron
case. The difference of course is that in the latter case it is the
electric charge of the electron that would play a rôle, while in
the monopole case it is the magnetic charge which, in view
of its large value following the quantisation rule (2), cannot
be treated perturbatively. Nonetheless, a non trivial (possibly
large) magnetic moment might be induced in such a case,
which might also be responsible for the restoration of uni-
tarity of the effective theory. For example, one might hope
that the apparent unitarity issues for generic κ �= 1 values in
the case of spin-1 monopoles can be remedied by embedding
the corresponding theory in microscopic ultraviolet complete
models beyond the SM, in much the same way as unitarity is
restored in the case of the W± gauge bosons interacting with
photons in the SM case.

There is an additional reason as to why a non-trivial
value for the parameter κ for the monopoles might be fea-
sible. Although the full microscopic rôle of κ still needs
to be determined, something which is obscured at present
due to the lack of a microcsopic theory of point-like Dirac
monopoles, nonetheless its presence is arguably consistent
with the charge quantisation rule (1). This is due to the fact
that, as we shall discuss, a magnetic dipole moment does
not contribute to the singular part of the magnetic field of
the monopole, which is responsible for the charge quan-
tisation [27]. This can be argued as follows: as it is well
known [27], Dirac’s quantisation of charge in the presence
of a monopole can be discussed by considering a particle
of electric charge qe (e.g. electron) moving along a loop far
away from the monopole centre, whose area is pierced by the
Dirac string. Placing a magnetic dipole moment vector 
μD

at the origin of a coordinate system, where the monopole is
assumed at rest, will induce, according to standard (classical)
electromagnetism, a magnetic field


BD = μ0

4π r3 | 
μD|
(

2 cos θ r̂ + sin θ θ̂
)
, (9)
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where μ0 is the magnetic permittivity of the vacuum (‘free
space’), the symbol̂denotes a unit vector, and (r, θ, φ) are
the usual spherical polar coordinates. The formula is valid for
large distances compared to the dipole longitudinal dimen-
sion. Writing 
BD = 
∇ × 
AD, we can determine the corre-
sponding vector potential as 
AD = μ0

4π

μD×
r
r3 , at large dis-

tances r . One can readily confirm that 
∇ · 
BD = 0.
On the other hand, due to the monopole’s magnetic charge,

there is a magnetic field contribution, which however, due
to the (singular) Dirac string, requires proper regularisa-
tion [27]. Upon doing so, one obtains for the regularised
monopole magnetic field


Breg
monopole = 
Bmonopole + 
Bsing

= g

r2 r̂ − 4π g n̂ θ(z) δ(x)δ(y), (10)

for a Dirac string along the z-axis, in which case the unit
vector n̂ = (0, 0, 1) also lies along that axis. The regularised
form of the monopole’s magnetic field intensity yields the
correct formula 
∇ · 
Breg

monopole = 4π g δ(3)(r), implying that
the magnetic monopole is the source of a field.

If one considers a charged particle looping the Dirac string
far away from the position of the monopole, one would then
observe that it is the singular part of the magnetic field (10),

Bsing, which contributes to the phase of the electron wave-
function [27], qe

∮
L d
x · 
A = ∫

�(L)
dσ · 
Bsing = 4πqeg. The

magnetic dipole moment does not contribute to the singular
part of the magnetic field, and thus the charge quantisation (1)
is not affected. We note that, as a result of the r3 suppres-
sion, the contributions of (9) would be subdominant, at large
distances r from the monopole centre, as compared to those
of (10).

It is worth remarking at this stage that one can also
view [35,36] the quantisation rule (1) itself as a consequence
of representing the (non-physical) singular string solenoid,
assumed in the original Dirac’s construction [1,2], as a col-
lection of (small) fictitious current loops (with an area per-
pendicular to the solenoid’s axis). Each one of these loops
will induce a magnetic moment I A, with I the current and A
the area of the loop (assumed vanishing in this case). Assum-
ing a uniform magnetic moment per unit length M for the
Dirac string, then, and taking into account that the solenoid
may be viewed as the limiting case of a magnetic dipole
of infinite length, one may apply the aforementioned for-
mula (9) in this case to derive the singular magnetic field
of the monopole itself, in which case the magnetic charge is
obtained as g ∝ M [35,36]. However, we stress, that, the
contribution of the induced magnetic moment of the quan-
tum effective theory of a monopole with spin, whose strength
depends on the parameter κ , which we shall discuss in this
work, is independent of that due to the magnetic charge g, as
explained above. Lacking though an underlying fundamental

theory for the point-like monopole the determination of κ is
at present not possible.

Before closing this section, we would like to present an
equivalent, yet less elaborate, way2 to see the irrelevance of
the magnetic dipole moment for the quantisation rule (1),
which avoids the use of Dirac strings. To this end, one cov-
ers the three-space surrounding the monopole by two hemi-
spheres, with appropriate gauge potentials defined in each
of them, whose curl yields the corresponding magnetic field
strengths. For the magnetic monopole gauge potential one
has the expressions [27]:


AS = g (1 − cos θ) 
∇φ

= g (1 − cos θ)

r sin θ
φ̂, θ ∈

[
0,

π

2
+ δ

)
, δ → 0+,

(11)

for the south hemisphere, which is singular at the south pole
θ = π , and


AN = −g (1 + cos θ) 
∇φ

= −g (1 + cos θ)

r sin θ
φ̂, θ ∈

(π

2
− δ, π

]
, δ → 0+,

(12)

for the north hemisphere, which is singular at the north pole
θ = 0. These two patches overlap π

2 −δ < θ < π
2 +δ, δ →

0+, and, as is well known, the difference of


AS − 
AN = 
∇ f = 2g

r sin θ
φ̂, (13)

yields a singular gauge transformation at θ = 0, π , which
contributes to the phase qe

∮
L d
x · 
A of the charged particle

wavefunction, the requirement of single-valuedness of which
yields the rule (1).

On the other hand, as already mentioned, the vector poten-
tial corresponding to the magnetic moment, for large dis-
tances r from the centre of the sphere where the monopole
is located, is of the form


AD = μ0

4π


μD × 
r
r3 = μ0

4π

| 
μD| sin θ

r2 η̂, (14)

with η̂ the unit vector perpendicular to the plane of 
r and 
μD

(assumed parallel to the z-axis); this is not singular at the
poles θ = 0, π (in fact it vanishes there). The total poten-
tial in each hemisphere is then given by the corresponding
sum 
Ai + 
AD, i = S, N . Hence, the magnetic moment does
not contribute to the difference, and thus it does not affect
the wavefunction phase, which is associated only with the
monopole part (13).

2 We thank V. Vento for a discussion on this point.
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Fig. 2 Feynman-like graphs
for: a t-channel; b u-channel;
and c seagull processes
encompass all the contributions
to the matrix amplitude of scalar
particle production by PF. The
variable definitions are given in
the text

(a) (b)

(c)

3 Cross sections for spin-S monopole production

In this section we derive the pertinent Feynman rules and
then proceed to give expressions for the associated differen-
tial and total production cross sections for monopole fields of
various spins. The pertinent expressions are evaluated using
the package FeynCalc [37,38] in Mathematica. We com-
mence the discussion with the well-studied cases of scalar
(spin-0) and fermion (spin-1/2) monopole cases, but extend
the fermion-monopole case to include an arbitrary magnetic
moment term κ �= 0. Then we proceed to discuss the less
studied case of a spin-1 monopole including an arbitrary mag-
netic moment term κ . We consider both β-dependent and
β-independent magnetic couplings. In an attempt to make
some sense of the perturbative estimates, we discuss, where
appropriate, various formal limits of weak β and large κ for
which the pertinent cross sections remain finite. In each spin
case we present both PF and DY cross sections, which will
help us present a comparison at the end of the section.

3.1 Scalar monopole

The first model studied in this work, is the one for massive
spin-0 monopole interacting with a masslessU (1) gauge field
representing the photon. Searches at the LHC [31,32,39–41]
and other colliders have set upper cross-section limits is this
scenario assuming Drell–Yan production. The Lagrangian
describing the electromagnetic interactions of the monopole
is given simply by a dualisation of the SQED Lagrangian

L = −1

4
FμνFμν + (Dμφ)†(Dμφ) − M2φ†φ, (15)

where Dμ = ∂μ − ig(β)Aμ, Aμ is the photon field, whose
field strength (Maxwell) tensor is Fμν = ∂μAν − ∂νAμ and

φ is the scalar monopole field. There are two interaction ver-
tices associated with theory. The three- and four-point ver-
tices are illustrated in Fig. 29 in “Appendix B”, where the
cross-section calculations are detailed. These interactions are
the only couplings generated between the spin-0 monopole
and the U (1) gauge field.

3.1.1 Pair production of spin-0 monopoles via photon
fusion

There are three possible graphs contributing to scalar
monopole production by PF, a t-channel, u-channel and seag-
ull graph shown in Fig. 2. Their respective matrix amplitudes
are given by Eq. (B2) in “Appendix B”. M is the spin-0 boson
mass, ελ(q1) and ε

λ
′ (q2) are the photon polarisations, p1 and

p2 are the monopoles four-momenta such that p2
iμ

= M2, and

q1 and q2 are the photons four-momenta such that q2
iμ

= 0,
as defined in Fig. 2.

After some calculation, detailed in “Appendix B”, the dif-
ferential cross section for the spin-0 monopole-antimonopole
production is reduced to:

dσ S=0
γ γ→MM

d	
= α2

g(β)β

2sγ γ

[
1 +

(
1 − 2(1 − β2)

1 − β2 cos2 θ

)2
]

,

(16)

which in terms of the pseudorapidity η, defined in “Appendix
A”, becomes:

dσ S=0
γ γ→MM

dη
= πα2

g(β)β

sγ γ cosh2 η

[
1 +

(
1 − 2(1 − β2)

1 − β2 tanh2 η

)2
]

.

(17)
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Fig. 3 Differential cross section distributions for the production of spin-0 monopoles of mass M = 1.5 TeV via PF at
√
sγ γ = 2Eγ , where

Eγ = 6M , as a function of the scattering angle θ (left) and the pseudorapidity η (right)

The differential distributions as a function of the scattering
angle and the pseudorapidity are shown in Fig. 3 for a hypo-
thetical monopole of mass M = 1.5 TeV at

√
sγ γ = 2Eγ ,

where Eγ = 6M . The pair production is mostly central as
is the case for various beyond-SM scenarios. Such distribu-
tions are used for the validation of the simulation package
discussed in Sect. 4.

After integrating over the solid angle, as discussed in
Sect. 2, the total cross section becomes [16,17]

σ S=0
γ γ→MM

= 4πα2
g(β)β

sγ γ

[
2 − β2

− 1

2β
(1 − β4) ln

(
1 + β

1 − β

)]
, (18)

and is shown in Fig. 4 for the selected energy of
√
sγ γ =

4 TeV. The cross section drops rapidly with increasing mass
and disappears sharply at the kinematically forbidden limit
of M >

√
sγ γ /2. Again this result is compared against the

MadGraph implementation prediction in Sect. 4.

3.1.2 Pair production of spin-0 monopoles via Drell–Yan

The Feynman-like diagram in Fig. 5 shows the DY process
in the case of a scalar monopole. The quarks qq annihilate to
a photon Aπ , which decays to a MM pair in the s-channel.
The quark lines are supplemented by momentum 4-vectors
q1μ and q2μ, where q2

1,2 = m2 and the scalar monopole lines

have momentum 4-vectors p1μ and p2μ, where p2
1,2 = M2

on shell. The centre-of-mass energy of the colliding quarks
is kπkπ = sqq . The three-point vertex in this model is illus-
trated again in Fig. 30a, and the vertex for the qqAμ coupling
in Fig. 30b.

Fig. 4 Total cross section for the production of spin-0 monopoles via
the PF process as a function of the monopole mass M at

√
sγ γ = 4 TeV

Fig. 5 Feynman-like diagram representing the DY process in a scalar
monopole theory. The variable definitions are given in the text

After some calculations detailed in “Appendix B” and in
particular in Eqs. (B9)–(B15), the differential cross section
for DY scalar monopole production yields

dσ S=0
qq→MM

d	
= 5αg(β)αe

72sqq
β3(1 − cos2 θ), (19)
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Fig. 6 Differential cross section distributions for the production of spin-0 monopoles of mass M = 1.5 TeV via DY from massless quarks with
βq = 1 at

√
sqq = 2Eq , where Eq = 6M , as a function of the scattering angle θ (left) and the pseudorapidity η (right)

where β is defined in Eq. (7). The distribution is shown in
Fig. 6 for a monopole with a mass M = 1.5 TeV at a centre-
of-mass energy

√
sqq = 2Eq where Eq = 6M .

In terms of the pseudorapidity η, the differential cross
section reads:

dσ S=0
qq→MM

dη
= 5παg(β)αe

36sqq cosh2 η
β3(1 − tanh2 η), (20)

and is also plotted in Fig. 6. As expected for the production of
scalar particles, the distribution is almost flat with respect to
the scattering angle θ . When compared to the corresponding
kinematic distributions from the PF case in Fig. 3, the DY
case exhibits a more central distribution.

Finally, the total cross section is evaluated by integrating
Eq. (19) over the solid angle d	 = dφ dcos θ :

σ S=0
qq→MM

= 5παg(β) αe

27sqq
β3, (21)

and is shown graphically at a centre-of-mass energy
√
sqq =

4 TeV in Fig. 7. A note of caution here: in an experimental
setup for high energy collisions, the result (21) is valid for
opposite-sign hadrons, e.g. p p̄ at the Tevatron; it will be
doubled in the case of same-hadron colliding bunches, such
as in proton-proton collisions at the LHC. A comparison of
the DY versus the PF cases, as far as the differential/total
cross sections is concerned, is reserved for Sect. 3.4.

