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Av. Brasil 2950, Valparáıso, Chile
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1 Introduction

Hairy black hole solutions in gravity models with a negative cosmological constant have at-

tracted considerable interest due to their essential role in understanding various properties

of field theories with a holographic dual [1, 2] (see, also, [3, 4] and references therein). The

scalars can also cluster to form smooth horizonless compact objects in AdS, the so-called

‘boson stars’ [5–7] and can yield black hole spacetimes with a single Killing vector that

exhibit an interesting range of behaviour [8–14].

Over the past decade, the framework of black hole thermodynamics was extended to al-

low for a ‘dynamical pressure’ and its conjugate volume. That gave rise to the ‘black hole

chemistry’ program [15] where the cosmological constant in Anti-deSitter (AdS) space-

time is taken to be a thermodynamic variable [16, 17] that is interpreted as a pressure

term [18, 19]. It turns out that this volume seems to possess some universal properties and

is conjectured to satisfy a relation called the Reverse Isoperimetric Inequality [20] whose

violation has recently been conjectured to correspond to a new kind of instability for black

holes [21].

There is now a large body of research that has been carried out in this area [22], whose

key finding is that black holes can display a broad range of phase behaviour that has coun-

terparts in other areas of physics. This began with the understanding that there is a deep

analogy between charged anti-de Sitter black holes and Van der Waals fluids [23, 24] beyond

that originally posited in the context of the AdS/CFT correspondence [25, 26]. Further ex-

amples were then found including re-entrant phase transitions [27, 28], triple points [28, 29],

polymer-like behaviour [30], and even superfluid-like phase transitions [31–33]. Black holes
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can also be understood as heat engines [34–39], and have a sensible Joule-Thompson ex-

pansion [40–42]. Extensions to de Sitter spacetime, in which the pressure becomes a

tension [43], have recently been considered [44–47] even to dynamical cosmological con-

stants [48]. Accelerating black holes have been shown to have a sensible thermodynamic

interpretation [49–54], where snap transitions from VdW behaviour to Hawking-Page type

behaviour have been seen [55–57]. Extensions to spacetimes with NUT charge have also

been under recent consideration [58, 59] and suggest that perhaps that the thermodynamics

of Lorentzian black holes with NUT charge can be understood [60–63]. The implications

of this are that whatever the microstructure of black holes may be, it must be rich enough

to account for this broad range of phase behaviour [64]. Indeed, subtle differences between

their microstructures of Van der Waals fluids and charged AdS black holes have recently

been pointed out [65].

In this paper we explore the thermodynamic behaviour of a charged hairy black

hole [66, 67] in the context of black hole chemistry [15].1 It was recently shown that the

dilaton potential of the theory corresponds to an extended supergravity model with dyonic

Fayet-Iliopoulos terms. Therefore, the theory is consistent and has a well defined (stable)

ground state. Interestingly, when Λ = 0, these theories with a non-trivial self-interacting

term for the dilaton contain thermodynamically stable asymptotically flat black holes [70].

Intuitively, the existence of a dilaton potential that behaves as a ‘box’ for the hair liv-

ing outside the horizon suggests unexpected new features meriting investigation. On the

other hand, the AdS solutions can clarify aspects of the AdS/CMT correspondence because

they can provide information about distinct holographic phases of matter (see, e.g., [71]).

Particularly, some general results for the speed of sound of the dual field theory were

presented in [72, 73].

The particular case we are interested in is a class of exact hairy AdS black hole so-

lutions of Einstein-AdS gravity with an electric field non-minimally coupled to a scalar

field. Without the dilaton potential, these hairy black hole solutions are singular in the

zero temperature limit. However, by using the entropy function formalism [74, 75], it was

shown [66] that, when the dilaton potential is turned on, the extremal hairy black holes

have a finite horizon area. Therefore, the canonical ensemble is well defined.2 This example

could be important when considering quantum phase transitions [76]. We find that these

black holes exhibit non-trivial critical behaviour in the grand canonical ensemble, quite

unlike their hairless RN-AdS counterparts.

The remainder of the paper is organized as follows. In section 2, we review the thermo-

dynamics of Reissner-Nordström-AdS (RN-AdS) black holes in the extended phase space.

In section 3, we analyze the thermodynamic behaviour in the extended phase space for a

four-dimensional exact hairy black hole solution to Einstein-Maxwell-dilaton theory with a

non-trivial self-interacting scalar field. Some novel and interesting thermodynamic proper-

ties of this solution will be presented, such as double critical point in canonical ensemble,

and criticality in grand canonical ensemble.