3.2 Spin-1/2 point-like monopole with arbitrary magnetic
moment term

The phenomenology of a monopole with spin 1/2, examined
in this section, is the most thoroughly studied case [16–

Fig. 7 Total cross section for the pair production of spin-0 monopoles
via the DY process, in which βq = 1, as a function of the monopole
mass M at

√
sqq = 4 TeV

18,29,30], however so far only the Drell–Yan production
process has been explored in collider searches [31,32,39–
41]. This type of monopole resembles a magnetic dual to the
electron. The electromagnetic interactions of the monopole
with photons, are described by model U (1) gauge theory
for a spinor field ψ representing the monopole interacting
with the massless U (1) gauge field Aμ, representing the
photon. In the cases discussed in the existing literature, the
effective Lagrangian describing the interactions of the spinor
monopole with photons is taken from standard QED upon
imposing electric-magnetic duality, in which there is no bare
magnetic-moment term (at tree level). However for our analy-
sis here, we shall insert in the Lagrangian a magnetic moment
generating term,

Lmag. moment = −i
1

4
g(β)κFμνψ[γ μ, γ ν]ψ, (22)

123
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to keep the treatment general. The origin of the magnetic
moment of the monopole is not known, so it would be naïve
to assume it is generated only through anomalous quantum-
level spin interactions as for the electron in QED.3 In the
event κ = 0, the Dirac Lagrangian is recovered. Thus, the
effective Lagrangian for the spinor-monopole-photon inter-
actions takes the form

L = −1

4
FμνF

μν + ψ(i /D − m)ψ

−i
1

4
g(β) κ Fμνψ[γ μ, γ ν]ψ, (23)

where Fμν is the electromagnetic field strength tensor, the
total derivative is /D = γ μ(∂μ − ig(β)Aμ) and [γ μ, γ ν] is
a commutator of γ matrices. The magnetic coupling g(β) is
given in (8), and is at most (depending on the case considered)
linearly dependent on the monopole boost, β = | 
p|/Ep,
where | 
p| and Ep are the monopole momentum and energy,
respectively. The effect of the magnetic-moment term is
observable through its influence on the magnetic moment
at tree level which is

μM = g(β)

2M
2(1 + 2κ̃)Ŝ, Ŝ = 1

2
, (24)

where M is the spinor-monopole mass, Ŝ is the spin expec-
tation value and the corresponding “gyromagnetic ratio”
gR = 2(1 + 2κ̃). The dimensionless constant κ̃ is defined
such that

κ = κ̃

M
. (25)

Noticeably, the parameter κ in (23) is not dimensionless, but
has units of inverse mass which breaks the renormalisability
of the theory. This may not be a serious obstacle for consid-
ering the case κ �= 0, if the pertinent model is considered in
the context of an effective field theory embedded in some yet
unknown microscopic theory, in which the renormalisation
can be recovered. 4

3 For instance, it is known that such terms have a geometrical (gravi-
tational) origin in 4-dimensional effective field theories obtained from
(Kaluza-Klein) compactification of higher-dimensional theories, such
as brane/string universes [42]. Moreover, as mentioned in the introduc-
tion, one could also include in the Lagrangian a CP-violating electric
dipole moment (EDM) term for the spinor monopole, parametrised by
a parameter η, LEDM = 1

4 g(β)ηFμνψ γ 5 [γ μ, γ ν ]ψ . In this work,
we assume such EDM terms suppressed, compared to the magnetic-
moment-κ terms, which can be arranged by assuming appropriate limits
of parameters in the underlying microscopic theory, e.g. [42]. Nonethe-
less, our analysis can be extended appropriately to include both κ and
η parameters.
4 In case one adds an EDM η-term for the spinor monopole, the cor-
responding dimensionless parameter η̃ can also be defined in analogy
with (25), i.e. η = η̃

M .

3.2.1 Spinor pair production via photon fusion

The monopole couples to the photon at a three-particle ver-
tex through a Feynman rule that is shown in Fig. 31 in
“Appendix B” together with details of the amplitudes that
lead to the cross-section calculation. The parameter κ influ-
ences the amplitude in the second term of (B17), ensuring
the κ-dependence of the observables. PF occurs through t-
channel and u-channel processes as shown in Fig. 8, with
the κ-dependent matrix amplitudes stated in Eq. (B16) of
“Appendix B”. The photon momenta areq1,q2, the monopole
momenta are p1, p2, whilst k, k̃ are the t- and u-channel
exchange momenta, respectively.

The differential cross section distributions are computed
as described in Sect. 2, with more detail given in “Appendix
B”. The κ-dependent forms are given below:

dσ
S= 1

2

γ γ→MM

d	
= α2

g(β)β

4sγ γ (1 − β2 cos2 θ)2

×
(
−β6κ4s2

γ γ cos6 θ − 2β4(κ4s2
γ γ + 4)

+β2(48κ

√
sγ γ − β2sγ γ + 2κ4s2

γ γ

+32κ2sγ γ + 8) − β4 cos4 θ((2β2 + 3)κ4s2
γ γ

+8κ2sγ γ + 4) + β2 cos2 θ
(

2β4κ4s2
γ γ

×8β2(5κ2sγ γ + 1) − 48κ

√
sγ γ − β2sγ γ

+3κ4s2
γ γ − 60κ2sγ γ − 8

)

+
(
κ2sγ γ − 2

)2
)

, (26)

with the standard (dual QED) case κ = 0 being given in
Refs. [16–18]:

dσ
S= 1

2

γ γ→MM

d	
= α2

g(β)β

4sγ γ (1 − β2 cos2 θ)2

×(− 8β4 + 8β2 − 4β4 cos4 θ + 8β4 cos2 θ

−8β2 cos2 θ + 4
)
, κ = 0. (27)

The angular distributions for monopole-antimonopole pair
production by PF are shown in Fig. 9 for spin 1/2 and for
various values of the parameter κ̃ . The monopole mass is set
to M = 1.5 TeV and the photon energy is Eγ = 6M . This is
the expectation if the monopole is truly dual to the electron
in that it is in every way just the magnetic counterpart of
well-known electric sources. The distribution shape is quite
distinct from that of the scalar-monopole case (see Fig. 3)
exhibiting a depression at η � 0 for all κ̃ values. The case
κ̃ = 0 represents the SM expectation for electron-positron
pair production if the coupling is substituted for the electric
charge e, i.e. restoring the Lagrangian to simple Dirac QED.
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Fig. 8 Feynman-like graphs for
the t-channel (a) and u-channel
(b) show the contributions to the
matrix amplitude for pair
production of spin-1/2

monopoles by PF. The variable
definitions are given in the text

(a) (b)

Fig. 9 Angular distributions for monopole-antimonopole pair produc-
tion via PF for the case of a fermionic monopole with spin 1/2 and
mass M = 1.5 TeV as a function of the scattering angle θ (left) and
the pseudorapidity η (right) at

√
sγ γ = 2Eγ , where Eγ = 6M , and

for various values of the parameter κ̃ . The case κ̃ = 0 is analogous to
the SM expectation and is clearly distinctive as the only unitary and
renormalisable case

This case is clearly distinctive as the only unitary and renor-
malisable case. It is observed that the vertical heights of the
curves for the differential cross section change with κ . Fur-
thermore, the κ = 1 and κ = −1 cases are totally equivalent,
so a degeneration between positive and negative κ values is
evident.

The total cross section for arbitrary κ , also shown graph-
ically in Fig. 10, is given by:

σ
S= 1

2

γ γ→MM
= πα2

g(β)

3sγ γ

[
3β4κ4s2

γ γ ln

(
1 − β

1 + β

)

+6β4 ln

(
1 − β

1 + β

)
− 7β3κ4s2

γ γ

+12β3 − 6β2κ4s2
γ γ ln

(
1 − β

1 + β

)

+6β2κ2sγ γ ln

(
1 − β

1 + β

)

−72βκ

√
(1 − β2)sγ γ

−36β2κ

√
(1 − β2)sγ γ ln

(
1 − β

1 + β

)

−36κ

√
(1 − β2)sγ γ ln

(
1 − β

1 + β

)

−15βκ4s2
γ γ − 9κ4s2

γ γ ln

(
1 − β

1 + β

)

−132βκ2sγ γ − 60κ2sγ γ ln

(
1 − β

1 + β

)

−24β − 18 ln

(
1 − β

1 + β

)]
. (28)

Setting κ = 0, the expression (28) reduces to that given
in Refs. [16–18,30], used in standard monopole searches at
colliders for data interpretation [31,32,39–41].

The high-energy limit for (26), expressed by sγ γ → ∞,
leads to the approximations βn → 1 for n > 2 and
β � 1 − 2M2

sγ γ
. In this limit, we observe that the differen-

tial cross section (26) diverges, except, unsurprisingly, when
recovering the Dirac model with κ = 0:

dσ
S= 1

2

γ γ→MM

d	

sγ γ →∞−−−−−→
α2
g(β)

(
1 − 2M2

sγ γ

)
4(1 − cos2 θ)

×
(

κ4sγ γ cos4 θ + 6κ4sγ γ cos2 θ + κ4sγ γ

+8κ2 cos2 θ + 28κ2 + 1

sγ γ

4
(

cos2 θ + 1
))
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Fig. 10 Total cross section for the pair production of spin-1/2

monopoles via the PF process, as a function of the monopole mass
M for different values of κ̃ at

√
sγ γ = 4 TeV

sγ γ →∞−−−−−→ sγ γ , κ �= 0.

dσ
S= 1

2

γ γ→MM

d	

sγ γ →∞−−−−−→ α2
g(β)

sγ γ

1 + cos2 θ

1 − cos2 θ
, κ = 0.

(29)

The total cross section (28) carries the same high energy
behaviour. It is finite for κ = 0, and diverges for all other
values of κ:

σ
S= 1

2

γ γ→MM

sγ γ →∞−−−−−→

⎧⎪⎨
⎪⎩
sγ γ , κ �= 0,

4πα2
g(β)

sγ γ

[
ln
( sγ γ

M2

)
− 1

]
, κ = 0.

For a constant value of sγ γ , as assumed in Fig. 10, the high-
energy limit may be approximated by M → 0, where the
cross section becomes finite only for the value κ = 0 and
diverges in other κ values, as expected from (30).

Hence, a unitarity requirement may isolate the κ = 0
model from the others as the only viable theory for the spin-
1/2 monopole, unless the model is viewed as an effective field
theory. In that case, the value of κ can be used as a window
to extrapolate some characteristics of the extended model in
which unitarity is restored. Also, as already mentioned, κ is
not dimensionless, hence, a non-zero κ clearly makes this
(effective) theory non-renormalisable.

3.2.2 Pair production of spin-1/2 monopoles via Drell–Yan

Monopole pair production through the s-channel is also
possible for fermionic monopoles through the annihilation
of quarks into a photon, which decays to the monopole-
antimonopole pair. The relevant Feynman rules are displayed
in Fig. 32 with the κ-dependent matrix amplitude given in
Eq. (B20), both in “Appendix B”. The complete DY process

Fig. 11 Feynman-like diagram for the DY process where qq → ψψ

via a virtual photon in the s-channel. The variable definitions are given
in the text

is shown in Fig. 11. The exchange energy in the centre-of-
mass frame is kπkπ = sqq .

The kinematic distributions are computed with details
given in “Appendix B” and are shown in Fig. 12. The
monopole is treated as the magnetic dual to the electron.
Analytically, the differential cross section becomes:

dσ
S= 1

2

qq→MM

d	
=5αeαg(β)

36sqq

[
β3( cos2 θ − κ2sqq cos2 θ − κ2sqq − 1

)

+ β

(
4κ

√
sqq − β2sqq + 2κ2sqq + 2

)]
, (30)

where βq = 1 on the right as the quarks are assumed to be
massless (compared to the heavy monopoles), and the index
has been dropped on βp → β. Still, the magnetic coupling
depends on β as αg(β) ∝ β2 in the velocity-dependent mag-
netic charge case.

As observed in the previous section, the value of κ affects
the unitarity and renormalisability of the model. In the spin-
1/2 model, this parameter has dimensions, destroying the
renormalisability except when κ = 0, in which case the
magnetic moment is only a by-product of anomalous spin
interactions within a minimally coupling field theory. But
unitarity for this process is maintained for all values of κ .
This becomes apparent in the high energy limit sqq → ∞.
Taking the expression (30) to first order in β in this limit, we
observe that it is finite for all κ ,

dσ
S= 1

2

qq→MM

d	

sqq→∞−−−−→

⎧⎪⎨
⎪⎩

5βαeαg(β)

36
κ2 (1 − cos2 θ), κ �= 0,

5βαeαg(β)

36sqq
(1 + cos2 θ), κ = 0.

(31)
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Fig. 12 Angular distributions for monopole-antimonopole pair pro-
duction via DY for the case of a fermionic monopole with spin 1/2 and
mass M = 1.5 TeV as a function of the scattering angle θ (left) and
the pseudorapidity η (right) at

√
sqq = 2Eq , where Eq = 6M , and

for various values of the parameter κ̃ . The case κ̃ = 0 represents the
SM expectation for electron-positron pair production if the coupling is
substituted for the electric charge e

The total cross section follows the same trend. Its full form
is

σ
S= 1

2

qq→MM
= 10πβαeαg(β)

27sqq

(
3 − β2 − (2β2 − 3)κ2sqq

+6κ

√
sqq − β2sqq

)
, (32)

which is displayed graphically in Fig. 13. In the high-energy
limit, it reduces to

σ
S= 1

2

qq→MM

sqq→∞−−−−→ 10πβαeαg(β)

27sqq
(κ2sqq+2−12κM), (33)

which is finite for all values of κ . In Fig. 13, where sγ γ is
constant, the high-energy limit is approximated at M → 0,
where the cross section becomes finite for the value κ = 0
and diverges as ∼ M−2 in other κ values, bearing in mind
that κ is related to the monopole mass as in (25). It should be
noted however that DY alone is not the only mechanism for
producing ψψ pairs and on its own cannot define the unitar-
ity of the theory as a whole. In the previous section, it was
shown how this model violates unitarity when considering
pair production by PF.

It is worth noting that monopole production in a high
energy collider sees twice the production cross section for
collisions with same-sign incoming beams, such as proton-
proton collisions at the LHC, in contrast to opposite-sign
hadron colliders, such as the Tevatron, which maintain the
exact cross section as given in (32).

Fig. 13 Total cross section for the pair production of spin-1/2

monopoles via the DY process, as a function of the monopole mass
M for different values of κ̃ at

√
sqq = 4 TeV

3.3 Vector monopole with arbitrary magnetic moment term

Monopoles of spin-1 have been addressed for the first time in
colliders recently by the MoEDAL experiment for the Drell–
Yan production [32]. A monopole with a spin S = 1 is pos-
tulated as a massive vector meson Wμ interacting only with
a massless gauge field Aμ in the context of a gauge invariant
Proca field theory. As mentioned previously, lacking a fun-
damental theory for point-like magnetic poles, we keep the
treatment general by including a magnetic moment term in
the effective Lagrangian, proportional to κ , which is a free
phenomenological parameter. Unlike the spin-1/2 monopole
case, however, for the vector monopole the magnetic moment
parameter κ is dimensionless. The case κ = 0 corresponds
to a pure Proca Lagrangian, and κ = 1 to that of the SM
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Wμ boson in a Yang–Mills theory with spontaneous symme-
try breaking. In this respect, our approach resembles early
phenomenological studies of charged W±-boson production
in the SM through PF, where the magnetic moment of the
W -boson was kept free [20], different from the value κ = 1
dictated by unitarity. The aim of such analyses was to deter-
mine measurable (physical) quantities in purely electromag-
netic SM processes, that were sensitive to the value of κ , and
more or less independent of the Higgs field and the neutral
gauge boson Z0. These quantities were the angular distribu-
tions at sufficiently high energies, whose behaviour for the
unitarity-imposed value κ = 1 was found to be quite distinct
from the case κ �= 1. As we shall see in our case, for certain
formal limits of large κ and slowly moving monopoles, one
may also attempt to make sense of the perturbative DY or PF
processes of monopole-antimonopole pair production, when
velocity-dependent magnetic charges are employed.

The pertinent effective Lagrangian, obtained by imposing
electric-magnetic duality on the respective Lagrangian terms
for the interaction of W± gauge bosons with photons in the
generalised SM framework, as described above [20], takes
the form:

L = − ξ(∂μW
†μ)(∂νW

ν) − 1

2
(∂μAν)(∂

νAμ) − 1

2
G†

μνG
μν

− M2W †
μW

μ − ig(β)κFμνW †
μWν , (34)

where the symbol † denotes the hermitian conjugate, and
Gμν = (DμW ν − DνWμ), with Dμ = ∂μ − ig(β)Aμ the
U (1) covariant derivative, which provides the coupling of the
(magnetically charged) vector fieldWμ to the gauge fieldAμ,
playing the role of the ordinary photon. The parameter ξ is a
gauge-fixing parameter. The magnetic coupling is considered
in the general form of (8), so as to cover both the β-dependent
and β-independent cases in a unified formalism. The tensor
Fμν represents the Abelian electromagnetic field strength
(Maxwell).

The magnetic and quadrupole moments are given respec-
tively by

μM = g(β)

2M
(1 + κ)Ŝ, Ŝ = 1, (35a)

QE = −g(β)κ

M2 , (35b)

where Ŝ is the monopole spin expectation value and the
corresponding “gyromagnetic ratio” gR = 1 + κ . The phe-
nomenological moment term −ig(β)κFμνW †

μWν is highly
divergent and contributes correction terms to the magnetic
and quadruple moments in Eqs. (35a) and (35b), respec-
tively. As mentioned already, following Ref. [20], we treat

κ as a free phenomenological parameter of the theory.5 For
κ �= 1, the theory is known to be non unitary, and is plagued
by ultraviolet divergences in the self-energy loop graphs
in this model, making the quadrupole moment infinite in
a non-renormalisable way. To tackle such divergences, in
the pre-SM era, Lee and Yang [19] proposed the effective
Lagrangian (34), and demonstrated that such divergences are
removed through the inclusion of the gauge fixing term with
the gauge fixing parameter ξ �= 0, but at a cost of introduc-
ing a negative metric (and thus ghosts, reflecting the unitar-
ity issue for κ �= 1). In this “ξ -limiting formalism”, as it is
called, the observables are evaluated from the ξ -dependent
Lagrangian before taking the limit ξ → 0. The quadruple
moment becomes finite at one-loop level [20]. Unitarity in
this formalism is held only at energy scales E2 ≤ M2/ξ , the
rest mass energy of a single ghost state. For our purposes,
this could be an acceptable assumption for an effective field
theory considered valid up to a cut-off scale �2 = M2/ξ . In
general, lacking a concrete fundamental theory on magnetic
poles, we shall ignore the unitarity issue when we consider
the incorporation of an arbitrary magnetic moment κ in our
construction.

At this point, we should also mention that in general, there
is another unitarity issue that arises within the context of the
PF or DY cross sections in the dual effective theories we
consider here. Even in the unitary κ = 1 case inspired by
SM physics, the associated cross section for large values of
β violates the unitarity bound for a cross section dominated
by a single partial wave of angular momentum J :

σJ ≤ 4π

s
(2J + 1). (36)

For sufficiently small values of β on the other hand, such
unitarity bounds are respected. In fact this is a feature that
characterises the cross sections of all three cases of monopole
spin S = 0, 1/2, 1 and not only the vector case [16,17]. To
tackle such an issue, within a phenomenological effective
model for the monopoles, one may assume the existence of
appropriate form factors that depend on the energy of the
photon-monopole interaction [16,17]. We shall not pursue
such issues further in this section, but we mention that such

5 Corrections to the magnetic moment of the monopole could also
arise through anomalous spin interactions at a quantum level. For β-
independent magnetic charges, these are uncontrollable, as perturba-
tion theory fails. However, if one accepts velocity-dependent couplings
(5), then for slowly-moving monopoles such loop corrections can be
made subleading. Moreover, as for the case of spinor monopoles, one
could also add an EDM term for the vector monopole [43], LEDM =
ig(β)ηF̃μνW †

μWν , where F̃μν = 1
2 εμνρσ Fρσ , is the dual Maxwell

tensor, with εμνρσ the totally antisymmetric Levi-Civita tensor in four
space-time dimensions. Such terms are assumed suppressed in our anal-
ysis, although the latter can be straightforwardly extended to include
them.
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Fig. 14 Feynman-like
diagrams for the t-channel (a),
u-channel (b) and seagull
diagram (c) that contribute to the
production of a vector-monopole
pair, WW †, from the fusion of
two gauge bosons. The variable
definitions are given in the text

(a) (b)

(c)

form factors will be included in the MadGraph generator
simulating monopole production at colliders, as we shall dis-
cuss in Sect. 5.

After this parenthesis, we come back to the spin-1
monopole-production process via PF within the context of the
model (34). Restricting our attention to tree level, the gauge
fixing parameter ξ is redundant and the ξ -independent inter-
action vertices are given in Fig. 33. These are used to evalu-
ate the κ-dependent PF Born amplitudes, AμAν → WμW †

ν

and DY ψψ → WμW †
ν . As already mentioned, we intro-

duce a velocity-dependent magnetic coupling g = g(β)

corresponding to a magnetic charge linearly dependent on
the monopole boost β = | 
p|/Ep where 
p and Ep are the
monopole momentum and energy, respectively.

3.3.1 Pair production of spin-1 monopoles via photon
fusion

Monopole-antimonopole pairs are generated at tree level by
photons fusing in the t-channel, u-channel and at a 4-point
vertex depicted by the Feynman-like graphs in Fig. 14. The
matrix amplitude for each process is given in Eq. (B24)
in Fig. 33 in “Appendix B”. k and k̃ are the exchange
momenta of the t- and u-channel processes, respectively.
The monopoles have polarisation vectors ϒ(p1)κ , ϒ(p2)κ ′
and momentum 4-vectors p1μ and p2μ, where (on mass-
shell): p2

1,2 = M2. The photons polarisation vectors are
ε(q1)λ, ε(q2)λ′ and their momentum 4-vectors are q1μ and
q2μ, q2

1,2 = 0. Details of the calculations of the analytic
expressions for the kinematic distributions and cross section
are given in “Appendix B”.

The phenomenological parameter κ enters in the expres-
sions of the differential cross sections given in (37). These
kinematic distributions are plotted as functions of the kine-
matic variables θ and η in Fig. 15 assuming a monopole mass
M = 1.5 TeV and centre-of-mass energy

√
sγ γ = 2Eγ with

Eγ = 6M . The monopole boost β is defined in (7), where
the centre-of-mass energy is understood to be the energy of
the fusing photons, i.e.

√
s = √

sγ γ = 2Eγ .

dσ S=1
γ γ→MM

d	

= α2
g(β)β

16
(
1 − β2

)2
sγ γ

(
1 − β2 cos2 θ

)2
{

48β8 + β6(κ − 1)4 cos6 θ

− 144β6 + 2β4
(

3κ4 + 28κ3 + 42κ2 − 4κ + 79
)

− 2β2
(

11κ4 + 60κ3 + 58κ2 + 12κ + 35
)

+ β4
[
24β4 + 2β2

(
κ4 + 12κ3 − 10κ2 − 20κ − 7

)

+9κ4 − 36κ3 + 22κ2 + 28κ + 1
]

cos4 θ

− β2
[

48β6 + 2β4
(
κ4 + 4κ3 − 34κ2 − 28κ − 55

)

− 4β2
(

3κ4 − 42κ2 − 8κ − 29
)

+ 35κ4

− 44κ3 − 78κ2 − 12κ − 29

]
cos2 θ

+ 29κ4 + 44κ3 + 46κ2 + 12κ + 21

}
(37)

The kinematic distributions change as the parameter κ

is varied. The reader can readily see from Fig. 15 the dis-
tinct behaviour of the kinematic distribution in the unitarity-
respecting case κ = 1, that shows a depression around η = 0,
as compared to the peaks in the cases where κ �= 1. This is
in agreement with the situation characterising W+W− pro-
duction in the SM case [20]. However as we shall see in
Sect. 5.2, when the PDF of the photon in the proton is taken
into account, these shape differences are smoothed out in pp
collisions including the (discernible here) κ = 1 case. For
κ = 1 the expression (37) becomes:
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Fig. 15 Angular distributions for monopole-antimonopole pair pro-
duction via PF for the case of a monopole with spin 1 and mass
M = 1.5 TeV as a function of the scattering angle θ (left) and the
pseudorapidity η (right) at

√
sγ γ = 2Eγ , where Eγ = 6M , and for

various values of the phenomenological parameter κ . The case κ = 1
represents the SM expectation for the pair production of spin-1 W±
gauge bosons and is distinctive as the only unitary and renormalisable
case

dσ S=1
γ γ→MM

d	
= αg(β)2β

2sγ γ (1 − β2 cos2 θ)2

(
3β4(cos4 θ

− 2 cos2 θ + 2)

+ β2(16 cos2 θ − 6) + 19
)
, κ = 1, (38)

with β given in (7) and αg(β) in (8).
As mentioned previously, the parameter κ influences the

unitarity and renormalisability of the effective theory. It is
important to notice that the differential cross section in the
κ = 1 case (38) is the only finite solution in the ultraviolet
limit sγ γ → ∞. Indeed, in the high energy limit, sγ γ → ∞,

one may approximate β4 � 1 and β � 1 − 2M2

sγ γ
, implying

that the angular distribution (38) falls off as s−1
γ γ :

dσ S=1
γ γ→MM

d	

sγ γ →∞−−−−−→ α2
g(β)

2sγ γ (1 − cos2 θ)2

×
(

3 cos4 θ + 10 cos2 θ + 19
)

, κ = 1.

(39)

For all other κ values one obtains a differential cross section
proportional to sγ γ , which diverges linearly with sγ γ → ∞:

dσ S=1
γ γ→MM

d	

sγ γ →∞−−−−−→ sγ γ , κ �= 1. (40)

The total cross section for general κ is given by

σ S=1
γ γ→MM

= πα2
g(β)

12(1 − β2)2sγ γ

[
− 72β7 + 288β5 − β3(−κ4

+ 4κ3 + 282κ2 + 196κ + 263)

− 6(1 − β2)(6β6 − 6β4

+β2(κ4 + 8κ3 + 2κ2 − 8κ − 9) − 4κ4

− 16κ3 + 16κ2 + 8κ + 2) ln

(
1 + β

1 − β

)

+ 3β(13κ4 − 20κ3 + 110κ2 + 44κ + 29)

]
,

(41)

which for the κ = 1 case reduces to [16,17]

σ S=1
γ γ→MM

= πα2
g(β)β

sγ γ

(
2

3β4 − 9β2 + 22

1 − β2

−3(1 − β4)

β
ln

(
1 + β

1 − β

))
. (42)

The total cross section is shown graphically in Fig. 16 for
various κ values. In the high energy limit sγ γ → ∞, only
the total cross section for κ = 1 is finite, in similar spirit to
the differential cross section behaviour:

σ S=1
γ γ→MM

sγ γ →∞−−−−−→
⎧⎨
⎩

8πα2
g(β)

M2 , κ = 1,

sγ γ , κ �= 1.

We stress once again that the κ = 1 case is the SM result for
vector boson scattering with photons in which the coupling
term −igFμνW †

μWν naturally arises in SU (2)×U (1) gauge
theory with spontaneous symmetry breaking. This value for
κ also restores renormalisability and unitarity in the absence
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Fig. 16 Total cross section for the pair production of spin-1 monopoles
via the PF process, as a function of the monopole mass M for different
values of κ at

√
sγ γ = 4 TeV

Fig. 17 Feynman-like diagram representing the DY process of the
spin-1 monopole. The quarks annihilate to a photon through an
electromagnetic process, which subsequently decays to a monopole-
antimonopole pair. The variable definitions are given in the text

of the negative metric and the ξ -gauge fixing. The meson
adopts a (tree-level) gyromagnetic ratio gR = 2, which is
the value associated with the W± gauge boson of the SM.

3.3.2 Pair production of spin-1 monopoles via Drell–Yan

As discussed previously, another mechanism contributing to
the production of monopole-antimonopole pairs is quark-
antiquark annihilation through the s-channel, also known as
Drell–Yan, drawn in Fig. 17, for which the relevant Feynman
rules are given in Fig. 34. The quarks each have a mass m
considered small compared to the monopole mass, M , and are
characterised by momentum 4-vectors q1μ and q2μ, where on
mass shell one has q2

1,2 = m2. Similarly, the mesons have
mass M each and are characterised by momentum 4-vectors
p1μ and p2μ, where on mass-shell one has p2

1,2 = M2. The
centre-of-mass energy of the quark-antiquark pair is kνkν =
sqq .

The differential cross section distributions are computed
as defined in Sect. 2. The expression for β (7) is formally valid

here as well, with the understanding that s = sqq now repre-
sents the Mandelstam variable for the initial quark-antiquark
pair (see Fig. 17). In the approximation of negligible quark
masses when compared to the monopole mass M , the differ-
ential cross section reads:

dσ S=1
qq→MM

d	
= 5β3αeαg(β)

288(1 − β2)M2

×
{

3β4(1 − cos2 θ) − β2[2κ2(cos2 θ + 1)

+ 8κ − 4 cos2 θ + 8
]

+ 2κ2(3 − cos2 θ) + 8κ − cos2 θ + 5

}
.

(43)

Neglecting quark masses set βq = 1 so the index on the
monopole boost βp has been dropped. Also, the β depen-
dance of the magnetic coupling is made apparent.

The kinematic distributions are plotted in Fig. 18 for var-
ious values of the parameter κ with βq = 1 as expected for
massless quarks. As in previous spin models, a monopole
mass of M = 1.5 TeV and

√
sqq = 2Eq with Eq = 6M is

assumed. This parameter influences the shape of the distribu-
tions and the convergence of the cross section as sqq → ∞.
Indeed,

dσ S=1
qq→MM

d	

sqq→∞−−−−→
⎧⎨
⎩
sqq , κ �= 0,

5αeαg(β)

288M2 (2 cos2 θ + 2), κ = 0,

where the limit was taken such that β4 � 1, β3 � 1 and
keeping β2 = 1 − 4M2

sqq
.

The total cross section for arbitrary values of κ is given
by:

σ S=1
qq→MM

=5πsqqαeαg(β)

432M4

(
1 − 4M2

sqq

) 3
2

[
8κ2 − (4κ2 + 12κ + 10)

(
1 − 4M2

sqq

)

+12κ + 3

(
1 − 4M2

sqq

)2

+ 7

]
, (44)

and it is plotted as a function of the monopole mass in Fig. 19.
In the high energy limit, it becomes

σ S=1
qq→MM

sqq→∞−−−−→ 5παeαg(β)

108M4 sqq

(
κ2 + (4κ2 + 12κ + 4)

M2

sqq

)
,

(45)

which converges only for κ = 0. In Fig. 13, we observe the
κ-dependent behaviour at M → 0 as expected from (45): the
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Fig. 18 Angular distributions for monopole-antimonopole pair pro-
duction via DY for the case of a monopole with spin 1/2 and mass
M = 1.5 TeV as a function of the scattering angle θ (left) and the

pseudorapidity η (right) at
√
sqq = 2Eq , where Eq = 6M , and for

various values of the parameter κ . The case κ = 1 represents the SM
expectation for the DY pair production of spin-1 W± bosons

Fig. 19 Total cross section for the pair production of spin-1 monopoles
via the DY process, as a function of the monopole mass M for different
values of κ at

√
sqq = 4 TeV

cross section diverges as ∼ M−2 for κ = 0 and more rapidly
as ∼ M−4 for other κ values.

The κ = 1 case represents the scattering of monopoles
within a totally renormalisable and unitary field theory with-
out gauge fixing, as uniquely found in the SM. For this case,
in harmony with the previous section, the explicit expressions
for the kinematic distribution and the total cross section are
given respectively in the following equations:

dσ S=1
qq→MM

d	
= 5β3αeαg(β)

288(1 − β2)M2

[
3β4(1 − cos2 θ

)

− β2(18 − 2 cos2 θ
)− 3 cos2 θ + 19

]
, κ = 1,

(46)

and

σ S=1
qq→MM

= 5πsqqαeαg(β)

432M4 β3
(

3β4 −26β2 +27
)
, κ = 1.

(47)

It should be noted that the unitarity of the κ = 1 case becomes
apparent only if other SM processes are included in the total
amplitude, hence the divergence seen for κ = 1 in the high
energy limit (cf. (44), (45)) is not surprising. We also remark
that the DY cross section increases by a factor of two when
considering processes generated by high energy collisions of
identical hadrons, e.g. protons to protons.

3.4 Comparison of various spin models and production
processes

This section is brought to a close by briefly comparing the
cross section distributions discussed in this work. Firstly, it
is important to point out that the dominant production pro-
cess is PF by a large margin at

√
sqq/γ γ = 4 TeV. This is

seen in Fig. 20 for all spin models. In particular, graphs 20a
and 20b show the SM-like cases for which κ = 1 and κ̃ = 0
represent the S = 1 and S = 1/2 SM-like cases, respectively.
Graph 20(c) shows the spin-0 monopole case, the only one
for which there is no magnetic moment. This corroborates the
assertion in [18]. Graphs 20d and 20e demonstrate that this
behaviour is maintained for all values of κ and κ̃ by choosing
the non-distinctive value equal to two.

Secondly, it is apparent that the cross section for monopole
production increases with the spin of the monopole most
of the mass range, as observed in Fig. 21, if the SM-like
cases for the magnetic-moment parameters are chosen. This

123



Eur. Phys. J. C (2018) 78 :966 Page 19 of 36 966

Fig. 20 Comparison between the cross sections of monopole pair pro-
duction for PF and DY processes varying with monopole mass M at√
sqq/γ γ = 4 TeV for β-independent coupling. (a) the spin-1 monopole

in the SM-like case where κ = 1; (b) the spin-1/2 monopole SM-like

case for which κ̃ = 0; (c) the spin-0 monopole case, which does not have
magnetic moment; (d) the spin-1 monopole cross section with κ = 2;
(e) the spin-1/2 monopole cross section with κ̃ = 2

Fig. 21 Comparison of the cross section between all three spin models
at

√
sqq/γ γ = 4 TeV varying with monopole mass M for PF (left) and

DY (right) and for β-independent coupling. In the S = 1/2 and S = 1

cases, the SM values κ̃ = 0 and κ = 1, respectively, are drawn, while
there is no magnetic moment in the spin-0 case

observation supports the findings of Ref. [18]. As shown in
Figs. 10 and 13 for a fermionic monopole, the trend is main-
tained for κ̃ > 0 for all masses. For a vector monopole, on
the other hand, the cross-section ordering is not consistent
across the monopole mass for varying κ values, as evident
from Figs. 16 and 19. More discussion on the phenomeno-
logical implications of the magnetic-moment parameter will
follow in Sect. 5.2, this time in the context of proton-proton
collisions.

3.5 Perturbatively consistent limiting case of large κ and
small β

As discussed in Sect. 1, the non-perturbative nature of the
large magnetic Dirac charge of the monopole invalidate any
perturbative treatment based on Drell–Yan calculations of the
pertinent cross sections and hence any result based on the lat-
ter is only indicative, due to the lack of any other concrete the-
oretical treatment. This situation may be resolved if thermal
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production in heavy-ion collisions – that does not rely on per-
turbation theory – is considered [44–46]. Another approach
is discussed here involving a specific limit of the parame-
ters κ and β of the effective models of vector and spinor
monopoles, used above, in the case of a velocity-dependent
magnetic charge (8). In this limit, the perturbative trunca-
tion of the monopole pair production processes, described by
the Feynman-like graphs of Figs. 8, 11, 14 and 17, becomes
meaningful provided the monopoles are slowly moving, that
is β � 1. In terms of the centre-of-mass energy

√
sγ γ /qq ,

such a condition on β implies, on account of Eq. (7), that
the monopole mass is around 2M � √

sγ γ /qq + O(β2).
It should be noted at this point that, in collider production
of monopole-antimonopole pairs considered in this work,
sγ γ /qq is not definite but follows a distribution, according to
the parton (or photon) distribution function (PDF) for the DY
or PF processes.

In the absence of a magnetic-moment parameter, κ , or for
the unitary value κ = 1 in the case of spin-1 monopoles
studied in [16,17], the condition β � 1 would lead to strong
suppression of the pertinent cross sections beyond the current
experimental sensitivities, thereby rendering the limit β → 0
experimentally irrelevant for placing bounds on monopole
masses or magnetic charges. Indeed, the various total cross
sections discussed so far behave as follows, when β → 0
(using the definition (8) of the magnetic fine structure con-
stant):

σ
S=1,κ=1
γ γ→MM

β→0� 19 g4

8π s
β5 β→0−−−→ 0 (spin-1 PF),

σ
S=1,κ=1
qq→MM

β→0� 135 s αe g2

1728 M4 β5 β→0−−−→ 0 (spin-1 DY),

σ
S= 1

2 ,κ=0

γ γ→MM

β→0� g4

4π s
β5 β→0−−−→ 0 (spin-1/2 PF),

σ
S= 1

2 ,κ=0

qq→MM

β→0� 5 αe g2

18 s
β3 β→0−−−→ 0 (spin-1/2 DY),

σ S=0
γ γ→MM

β→0� g4

4π s
β5 β→0−−−→ 0 (spin-0 PF),

σ S=0
qq→MM

β→0� 5 αe g2

108 s
β5 β→0−−−→ 0 (spin-0 DY).

(48)

However, in the case of non-trivial and large (dimen-
sionless) magnetic-moment-related parameters κ, κ̃ , relevant
for the cases of vector and spinor monopoles, the situation
changes drastically, as we shall now argue. To this end, we
consider the limits

κ � 1, κ̃ � 1, β � 1, (49)

with κ̃ defined in (25), but in such a way that the strength
of the derivative magnetic-moment couplings, given in
Eq. (B17) (see Fig. 31) for spin-1/2 monopoles and on the left

side of (B25) (see Fig. 33) for spin-1 monopoles is perturba-
tively small. Since the magnitude of the monopole momen-
tum is proportional to Mβ, one expects that the condition
of a perturbatively small derivative coupling for magnetic
moment is guaranteed if, by order of magnitude, one has:

gκ ′β2 < 1, (50)

where κ ′ = κ̃ for spin-1/2 monopole and κ ′ = κ for spin-1
monopole.

For the spin-1/2 monopole, from (28) and (32), one
observes that in the limit (49) and respecting (50), upon
requiring the absence of infrared divergences in the cross
sections as β → 0, and postulating that:

(κ̃βg)4β

β→0
κ→∞����� |c′

1|, c′
1 = finite constant, (51)

so that (50) is trivially satisfied, since κ̃gβ2 = |c′
1|

1
4 β

3
4

β→0
κ→∞−−−→

0, the dominant contributions to the PF and DY total cross
sections are given by

σ
S= 1

2

γ γ→MM
∼ πα2

g(β)βκ4s = (κ̃ g β)4 β

16πM4 s
β→0

κ̃→∞����� finite,

(52)

and

σ
S= 1

2

qq→MM
∼ παeαg(β)

10βκ2

9
= 5αe

18M2 (κ̃βg)2β

β→0
κ→∞−−−→ 0,

(53)

respectively, where we used (8) and (25). Hence for slowly-
moving spinor-monopoles, with velocity-dependent mag-
netic charge, and large magnetic moment parameters, it is
the PF cross section which is the dominant one of relevance
to collider experiments.

Similar results characterise the spin-1 monopole. Indeed,
we observe that in the limit (49), (50), the dominant contri-
butions to the total cross sections for the PF (see (41)) and
DY (see (44)) processes are such that

σ S=1
γ γ→MM

∼ πα2
g

29β5 κ4

4s
= 29

64πs
β
(
κβg

)4
, (54)

and

σ S=1
qq→MM

= αeαg(β)π
40β3κ2

27s
= αe

10

27s

(
κβg

)2
β3, (55)

respectively, where we used (8).
We can see that, by requiring the absence of infrared

(β → 0) divergences in the total cross sections, one may
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consistently arrange that the PF cross section (54) acquires a
non-zero (finite) value as β → 0, whilst the DY cross section
(55) vanishes in this limit:

(κβg)4β

β→0
κ→∞����� |c1|, c1 = finite constant,

σ S=1
γ γ→MM

β→0
κ→∞����� 29 c1

64 π s
,

σ S=1
qq→MM

β→0
κ→∞����� αe

10
√|c1|
27 s

β
5
2

β→0
κ→∞−−−→ 0. (56)

In such a limit, the quantity κgβ2 = |c1| 1
4 β

3
4

β→0
κ→∞−−−→ 0,

so (50) is trivially satisfied, and thus the perturbative nature
of the magnetic moment coupling is guaranteed. Hence in
this limiting case of velocity-dependent magnetic charge,
large magnetic moment couplings and slowly moving vec-
tor monopoles, again the PF cross section is the dominant
one relevant to searches in current colliders and can be rela-
tively large (depending on the value of the phenomenological
parameter c1). This argument is successfully tested with sim-
ulated events in Sect. 5.2.

4 MADGRAPH implementation

The MadGraph generator [21] is used to simulate the gen-
eration of monopoles. In this section, we briefly present the
development of the MadGraph Universal FeynRules Out-
put (UFO) model [47] used to simulate different production
mechanisms of monopole. This includes both the monopole
velocity (β) dependent and independent photon-monopole-
monopole coupling. Three different spin cases have been
included: spins 0, 1/2 and 1.

4.1 Monopole couplings

In Dirac’s model, the relation between the elementary electric
chargeqe and the basic magnetic charge g is given in Eq. (2) in
Gaussian units. However in MadGraph, Heaviside-Lorentz
units are used, where (2) becomes

qeg = 2πn, n ∈ Z. (57)

Hence, the unit of the magnetic charge is

gD = 2π/qe. (58)

The electromagnetic vertex in Heaviside-Lorentz units
simply becomes

cem = qe. (59)

Similarly, the monopole-photon vertex becomes

cmm = g. (60)

In Heaviside-Lorentz units, electric charge qe is given by√
4πα where α is the fine-structure constant. Hence, Eq. (58)

turns out to be

gD = 2π/
√

4πα = √
π/α. (61)

In (61), the monopole velocity β is not used. But if we
want to consider the monopole velocity dependent coupling,
the value of gD simply becomes β

√
π/α. The velocity β is

expressed in (7) as a function of monopole mass M .

4.2 Implementation of the monopole Lagrangians in
MadGraph

In this section, the practical details on the use of Mad-
Graph [21] to simulate the photon-fusion production mecha-
nism of monopoles is described. The MadGraphwas down-
loaded and installed following the instructions given in [48].
The general procedure to simulate a model with the help of
MadGraph is the following:

1. Create a model6 with all the user defined fields, param-
eters and interactions. Lately, the use of the UFO for-
mat [47] is strongly encouraged for such models.

2. In the MadGraph command prompt, import that model.
3. Generate the process which will be simulated using the

generate command and create an output folder.
4. Fix the centre-of-mass energy, colliding particles, parton

distribution functions in the run card.
5. Fix the parameters (electric and magnetic charges,

masses, etc) of the colliding and generated particles in
the parameter card.

6. Launch the output folder in order to compile the model
and create the Les Houches Event (LHE) files [49].

7. These LHE files will be used to produce simulated results.

4.3 Generating and validating the UFO models

To generate a UFO model from the Lagrangian, Feyn-
Rules [50], an interface to Mathematica, was utilised.
Here the parameters of a model (mass of a particle, spin, elec-
tric charge, magnetic charge, coupling constant, fermionic
or bosonic field, etc) and the corresponding Lagrangians are
written in a text file. From the Lagrangian, the UFO model
is generated with the help of FeynRules.

6 The code of the model will be publicly available in the MadGraph
web page [48].
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Table 1 Cross-section values obtained from theoretical calculations
and from the MadGraph UFO model at

√
sγ γ = 13 TeV without PDF

for monopoles of spin 0, 1/2, 1 and a β-dependent coupling through

the photon-fusion production mechanism. The ratios simulation/theory
prediction are also listed

Mass (GeV) Spin 0 Spin 1/2 Spin 1

γ γ → MM̄, σ (pb) Ratio γ γ → MM̄, σ (pb) Ratio γ γ → MM̄, σ (pb) Ratio

UFO model Theory UFO/th. UFO model Theory UFO/th. UFO model Theory UFO/th.

1000 1.4493 × 104 1.4336 × 104 0.99 1.364 × 105 1.358 × 105 1.004 1.078 × 107 1.0781 × 107 0.999

2000 9.851 × 103 9.791 × 103 1.006 8.341 × 104 8.2551 × 104 1.010 2.277 × 106 2.2520 × 106 1.011

3000 5.685 × 103 5.640 × 103 1.007 4.803 × 104 4.7554 × 104 1.010 7.214 × 105 7.1290 × 105 1.012

4000 2847 2810.5 1.013 2.251 × 104 2.2156 × 104 1.012 2.275 × 105 2.2523 × 105 1.010

5000 1094 1087 1.006 6362 6331 1.005 5.256 × 104 5.1833 × 104 1.014

6000 117.8 116.53 1.011 370 365.5 1.012 3.034 × 103 3.014 × 103 1.007

The velocity β, defined in Eq. (7), is defined as a form
factor in the generated UFO models. The instructions given
in [51], specially the ‘Method 2: Fortran Way’ were followed
to get a proper form factor. To get the value of ŝ inside the
Fortran function, we used this formula (for elastic collision):

ŝ = 2(P1 · P2), (62)

where P1 and P2 are the 4-momenta of the two colliding
particles.

For scalar monopoles, the inclusion in the simulation of
the four-particle vertex shown in Fig. 2c in addition to the
u- and t-channel, shown in Figs. 2a, b respectively, led to
the necessary use of UFO model written as a Python object
and abandon the rather older method in Fortran code. The
implementation of the four-vertex diagram proved to be non-
trivial due to the g2 coupling. The Lagrangian, which takes
the form given in (15), is rewritten in aMathematica format
so that FeynRules can understand the variables. We created
the text file containing all the information related to the field,
mass, spin and charge, etc, following the instructions given
in Ref. [52].

To validate the MadGraph UFO model for monopoles,
we compare the cross sections for the photon-fusion pro-
cess from the theoretical calculation derived in Sect. 3 to
those obtained from simulation. Since the theoretical calcu-
lations consider bare photon-to-photon scattering, we chose
in MadGraph the no-PDF option, i.e. we assume direct γ γ

collisions at
√
sγ γ = 13 TeV. Also, the coupling used here

is assumed to depend on β.
The cross-section values for spin-0 monopoles are shown

in the first columns of Table 1. The UFO-model-over-theory
ratio values, also shown in the fourth column of the table, are
very close to unity. This clearly shows the validity of spin-0
monopole UFO model.

In a similar fashion, spin-1/2 monopole Lagrangians (23)
are also rewritten in a Mathematica format. The magnetic-
moment parameter κ̃ is also implemented in the model. No

additional diagram was added to the u/t-channels already
described in the UFO model. Again, the cross sections from
theoretical calculations and MadGraph UFO models (for
no PDF) for spin-1/2 monopoles were compared, are shown
in Table 1. The comparison clearly shows the validity of the
MadGraph UFO model for spin-1/2 monopoles.

Finally, the Lagrangian (34) for spin-1 monopoles is also
written in Mathematica code. The possibility for choosing
the value of the κ parameter in (34) exists, yet for validation
purposes, the value of ξ is taken to be zero and the value of κ is
taken to be one. The cross sections for spin-1 monopoles from
the theoretical calculations and MadGraph UFO models
(for no PDF), shown in Table 1, match which satisfactorily
proved the validity of the MadGraph UFO model for the
spin-1 monopole.

Apart from the photon-fusion production mechanism,
the UFO models were also tested for the DY production
mechanism as well. The DY process for monopoles was
already implemented in MadGraph both for β-dependent
and β-independent coupling using a Fortran code setup
for spin-0 and spin-1/2 monopoles. This setup was utilised by
ATLAS [31,39] and MoEDAL [32,40,41] to interpret their
search results in terms of monopoles under these assump-
tions. These Fortran setups were rewritten in the context
of this work as UFO models, following their PF counterparts,
and they were extended to include the spin-1 case. The lat-
ter was used in the latest MoEDAL monopole-search analy-
sis [32]. After validating the UFO models against their For-
tran implementations for scalar and fermionic monopoles,
all spin cases were confronted by the theoretical predictions
given in Sect. 3. Here again the MadGraph UFO models
produced satisfactorily close cross-section values with that
predicted by the theory, as shown in Table 2.
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Table 2 Cross-section values obtained from theoretical calculations
and from the MadGraph UFO model at

√
sγ γ = 13 TeV without PDF

for monopoles of spin 0, 1/2, 1 and a β-dependent coupling through the

Drell–Yan production mechanism. The ratios simulation/theory predic-
tion are also listed

Mass (GeV) Spin 0 Spin 1/2 Spin 1

qq̄ → MM̄, σ (pb) Ratio UFO/th. qq̄ → MM̄, σ (pb) Ratio UFO/th. qq̄ → MM̄, σ (pb) Ratio UFO/th.

UFO model Theory UFO model Theory UFO model Theory

1000 0.4223 0.4184 1.009 1.747 1.735 1.007 3362 3343.05 1.006

2000 0.3484 0.3465 1.005 1.614 1.603 1.007 230.6 228.872 1.007

3000 0.2463 0.2441 1.009 1.373 1.373 1.000 45.43 45.173 1.006

4000 0.1361 0.1352 1.007 1.039 1.0352 1.004 11.38 11.3162 1.006

5000 0.04724 0.0473 0.999 0.6029 0.601 1.003 2.299 2.282 1.007

6000 0.003745 0.00373 1.004 0.1454 0.1442 1.008 0.1206 0.1196 1.008

5 LHC phenomenology

5.1 Comparison between the photon fusion and the
Drell–Yan production mechanisms

Apart from the total cross sections, it is important to study the
angular distributions of the generated monopoles. This is of
great interest to the interpretation of the monopole searches in
collider experiments, given that the geometrical acceptance
and efficiency of the detectors is not uniform as a function of
the solid angle around the interaction point. The kinematic
distributions for the direct γ γ and qq̄ scattering obtained
with the UFO models were also compared against the calcu-
lated differential cross sections of Sect. 3 and showed good
agreement with respect to the pseudorapidity,η, and the trans-
verse momentum, pT, of the monopole. It is worth noting
that the differential cross sections in Sect. 3 are plotted for
a specific value of β � 0.986, while in this section we con-
sider a range of monopole velocities connected to the ratio of
the selected monopole mass over the proton-proton collision
energy, thus some differences in the PF-vs-DY comparison
are expected.

Here the kinematic distributions are compared between
the photon-fusion (γ γ ) and the Drell–Yan mechanisms. For
this purpose, the β-dependent UFO monopole model was
used in MadGraph. Monopole-antimonopole pair events
have been generated for proton-proton collisions at

√
s =

13 TeV, i.e. for the LHC Run-2 operating energy. The PDF
was set to NNPDF23 [53] at LO for the Drell–Yan and
LUXqed [54] for the photon-fusion mechanism. The lat-
ter choice is made due to the relatively small uncertainty
in the photon distribution function in the proton provided
by LUXqed [55]. The monopole magnetic charge is set to
1 gD, yet the kinematic spectra are insensitive to this param-
eter. The distributions are normalised to the same number of
events, in order to facilitate the shape comparison.

The distributions of the monopole velocity, an impor-
tant parameter for the detection of monopoles in experi-

ments such as MoEDAL [23], are depicted in Fig. 22. The
velocity β, which is calculated in the centre-of-mass frame
of the colliding protons, largely depends on the PDF of
the photon (quark/antiquark) in the proton for the photon-
fusion (Drell–Yan) process. For scalar monopoles, Fig. 22
(left) shows that slower-moving monopoles are expected
for PF than DY, an observation favourable for the discov-
ery potential of MoEDAL NTDs, the latter being sensi-
tive to low-β monopoles. The comparison is reversed for
fermionic monopoles, where PF yields faster monopoles than
DY (Fig. 22 (centre)). Last, as deduced from Fig. 22 (right),
the β distributions for PF and DY are very similar. It should
be remarked that the plotted β expresses the monopole boost
in the laboratory frame and, in the context of proton-proton
collisions, it is distinct from the parameter β defined in (7)
that enters into the monopole-photon coupling.

The kinetic energy7 spectra are shown in Fig. 23. We
choose to show distributions of the kinetic energy because it
is relevant for the monopole energy loss in the detector mate-
rial, hence important for the detection efficiency. The kinetic-
energy spectrum is slightly softer for PF than DY for scalar
(left panel) and vector (right panel) monopoles, whereas it is
significantly harder for fermions (central panel). This differ-
ence may be also due to the four-vertex diagram included in
the bosonic monopole case. This observation is in agreement
with the one made for β previously. We have also compared
MadGraph predictions for kinetic-energy and pT distribu-
tions between with- and without-PDF cases, the latter also
against analytical calculations (cf. Sect. 3) across different
spins and production mechanisms. As expected, some fea-
tures seen in the direct γ γ or qq̄ production are attenuated in
the pp production due to the sampling of different β values
in the latter as opposed to the fixed value in the former.

As far as the pseudorapidity is concerned, its distributions
are shown in Fig. 24. The spin-0 (left panel) and spin-1 (right

7 In the context of this work, the kinetic energy of a particle is defined
as the scalar difference of its total energy and its mass.
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panel) cases yield a more central production for DY than PF,
whilst for spin-1/2 (central panel) the spectra are practically
the same, although the one for PF is slightly more central.
Again this behaviour of bosonic versus fermionic monopoles
may be attributed to the (additional) four-vertex diagram for
the bosons. In addition, the PF-versus-DY comparison of the
three panels in Fig. 24 is in agreement with their counterparts
of Figs. 3, 6 (scalar), Figs. 9, 12 (spinor), and Figs. 15, 18
(vector), respectively, as far as the production “centrality” is
concerned. In the PF process, in particular, we observe that
the depressions atη � 0 for SM values of theκ parameters for
both spin-1/2 (see Fig. 9) and spin-1 (see Fig. 15) have been
converted to flat tops when photon PDFs are also considered.
This is normal taking into account the boost of the γ γ centre-
of-mass frame with respect to the pp (laboratory) frame and
the event-by-event variation of the monopole velocity β that
yields different event weight.

The total cross sections for the various spin cases, assum-
ing SM magnetic-moment values for spin 1/2 and spin 1 and

β-dependent coupling are drawn in Fig. 25 for photon fusion
and Drell–Yan processes, as well as their sum. At tree level
there is no interference between the PF and DY diagrams,
so the sum of cross sections expresses the sum of the cor-
responding amplitudes. The PF mechanism is the dominant
at the LHC energy of 13 TeV throughout the whole mass
range of interest of 1 ÷ 6 TeV for the bosonic-monopole
case. However if the monopole has spin 1/2 the PF domi-
nates for masses up to ∼ 5 TeV, while DY takes over for
M � 5 TeV. This results underlines the importance that the
photon-fusion production mechanism has for LHC without,
however, overlooking the DY process.

5.2 Perturbatively consistent limiting case of large κ and
small β for photon fusion

In Sect. 3.5, the theoretical calculations show that in the
perturbatively consistent limit of large κ and small β, the
cross sections are finite for both spin-1/2 (52) and spin-1
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Fig. 25 Total cross section at
√
s = 13 TeV for PF, DY and their sum

versus the monopole mass. The LUXqed and NNPDF23 PDFs were
used for the PF and the DY process, respectively. For S = 1/2 and

S = 1, the SM values κ̃ = 0 and κ = 1, respectively, are drawn, while
there is no magnetic moment in the spin-0 case

(56) cases. In this section, we focus on this aspect of the
photon-fusion production mechanism, since it dominates at
LHC energies. We first put to test this theoretical claim util-
ising the MadGraph implementation and later we discuss
the kinematic distributions and comment on experimental
aspects of a potential perturbatively-consistent search in col-
liders to follow in this context.

5.2.1 Spin-1/2 case

For a spin-1/2 monopole, the dimensionless parameter κ̃ =
κM , with M the mass of the monopole, is varied from zero
(the SM scenario) to 10,000 for γ γ collisions at

√
sγ γ =

13 TeV. The cross-section of the photon fusion process for
κ̃ = 0 is going to zero very fast as β → 0, as can be seen
in the third column of Table 3. However for non-zero κ̃ , the
cross-section values remain finite even if β goes to zero, as

expected, as becomes evident from the last row of Table 3.
The same conclusion is drawn from Fig. 26 (left), where the
cross sections are plotted for pp collisions at

√
s = 13 TeV,

i.e. with PDF. For masses M � 6 TeV, the monopole pro-
duction, although still rare, remains at detectable limits for
the LHC experiments.

The central and right-hand-side plots of Fig. 26 depict
a comparison of the pT and η distributions, respectively,
between the SM value κ̃ = 0 and much higher values up
to κ̃ = 104. The SM-like case is characterised by a distin-
guishably “softer” pT spectrum and a less central angular
distribution than the large-κ̃ case.8 The latter case, on the

8 We should remark at this point, that in the absence of PDF, in the
cases for the magnetic-moment parameter κ̃ �= 0, we observe a fast-
increasing distribution of events at high pT-values up to a cutoff of
pT = √

sγ γ /2, as expected from the non-unitarity of such cases.
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Table 3 Photon-fusion production cross sections at
√
sγ γ = 13 TeV for spin-1/2 monopole, β-dependent coupling and various values of the κ̃

parameter

Monopole
mass (GeV)

β γ γ → MM̄, σ (pb)

κ̃ = 0 κ̃ = 10 κ̃ = 100 κ̃ = 10,000

1000 0.9881 1.37 × 105 ± 4.6 × 102 1.639 × 1024 ± 3.3 × 1021 1.639 × 1028 ± 3.3 × 1025 1.639 × 1036 ± 3.3 × 1033

2000 0.9515 8.303 × 104 ± 4.5 × 102 1.61 × 1024 ± 3.1 × 1021 1.61 × 1028 ± 3.1 × 1025 1.61 × 1036 ± 3.1 × 1033

3000 0.8871 4.78 × 104 ± 3.5 × 102 1.356 × 1024 ± 2.5 × 1021 1.356 × 1028 ± 2.5 × 1025 1.356 × 1036 ± 2.5 × 1033

4000 0.7882 2.237 × 104 ± 1.9 × 102 8.612 × 1023 ± 2.1 × 1021 8.613 × 1027 ± 2.1 × 1025 8.613 × 1035 ± 2.1 × 1033

5000 0.639 6396 ± 61 3.154 × 1023 ± 1.1 × 1021 3.154 × 1027 ± 1.1 × 1025 3.154 × 1035 ± 1.1 × 1033

5500 0.5329 2256 ± 22 1.247 × 1023 ± 4.5 × 1020 1.247 × 1027 ± 4.5 × 1024 1.247 × 1035 ± 4.5 × 1032

5800 0.4514 886.5 ± 7.8 5.28 × 1022 ± 2.5 × 1020 5.28 × 1026 ± 2.5 × 1024 5.28 × 1034 ± 2.5 × 1032

6000 0.3846 367.2 ± 3 2.294 × 1022 ± 7.6 × 1019 2.294 × 1026 ± 7.6 × 1023 2.294 × 1034 ± 7.6 × 1031

6200 0.3003 97.19 ± 0.77 6.43 × 1021 ± 3.3 × 1019 6.43 × 1025 ± 3.3 × 1023 6.43 × 1033 ± 3.3 × 1031

6400 0.1747 5.846 ± 0.025 4.065 × 1020 ± 1.5 × 1018 4.065 × 1024 ± 1.5 × 1022 4.065 × 1032 ± 1.5 × 1030

6490 0.0554 0.017 ± 2.27 × 10−5 1.27 × 1018 ± 8.74 × 1014 1.27 × 1022 ± 8.74 × 1018 1.27 × 1030 ± 8.74 × 1026
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Fig. 26 Photon-fusion production at
√
s = 13 TeV pp collisions for spin-1/2 monopole, β-dependent coupling and various values of the κ̃

parameter: cross section versus monopole mass (left); pT distribution for M = 1500 GeV (centre); and η distribution for M = 1500 GeV (right)

other hand, seems to converge to a common shape for the
kinematic variables as κ̃ increases to very large values. This
is not the case for κ̃ values distinct, yet near, the SM value,
where the angular distributions are not considerably differ-
ent, as shown in Fig. 9. The common kinematics among large
κ̃ values would greatly facilitate an experimental analysis tar-
geting perturbatively reliable results. We note here that the
DY process, which dominates the cross section for heavy
monopoles for the SM magnetic-moment value (see Fig. 25),
vanishes as κ̃ acquires large values as shown in Sect. 3.5,
rendering the study of photon-fusion process sufficient at the
perturbative-coupling limit.

5.2.2 Spin-1 case

Repeating the same procedure this time for spin-1 monopoles,
we vary the dimensionless parameter κ from unity (the SM
scenario) to 10,000 and we list the γ γ → MM̄ cross sec-
tions in Table 4 for the photon-fusion process. Similar to the
spin-1/2 monopole case, the cross section for κ = 1, i.e. the
SM scenario, is going to zero very fast as β → 0. However,
for κ > 1, the cross section becomes finite even if β goes to
0, as seen in the last row of Table 4. This observation remains
valid when the cross section for pp collisions, instead of γ γ

scattering, is considered. Indeed, Fig. 27 shows that for large
values of κ and M � √

s/2, which is equivalent to β � 1,
the cross section, although very small, remains finite.

In Fig. 26, a comparison of the pT (centre) and η (right)
distributions, between the SM value κ = 1 and much higher
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Table 4 Photon-fusion production cross sections at
√
sγ γ = 13 TeV for spin-1 monopole, β-dependent coupling and various values of the κ

parameter

Monopole mass (GeV) β γ γ → MM̄, σ (pb)

κ = 1 κ = 100 κ = 10,000

1000 0.9881 1.086 × 107 ± 1.4 × 105 4.939 × 1015 ± 1 × 1013 5.033 × 1023 ± 2.1 × 1021

2000 0.9515 2.275 × 106 ± 1.6 × 104 2.844 × 1014 ± 4.9 × 1011 2.879 × 1022 ± 9.8 × 1019

3000 0.8871 7.198 × 105 ± 6.6 × 103 4.518 × 1013 ± 1.5 × 1011 4.536 × 1021 ± 1.2 × 1019

4000 0.7882 2.273 × 105 ± 2.2 × 103 9.079 × 1012 ± 2.7 × 1010 9.002 × 1020 ± 3.2 × 1018

5000 0.639 5.232 × 104 ± 4.9 × 102 1.513 × 1012 ± 9.2 × 109 1.5 × 1020 ± 9.3 × 1017

5500 0.5329 1.785 × 104 ± 1.6 × 102 4.49 × 1011 ± 1.7 × 109 4.466 × 1019 ± 2.9 × 1017

5800 0.4514 7118 ± 62 1.658 × 1011 ± 1.1 × 109 1.624 × 1019 ± 8.4 × 1016

6000 0.3846 3025 ± 24 6.72 × 1010 ± 2.5 × 108 6.627 × 1018 ± 3.7 × 1016

6200 0.3003 836.9 ± 6.3 1.764 × 1010 ± 1 × 108 1.733 × 1018 ± 1 × 1016

6400 0.1747 53.42 ± 0.23 1.066 × 109 ± 3.9 × 106 1.05 × 1017 ± 3.8 × 1014

6490 0.0554 0.1694 ± 0.00065 3.293 × 106 ± 5.6 × 103 3.244 × 1014 ± 5.6 × 1011
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Fig. 27 Photon-fusion production at
√
s = 13 TeV pp collisions for spin-1 monopole, β-dependent coupling and various values of the κ parameter:

cross section versus monopole mass (left); pT distribution for M = 1500 GeV (centre); and η distribution for M = 1500 GeV (right)

values up to κ = 104 is given for spin 1. As for spin 1/2,
the large-κ curves converge to a single shape independent
of the actual κ value, however the SM-case here also yield
similar distributions as the for κ � 1.9 Therefore the η-
distribution features shown in Fig. 15 without PDF are com-
pletely smoothed out by folding with the photon distribu-
tion function in the proton. As discussed in Sect. 5.2.1 for
fermionic monopoles, such an experimental analysis can be
concentrated on the κ-dependence of the total cross section
and the acceptance for very slow monopoles to provide per-
turbatively valid mass limits in case of non-observation of
a monopole signal, since the kinematic distributions are κ-
invariant in pp collisions. The MoEDAL experiment [23,24],
in particular, being sensitive to slow monopoles can make

9 As in the spin-1/2-monopole case, we also observe here that, in the
absence of PDF, in the non-unitary cases κ �= 1, there is a fast-increasing
distribution of events at high pT-values up to a cutoff of pT = √

sγ γ /2.

the best out of this new approach in the interpretation of
monopole-search results.

6 Conclusions

The work described in this article consists of two parts. In the
first part, we dealt with the computation of differential and
total cross sections for pair production of monopoles of spin
S = 0, 1/2, 1, through either photon-fusion or Drell–Yan
processes. We have employed duality arguments to justify
an effective monopole-velocity-dependent magnetic charge
in monopole-matter scattering processes. Based on this, we
conjecture that such β-dependent magnetic charges might
also characterise monopole production.

A magnetic-moment term proportional to a new phe-
nomenological parameter κ is added to the effective
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Lagrangians describing the interactions of these monopoles
with photons for spins 1/2 and 1. The lack of unitarity and/or
renormalisability is restored when the monopole effective
theory adopts a SM form, that is when the bare magnetic-
moment parameter takes on the values κ = 0 for spin-1/2

monopoles, and κ = 1 for spin-1 monopoles. However we
remark that the lack of unitarity and renormalisability is not
necessarily an issue, from an effective-field-theory point of
view. Indeed, given that the microscopic high-energy (ultra-
violet) completion of the monopole models considered above
is unknown, one might not exclude the possibility of restora-
tion of unitarity in extended theoretical frameworks, where
new degrees of freedom at a high-energy scale might play
a role. In this sense, we consider the spin-1 monopole as a
potentially viable phenomenological case worthy of further
exploration.

The motivation behind the magnetic-moment introduction
is to enrich the monopole phenomenology with the (unde-
fined) correction terms to the monopole magnetic moment
to be treated as free parameters potentially departing from
the ones prescribed for the electron or W± bosons in the
SM. Lacking a fundamental microscopic theory of magnetic
poles, such an addition appears reasonable. This creates a
dependence of the scattering amplitudes of processes on this
parameter, which is passed on to the total cross sections
and, in some cases, to kinematic distributions. Therefore the
parameter κ is proposed as a tool for monopole searches
which can be tuned to explore different models.

Moreover, even more intriguing is the possibility to use
the parameter κ in conjunction with the monopole veloc-
ity β to achieve a perturbative treatment of the monopole-
photon coupling. Indeed, in general the large value of the
magnetic charge prevents any perturbative treatment of the
monopole interactions limiting us to a necessary truncation
of the Feynman-like diagrams at the tree level. By limiting
the discussion to very slow (β � 1) monopoles, the pertur-
bativity is guaranteed, however, at the expense of a vanishing
cross section. Nonetheless it turns out that the photon-fusion
cross section remains finite and the coupling is perturbative
at the formal limits κ → ∞ and β → 0. This ascertainment
opens up the possibility to interpret the cross-section bounds
set in collider experiments, such as MoEDAL, in a proper
way, thus yielding sensible monopole-mass limits.

In the second part of this article, a complete implementa-
tion in MadGraph of the monopole production is performed
both for the photon-fusion and the Drell–Yan processes, also
including the magnetic-moment terms. The UFO models
were successfully validated by comparing cross-section val-
ues obtained by the theoretical calculations and the Mad-
Graph UFO models. Kinematic distributions, relevant for
experimental analyses, were compared between the photon-
fusion and the Drell–Yan production mechanism of spins
0, 1/2 and 1 monopoles. This tool will allow to probe for

the first time the – dominant at LHC energies – photon-
fusion monopole production. Furthermore, the experimental
aspects of a perturbatively valid monopole search for large
values of the magnetic-moment parameters and slow-moving
monopoles have also been outlined, based on these kinematic
distributions.
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Appendix A: Basic definitions

Listed in this appendix are the standard identities for sums
and traces over vector boson polarisation and spinor spin
states, as well as basic properties of Dirac γ -matrices used
in the text to derive the various scattering amplitudes. The
variables related to the differential cross section of a two-
particle scattering are also defined.

Our notation and conventions are:
Space-time metric is four-dimensional, Minkowski flat:

gμν = ημν = Diag
(

+ 1,−1,−1,−1
)
. (A1)

Dirac γ -matrices satisfy the Clifford algebra:

{γ μ, γ ν} = 2gμν , (A2)

where {A, B} = AB + BA denotes the anticommutator.
The sum over photon polarisation states is given by:

∑
λ

ε
μ
λ εν∗

λ = −gμν. (A3)
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The sum over massive (of mass M) vector meson polari-
sation states reads:∑
κ

∑
κ ′

[
ϒρ

κ ϒσ∗
κ ′ ϒ∗ρ′

κ ϒσ ′
κ ′
]

=
(

−gρρ′ + pρ
1 p

ρ′
1

M2

)(
−gσσ ′ + pσ

2 pσ ′
2

M2

)
. (A4)

The spinor sum rules and properties of Dirac’s γ matrices
are:∑

s

usus = (/p1 + m),
∑
r

vrvr = (/p2 − m),

Tr[odd number of γ matrices] = 0,

Tr[γ μ γ ν] = 4 gμν,

Tr[γ μγ νγ σ γ ρ] = 4gμνgσρ − 4gμσ gνρ + 4gμρgνσ ,

(A5)

from which we obtain for the trace over spinor polarisations:

Tr
[
(uαγ μvβ)(vβγ μ′

uα)
]

= Tr
[ (

/q1 + m
)
γ μ

(
/q2 − m

)
γ μ′]

= q1ρq2σ

(
4gμσ gμ′ρ − 4gμμ′

gσρ

+ 4gμρgμ′σ
)

− 4m2 gμμ′
(A6)

1. The angular differential cross section distribution dσ
d	

is
defined as usual

dσ

d	
= 1

64π2s

| 
p1|
|
q1| |M|2 , (A7)

where |M|2 is the squared matrix amplitude, averaged
over initial spin or polarisation states (depending on the
process) and summed over final ones, with the matrix
element M denoting the sum of the matrix amplitudes of
all the relevant processes contributing to the interaction.
This expression is evaluated in terms of the Mandelstam
variables defined as

t = (q1 − p1)
2 = m2

q + m2
p − 2q1 p1

= (−q2 + p2)
2 = m2

q + m2
p − 2q2 p2,

u = (q1 − p2)
2 = m2

q + m2
p − 2q1 p2

= (−q2 + p1)
2 = m2

q + m2
p − 2q2 p1,

s = (p1 + p2)
2 = (q1 + q2)

2,

s + t + u =
4∑

i=1

m2
i , (A8)

where mi are the masses of initial and final state particles
i for which q2 = m2

q and p2 = m2
p as defined in Fig. 28.

2. The kinematics of the scattering of two initial-state par-
ticles is shown in Fig. 28 in the centre-of-mass frame.

Fig. 28 Definition of coordinates pertaining to the particle-antiparticle
pair production from the interaction of two initial-state particles in the
centre-of-mass frame. The process has cylindrical symmetry in the lon-
gitudinal direction (qi ), perpendicular to which the azimuth φ is defined.
The scattering angle θ and pseudorapidity η of the (final-state) M and
M particles is also defined

These states with momenta q1, q2 interact with the same
energy and with three momentum vectors that have oppo-
site directions and equal magnitudes. In this frame, the
energies Eq1 = Eq2 and Ep1 = Ep2 . Finally, it is worth
noting that the s-channel exchange energy s = (p1 +
p2)

2 = (q1 + q2)
2 demands that Eq = Ep. Using the

geometry of the system, |M|2 is reduced to its final form
as a function of θ , defined as the angle between the axes of
propagation of the initial state particles and the scattered
monopoles (see Fig. 28). The Mandelstam variables in
this frame take the form t = m2

q+m2
p− s

2 (1−βpβq cos θ)

and u = m2
q + m2

p − s
2 (1 + βpβq cos θ).

3. At this point, |M|2 is inserted into the expression for the
angular cross section distribution in (A7). The behaviour
of the cross section can be studied as a function of kine-
matic variables other than θ by a change of variable.
Specifically, experimental monopole searches are usu-
ally interested in expressing the pertinent cross sections
in terms of the pseudorapidity η, defined as

η ≡ − ln tan
θ

2
. (A9)

The latter represents an angular coordinate relative to the
beam axis as identified in Fig. 28, or alternatively the
significance of the longitudinal boost relative to the total
momentum. It is also the high energy limit of the rapidity
y, which is the relativistic, i.e. Lorentz-invariant, realisa-
tion of velocity. It becomes the new kinematic variable
through the coordinate transformation

1

cosh2 η
dη = 1

2π
d	 . (A10)

These cross section distributions are plotted in an effort
to understand the behaviour of the particles scattering
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Fig. 29 In SQED, spin-0 scalar bosons (dashed lines) interact with
photons (wavy lines) according to the vertices in the figure. The corre-
sponding Feynman rules are given in (B2)

from these interactions according to various phenomeno-
logical models. In view of (8), the β dependence of the
coupling acts as a scaling factor on the distributions. In
the first part of this work, the distributions in the β-
independent-magnetic-coupling case are shown explic-
itly for brevity; those in the β-dependent case can be
recovered by multiplying the vertical axes by a factor β.

4. Finally, the total cross section σ is evaluated as the defi-
nite integral of (A7) over the solid angle d	 = dφ dcos θ .
The longitudinal angle φ spans from φ0 = 0 to φ1 = 2π ,
while the integration limits on the scattering angle are
cos θ0 = −1 and cos θ1 = 1.

Appendix B: Detailed cross-section calculation

This appendix gives a more detailed discussion on how the
analytic expressions for cross section distributions were eval-
uated. We outline below the basic steps leading to the evalua-
tion of the pertinent cross sections for monopole production.

1. Spin-0 monopole cross section

Scalar monopole production by PF manifests itself through
three processes: a t-channel process, a u-channel process
and a 4-point interaction as shown in Fig. 2. In Fig. 29, ελ(q)

is the polarisation vector of the photon and the magnetic
charge g(β) is linearly dependent on the monopole boost,
β = | 
p|/Ep. The amplitudes are derived from the Feynman
rules of (B1):

Mt = εν

λ
′ ig(β)(−kν + p2ν)

i

k2 − M2 ig(β)(−kμ − p1μ)ε
μ
λ

(B2a)

Mu = εν
λig(β)

(−k̃ν + p2ν

) i

k̃2 − M2
ig(β)

(−p1μ − k̃μ

)
ε
μ

λ
′

(B2b)

M4 = 2ig2(β)gμνε
μ
λ εν

λ
′ . (B2c)

As usual, the spin-0 monopole has mass M and momenta
p1 and p2, the photons have polarisation vectors ελ and ε

λ
′

and momenta q1 and q2. These are indicated in Fig. 2 where
p2
iμ

= M2 and q2
iμ

= 0. k and k̃ are the t- and u-channel
exchange momenta, respectively.

The matrix amplitudes are reduced to the following forms
in order to remove the k and k̃ dependences.

Mt = −ig2(β)εν

λ
′ (2p2ν − q2ν)

1

2p1q1
(2p1μ − q1μ)ε

μ
λ

Mu = −ig2(β)εν
λ(2p2ν − q1ν)

1

2p2q1
(2p1μ − q2μ)ε

μ

λ
′

M4 = 2ig2(β)gμνε
μ
λ εν

λ
′ . (B3)

The total matrix amplitude MPF = Mt + Mu + M4 is
squared, summed over final states and averaged over photon
polarisation states. As a non-trivial but quite useful example
of how the rules in “Appendix A” are used, the next para-
graphs detail the analytical procedure involved in calculating
|M|2PF from the matrix amplitudes in Eq. (B3).

∑
pol

MtM∗
t =

∑
λ,λ

′

[
− ig2(β)εν

λ
′ (2p2ν − q2ν)

× 1

2p1q1
(2p1μ − q1μ)ε

μ
λ

]

·
[
ie2εσ∗

λ (2p1σ − q1σ )
1

2p1q1
(2p2ρ − q2ρ)ε

ρ∗
λ

′

]

= g4(β)(2p2ν − q2ν)
2 1

(2p1q1)2 (2p1μ − q1μ)2

= g4(β)
[ 4M4

(p1q1)2 + 4 − 8M2

(p1q1)

]
,

∑
pol

MuM∗
u = g4(β)

[ 4M4

(p2q1)2 + 4 − 8M2

(p2q1)

]
,

∑
pol

M4M∗
4 =

∑
λ,λ

′
2ig2(β)gμνε

μ
λ εν

λ
′ · (−2i)e2gσρεσ∗

λ ε
ρ∗
λ

′

= 4gσμg
σμ = 16,

2
∑
pol

MtM∗
u = 2

∑
λ,λ

′

[
− ig2(β)εν

λ
′ (2p2ν − q2ν)

× 1

2p1q1
(2p1μ − q1μ)ε

μ
λ

]

·
[
ie2ε

ρ∗
λ

′ (2p1ρ − q2ρ)
1

2p2q1
(2p2σ − q1σ )εσ∗

λ

]

= 1

(p1q1)(p2q1)
(2(p2q1)

2 + 2(p1q1)
2

+ 4(p2q1)(p1q1) + 8M4 − 8M2(p2q1 + p1q1))

2
∑
pol

MtM∗
4 = 2

∑
λ,λ

′

[
− ie2εν

λ
′ (2p2ν − q2ν)

× 1

2p1q1
(2p1μ − q1μ)ε

μ
λ

]

·
[
−2ig2(β)gσρεσ∗

λ ε
ρ∗
λ

′
]
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= −10 + 8M2

p1q1
− 2p2q1

p1q1

2
∑
pol

MuM∗
4 = 2

∑
λ,λ

′

[
− ie2εν

λ(2p2ν − q1ν)

× 1

2p2q1
(2p1μ − q2μ)ε

μ

λ
′

]

·
[
−2ig2(β)gσρεσ∗

λ ε
ρ∗
λ

′
]

= −10 + 8M2

p2q1
− 2p1q1

p2q1
. (B4)

Hence, using the Mandelstam variables (A8), one obtains

|M|2PF = 2!
4

∑
pol

[
MtM∗

t + MuM∗
u + M4M∗

4

+ 2MtM∗
4 + 2MuM∗

4 + 2MtM∗
u

]

= 2g4(β)

{
1 +

[
1 −

(
m2(p1q1 + p2q1)

(p1q1)(p2q1)

)]2
}

= 2g4(β)

⎧⎨
⎩1 +

[
1 −

(
2M2sγ γ

(t − M2)(u − M2)

)]2
⎫⎬
⎭

= 2g4(β)

{
2 + 4M4

(t − M2)2 + 4M4

(M2 − sγ γ − t)2

+ 4M2

(t − M2)
+ 4M2

(M2 − sγ γ − t)

+ 8M4

(t − M2)(M2 − sγ γ − t)

}
, (B5)

where the 2! is the symmetry factor of the final states. In
terms of the angle θ , using the definition of the Mandelstam
variable t (A8), which in this case reads:

t = M2 − 2E2 + 2
q1 · 
p1 = M2 − sqq
2

(1 − β cos θ), (B6)

the expression is reduced to:

|M|2PF = 2g4(β)

{
1 +

[
1 −

(
8M2

sγ γ (1 − β2 cos2 θ)

)]2
}

.

(B7)

where β is defined in (7).
In the centre-of-mass frame, sγ γ = 4Eq1 Eq2 and the pho-

ton three-momenta 
q1 = 
q2 are defined as |
q| = Eq for
any massless photon. It follows from this that the s-channel
exchange energy sγ γ = (p1 + p2)

2 = (q1 + q2)
2 requires

that Eq = Ep. As discussed in Sect. 2, this squared matrix
amplitude is used to evaluated the kinematic distributions in
terms of the angle θ and the pseudorapidity η. The total cross
section in the centre-of-mass frame is obtained by integrating
(B7) over the solid angle d	 = dφ dcos θ :

(a) (b)

Fig. 30 a Three-point vertex representing the tree-level interaction of
scalar monopoles (dashed lines) with photons (wavy lines). b The quark-
photon three point vertex as in ordinary QED. The corresponding Feyn-
man rules are given in (B10), where g(β) is the (in general β-dependent)
monopole magnetic charge

σ S=0
γ γ→MM

= 1

64π2sγ γ

| 
p1|
|
q1|

∫ 2π

0

∫ 0

−π

|M|2PH dφ dcos θ.

(B8)

Scalar monopole pairs produced by the DY digram shown
in Fig. 5 have kinematic distributions the analytic forms of
which are derived analogously to the PF case. The total matrix
amplitude, derived from the Feynman rules in Fig. 30, is given
by

MDY = uαi (−i Qeγμδi j )vβ j

(−igμν

k2

)
(−ig(β))(p1ν − p2ν),

(B9)

where uαi , vβ j , uαi , vβ j are the quark fermionic spinors with
δi j the colour index factor and gμν is the Minkowski space-
time metric tensor. The quarks have a mass m each and are
characterised by momentum 4-vectors q1μ and q2μ, where
q2

1,2 = m2. Similarly, the scalar monopoles have mass M
and momentum 4-vectors p1μ and p2μ, where, on shell,
p2

1,2 = M2. The quark masses are negligible compared to a
monopole mass. The quantity e represents the positron charge
and Q is the charge fraction relevant for quarks, Q = 1

3 , 2
3 .

The squared matrix amplitude, averaged over quark spins
and colours, |M2|DY is then computed:

|M2|DY =
∑
Q

(
3Q2e2g2(β)

k4

)
2!
4

1

3
Tr

×
[
(uαiγμδi jvβ j )(g

μν)(p1ν − p2ν)

×(p1ν′ − p2ν′ )
(
gν′μ′) (

vβ j ′γμ′δ j ′i ′uαi ′
) ]

=
∑
Q

(
3Q2e2g2(β)

k4

)
1

3
Tr[δi ′i δi j δ j j ′δ j ′i ′ ]

× 1

2
Tr
[
( /q1 + m)γμ( /q2 − m)γμ′

] (
pμ

1 − pμ
2

) (
pμ′

1 − pμ′
2

)

=
(

5

9

3e2g2(β)

2k4

)[
qσ

1 q
ρ
2 (4gσμgρμ′ − 4gσρgμμ′ + 4gσμ′gρμ)

−4m2 gμμ′
] (

pμ
1 − pμ

2

) (
pμ′

1 − pμ′
2

)
. (B11)
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The 2!, 1
4

1
3 factors account for the symmetry factor of the final

states, and the averaging over spins and colour states. The
factor of 3 includes the contribution from 3 quark flavours.
Finally, the sum over quark charges adds a factor of 5

9 to the
result. The rest of the expression was found using the spin
sum rules and properties of γ -matrices listed in “Appendix
A” (see Eqs. (A5), (A6)).

Using the relationship between the Mandelstam variables
(A8) and the scattering angle between the trajectories of the
incoming quarks and outgoing scalar bosons as depicted in
Fig. 28,

t = m2 + M2 − sqq
2

(1 − βqβp cos(θ)) (B12)

u = m2 + M2 − sqq
2

(1 + βqβp cos(θ)), (B13)

with βq = |q|/Eq and βp = |p|/Ep, (B11) simplifies to:

|M2|DY = 15

9

(
−e2g2(βp)

s2
qq

)(
(−t + u)2 + 4M2 − s2

qq

)

(B14a)

= 5

3
e2g2(βp)β

2
p

(
1 − β2

q cos(θ)2
)

, (B14b)

which is used to compute the differential cross section.

dσ S=0
qq→MM

d	
= 1

64π2sqq

| 
p1|
|
q1| |M|2DY = 1

64π2sqq

βp

βq
|M|2DY .

(B15)

The quark masses are assumed negligible at this point, hence
βq = 1 and the subscript is dropped on βp. The total cross
section is obtained by integrating over the solid angle as in
the photon fusion case.

2. Spin-1/2 monopole cross section

Starting with pair production by PF, the kinematic distribu-
tions for spin-1/2 monopoles are derived. The total matrix
amplitude for the process is the sum of a t- and a u-channel
process, shown in Fig. 8, MPH = Mt + Mu . Each ampli-
tude is derived from the Feynman rule (B17), shown in
Fig. 31. The fermion in the latter may represent a spin-1/2

monopole with magnetic moment κ �= 0, upon dualising
the theory by replacing the electric charge by a (in general
β-dependent) magnetic charge g(β). The amplitude in the
latter case is given in Eq. (B17) where the influence of the
added magnetic moment term is visible. The term [γ μ, γ ν]
is a commutator of γ matrices and qμ is the photon four-
momentum.

(B17)

Fig. 31 Interaction vertex representing the only coupling of a spin-
1/2 fermion (continuous line), which may be a monopole, and a photon
(wavy line) inU (1) gauge invariant quantum-electrodynamics. The cor-
responding Feynman rule is given in (B17)

Mt = −ig(β)2ελμus

(
γ μ + 1

2
κq1σ [γ σ , γ μ]

)

× (/k + M)

k2 − M2

(
γ ν + 1

2
κq2σ [γ σ , γ ν]

)
vrελ

′
ν

(B16a)

Mu = −ig(β)2ε
λ

′
μ
us

(
γ μ + 1

2
κq2σ [γ σ , γ μ]

)

× (/̃k + M)

k̃2 − M2

(
γ ν + 1

2
κq1σ [γ σ , γ ν]

)
vrελν. (B16b)

It is squared, averaged over photon polarisation states,
and summed over final-state monopole spins. The expression
becomes:

|M|2PH = 1

4

∑
λλ′

∑
αα′

[
MtM∗

t + MuM∗
u + 2MtM∗

u

]

= 1

4

∑
λλ′

ε∗ν
λ′ ε

μ
λ εν′

λ′ ε
∗μ′
λ

∑
αα′

[
uα�μ� f �νvα′ + uα�ν� f �μvα′

]

×
[
uα�∗

μ′� f �
∗
ν′vα′ + uα�∗

ν′� f �
∗
μ′vα′

]T

= 1

4
(−gμμ′

)(−gνν′
) Tr

[(
uα�μ� f �νvα′ + uα�ν� f �μvα′

)

×
(
uα�∗

μ′� f �
∗
ν′vα′ + uα�∗

ν′� f �
∗
μ′vα′

)T ]
, (B18)

where uα and vα′ denote the monopole spinors, �ν represents
the κ (or κ̃) dependent coupling at the vertices and � f is
the fermionic monopole propagator. The necessary sums and
traces are listed in “Appendix A” (see Eqs. (A4), (A5) and
(A6)). The expression is reduced in Mathematica and the
differential cross section is evaluated:

dσ
S= 1

2

γ γ→MM

d	
= 1

64π2sγ γ

β|M|2PH (B19)
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(a) (b)

Fig. 32 a Spin-1/2 fermionic monopoles interact with photons at the
three-point vertex, where kσ is the photon momentum and g(β) is the
magnetic coupling. b The quarks couple to the photon as expected form
Dirac QED for spinors with fractional charges, Qe, where Q is the
charge fraction relevant to the quarks involved, Q = 1

3 , 2
3 . The corre-

sponding Feynman rule is given in (B21)

where the monopole boost is β = | 
p|/Ep and the photon
momentum is |
q| = Eq , recognising also that Eq = Ep

in the centre-of-mass frame. It is expressed in terms of the
scattering angle θ and the pseudorapidity η as defined in
Fig. 28 and explained in Sect. 2.

Moving on now to monopole pair production by DY, the
matrix amplitude is derived from the Feynman rule (B21)
shown in Fig. 32.

MDY = uβ(−i Qeγ μ)vβ ′
(−igμν

k2

)
aα(−ig(β))

×
(

γ ν + 1

2
κkσ [γ σ , γ ν]

)
bα′ . (B20)

The squared matrix amplitude is given by:

|M|2DY =
∑
ββ ′

∑
αα′

3
5

9

1

4

1

3

[
uβ(eγ μ)vβ ′

(gμν

k2

)
aα(g(β))

×
(

γ ν + 1

2
κkσ [γ σ , γ ν]

)
bα′
]

×
[
bα′
(
γ ν′ + 1

2
κkσ ′ [γ σ ′

, γ ν′ ]
)

× (g(β))aα

(gμ′ν′

k2

)
vβ ′(eγ μ′

)uβ

]

= 5e2g(β)2

36
Tr
[
uβ(γ μ)vβ ′vβ ′(γ μ′

)uβ

](gμν

k2

)

×
(gμ′ν′

k2

)
Tr

[
aα

(
γ ν + 1

2
κkσ [γ σ , γ ν]

)

× bα′bα′
(
γ ν′ + 1

2
κkσ ′ [γ σ ′

, γ ν′ ]
)
aα

]
, (B22)

where on the right-hand-side in the first line, the various sym-
metry factors are indicated explicitly for the convenience of
the reader. Specifically, the factors 1

4 and 1
3 come from the

averaging over spinor states and colour states, respectively.
The factor of 3 accounts for the flavour multiplicity and the

factor 5
9 is the sum over squared quark charges Q = 2

3 , 1
3 .

The sums over spinor states become traces which are eval-
uated by Mathematica using the spinor sum rules and the
properties of γ matrices (A5) in “Appendix A”. The quark
trace is evaluated explicitly in (A6) of “Appendix A”.

As in the preceding cases, the differential cross section
distributions are computed using Mathematica as defined
in Sect. 2. As βp = | 
p|/Ep represents the monopole boost,
βq = |
q|/Eq represents the quark boost, and Ep = Eq in the
centre-of-mass frame defined in Fig. 28, | 
p1|/|
q1| = βp/βq ,
and hence

dσ
S= 1

2

qq→MM

d	
= 1

64π2sqq

βp

βq
|M|2DY , (B23)

where βq → 1 for quarks of negligible mass (compared
to the heavy monopoles), in which case the index can be
dropped on βp → β. The kinematic distributions are once
again expressed in terms of the scattering angle θ and the
pseudorapidity η for various values of κ .

3. Spin-1 monopole cross section

Spin-1 monopole pair production via PF proceeds in three
ways: a t-channel process, a u-channel process and a 4-point
interaction, as depicted in Fig. 14. The related Feynman rules
are given in Fig. 33, where the boson polarisation vectors are
shown for the gauge field, ε(q1)λ, ε(q2)λ′ , and the monopole
field, ϒ(p1)κ , ϒ(p2)κ ′ . The monopoles are assumed to have
mass M and momentum 4-vectors p1μ and p2μ, where (on
mass-shell): p2

1,2 = M2. The photon momentum 4-vectors

are q1μ and q2μ, q2
1,2 = 0. From (B25), the matrix amplitude

for each process is derived below:

Mt = εν
λ′ϒσ

κ ′(−ig(β))(−gσν(p2 + κq2)π

−gνπ (p2 − (κ + 1)q2)σ

−gσπ (q2 − 2p2)ν)

(
− igπδ + i k

π kδ

M2

)
k2 − M2

×(−ig(β))(−gρμ(p1 + κq1)δ − gμδ(p1 − (κ + 1)q1)ρ

−gρδ(q1 − 2p1)μ)ε
μ
λ ϒρ

κ (B24a)

Mu = ε
μ

λ′ϒσ
κ ′(−ig(β))(−gσμ(p2 + κq1)π

−gμπ (p2 − (κ + 1)q1)σ

−gσπ (q1 − 2p2)μ)

(
− igπδ + i k̃

π k̃δ

M2

)

k̃2 − M2

×(−ig(β))(−gρν(p1 + κq2)δ − gνδ(p1 − (κ + 1)q2)ρ

−gρδ(q2 − 2p1)ν)ε
ν
λϒρ

κ (B24b)

M4 = εν
λ′ε

μ
λ ϒσ

κ ′ϒρ
κ

[
− 2ig2(β)(gμνgσρ)

+ig2(β)(gμσ gνρ + gμρgνσ )
]
. (B24c)

123



966 Page 34 of 36 Eur. Phys. J. C (2018) 78 :966

Fig. 33 Feynman rules for the
three- and four-point couplings
of the spin-1 field and gauge
field in the Lee–Yang model.
Wavy lines with arrows indicate
the vector monopole field, while
wavy lines without arrows
represent the photon. The
corresponding rules are given in
(B25)

(a) (b)

Following the discussion in Sect. 2, the probability of pro-
duction is proportional to the square of the matrix ampli-
tude, |M|2PH , averaged over the initial photon polarisations
λ(′), and summed over the final state monopole polarisa-
tions κ(′), where the matrix amplitude MPH is equal to
the sum of the amplitudes for each contributing process
MPH = Mt + Mu + M4. One has, therefore:

|M|2PH = 1

4

∑
λλ′

∑
κκ ′

[
MtM∗

t + MuM∗
u + M4M∗

4

+2MtM∗
u + 2MtM∗

4 + 2M4M∗
u

]
. (B26)

Equation (B26) can be re-written by factoring out the polar-
isations and defining the factorised matrix element as the
product of vertices �αβδ and photon propagators �

αβ
γ :

|M|2PH =1

4

∑
λλ′

ε∗ν
λ′ ε

μ
λ εν′

λ′ ε
∗μ′
λ

×
∑
κκ ′

ϒ∗σ
κ ′ ϒρ

κ ϒσ ′
κ ′ ϒ∗ρ′

κ

[
MμνρσM∗

μ′ν′ρ′σ ′
]

,

Mμνρσ =�νσπ�πδ
γ �δμρ + �μσπ�πδ

γ �δνρ + �μνσρ .

(B27)

We assume that the monopoles have mass M , polarisation
vectors ϒ(p1)κ , ϒ(p2)κ ′ and are characterised by momen-
tum 4-vectors p1μ and p2μ, where (on mass-shell): p2

1,2 =
M2. The photons with polarisation vectors ε(q1)λ, ε(q2)λ′
have momentum 4-vectors q1μ and q2μ, q2

1,2 = 0. The polar-
isation sums are evaluated by Mathematica following the
standard sum rules (listed in “Appendix A”, see Eqs. (A3),
(A4) such that

|M|2PH = 1

4

(
−gρρ′ + pρ

1 p
ρ′
1

M2

)(
−gσσ ′ + pσ

2 pσ ′
2

M2

)

×
(
−gμμ′) (−gνν′) [MμνρσM∗

μ′ν′ρ′σ ′
]
,

(B28)

where gμν is the Minkowski space-time metric tensor. The
expression for |M|2PH is reduced by Mathematica and
inserted into the definition of the differential cross section
in Eq. (A7),

dσ S=1
γ γ→MM

d	
= 1

64π2sγ γ

β|M|2PH , (B29)

where β = | 
p|/Ep is the monopole boost, and for which
|
q| = Eq is the photon energy, such that Ep = Eq in this
setup.

Following a similar procedure to the treatment above and
using the set of Feynman rules given in (B31), kinematic
distributions for monopole pair production by DY are dis-
cussed next. The relevant Feynman rules are drawn in Fig. 34,
where Fig. 34a is the vertex for the WσW †

ρAν interaction

and Fig. 34b shows the ψψAν vertex which comes directly
from the ordinary QED with quarks as Dirac spinors. The
quarks each have a mass m considered small compared to
the monopole mass, M , and are characterised by momen-
tum 4-vectors q1μ and q2μ, where on mass shell one has
q2

1,2 = m2. Similarly, the mesons have mass M each and are
characterised by momentum 4-vectors p1μ and p2μ, where
on mass-shell one has p2

1,2 = M2.
The boson polarisation vectors are indicated for the

monopoles by ϒ(p1)
ρ
κ , ϒ(p2)

σ
κ ′ . The matrix amplitude is

derived from (B31):

MDY = ϒρ
κ ϒ∗σ

κ ′ uα(−i Qeγμ)vβ

(−igμν

k2

)

× (−ig(β))
(−gσν(−κp2 + κp1 + p1)ρ

−gνρ(p2 + κp2 − κp1)σ + gρσ (p1 + p2)ν
)
,

(B30)

where uα, vβ, uα, vβ are the fermionic spinors representing
the quarks, gμν is the Minkowski metric tenor and ϒκ is the
monopole polarisation vector.
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(a) (b)

Fig. 34 a Spin-1 bosonic monopoles interacting with gauge field at
the three-point vertex, where g(β) is the magnetic coupling. b The
quarks couple to the photon as expected form Dirac QED for spinors
with fractional charges, Qe, where Q is the charge fraction relevant to
the quarks involved, Q = 1

3 , 2
3 . The corresponding Feynman rules are

given in (B31)

The averaged matrix amplitude squared is then written as

|M2|DY = 1

3

1

4

5

9

3 e2g2(β)

k4

∑
κ

∑
κ ′

[
ϒρ

κ ϒσ∗
κ ′ ϒ∗ρ′

κ ϒσ ′
κ ′
]

× Tr
[
(uαγμvβ)(vβγμ′uα)

]

× (gμν)
(−gσν(−κp2 + κp1 + p1)ρ

× −gνρ(p2 + κp2 − κp1)σ + gρσ (p1 + p2)ν
)

× (gμ′ν′
)
(−gσ ′ν′(−κp2 + κp1 + p1)ρ′

−gν′ρ′(p2 + κp2 − κp1)σ ′ + gρ′σ ′(p1 + p2)ν′
)
.

(B32)

In the above expression, the factors 1
3 and 1

4 are attributed to
the averaging over colour and quark spins states, respectively.
Indeed, taking the example of a red up quark, if it meets an
anti-up quark, it has a one in three chance of this anti-quark
having the colour anti-red, so the cross section is reduced
by a factor 1

3 . In the same way, each sum over quark spins
contributes a factor of a half to the cross section as well. The
factor of 3 accounts for flavour multiplicity and the factor 5

9
comes from the summation over quark charge fractions.

The various traces are evaluated in “Appendix A” (see
Eqs. (A4), (A5) and (A6)). After substitution into the squared
matrix amplitude (B32), the relevant distributions are eval-
uated in the centre-of-mass frame as explained in Sect. 2,
using (A7),

dσ S=1
qq→MM

d	
= 1

64π2sqq

βp

βq
|M|2,

where the substitution | 
p1|/|
q1| = βp/βq was made because
βp = | 
p|/Ep represents the monopole boost, βq = |
q|/Eq

represents the quark boost, and Ep = Eq in the centre-of-
mass frame defined in Fig. 28.
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