1The extended thermodynamics was studied for black holes that break the hyperscaling symmetry of

AdS in [68, 69].
2For fixed charge, the thermal AdS is not a solution of the equations of motion, but one can use the

extremal black hole as background.
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2 P-V criticality of RN-AdS black hole

The thermodynamics of electrically charged black holes in AdS is quite rich. For example,

a non-trivial gauge potential allows criticality phenomena when the electric charge Q is

kept fixed. This ensemble is achieved by imposing a particular boundary condition for the

gauge field. The thermodynamics of charged AdS black holes for fixed Λ [25, 26] generalizes

and becomes fully analogous to Van der Waals fluids in the extended phase space [23].

The first law of a four-dimensional RN-AdS black hole is

dE = TdS + ΦdQ (2.1)

where E is the total energy of the system, T and S are the Hawking temperature and

Bekenstein-Hawking entropy, and Q and Φ are the electric charge and (conjugate) elec-

trostatic potential. The consideration of a negative cosmological constant, defined as

Λ = −3/L2 (L is the radius of AdS), as a variable in its own right, playing the role of

a pressure P of spacetime as

P = −Λ

κ
(2.2)

where κ = 8πGN (with our conventions, we shall set GN = c = 1), provides another

perspective on the thermodynamic nature of asymptotically AdS black holes. The proposed

first law in the extended phase space, including a dynamical cosmological constant, becomes

dE = TdS + ΦdQ+ V dP (2.3)

where

V ≡
(
∂M

∂P

)
S,Q

(2.4)

is the ‘thermodynamic volume’ (the thermodynamic quantity conjugate of the pressure).

We shall later comment in section 4 on a different interpretation more suitable in the

context of AdS-CFT duality. This extended form of the first law is compatible with the

Smarr relation

E = 2TS +QΦ− 2PV (2.5)

that follows from scaling relations between E,S,Q, and P [77].

For completeness and clarity, we review in this section the basic thermodynamic be-

haviour of RN-AdS black hole, which is a static spherically symmetric solution of the

Einstein-Maxwell theory given by the action

Ibulk[gµν , Aµ] =
1

2κ

∫
M
d4x
√
−g
(
R− F 2 − 2Λ

)
(2.6)

where R is the Ricci scalar, F 2 ≡ FµνF
µν , Fµν = ∂µAν − ∂νAµ, and Aµ is the gauge

potential. The corresponding equations of motion,

Rµν −
1

2
gµνR+ Λgµν = 2

(
FµαFν

α − 1

4
gµνF

2

)
(2.7)

∂µ
(√
−gFµν

)
= 0 (2.8)
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are solved by

ds2 = gµνdx
µdxν = −f(r)dt2 + f(r)−1dr2 + r2dσ2 (2.9)

Aµ = (Q/r + C) δtµ (2.10)

where dσ2 ≡ dθ2 + sin2 θ dϕ2 and C is a constant. The metric function is

f(r) = −Λr2

3
+ 1− 2M

r
+
Q2

r2
(2.11)

where M is the mass and Q is the physical electric charge.3 Black holes exist provided

f(r+) = 0, where r+ is the location of the outer event horizon. The additive constant

introduced in the gauge potential (2.10) is chosen to fix At(r+) = 0. This choice will

allow us to properly define the thermodynamic ensembles later on this section. It is more

convenient to express the thermodynamic quantities using as parameters the outer horizon

radius, r+, and physical charge Q, rather than working with the mass M :

M =
r+

2

(
1−

Λr2
+

3
+
Q2

r2
+

)
, T =

1

4πr+

(
1− Λr2

+ −
Q2

r2
+

)
, S = πr2

+ (2.12)

The conjugate potential Φ is defined as the difference of electrostatic potential between the

event horizon and boundary r →∞,

Φ ≡ At(r+)−At(∞) =
Q

r+
(2.13)

The first law (2.3) and Smarr relation (2.5) are satisfied provided V = 4
3πr

3
+, which follows

from (2.4).

2.1 Grand canonical ensemble (Φ fixed)

Let us consider the action (2.6) supplemented with the Gibbons-Hawking boundary term

and gravitational counterterm [78, 79] needed to remove the divergences of the action,

I = Ibulk +
1

κ

∫
∂M

d3x
√
−hK − 1

κ

∫
∂M

d3x
√
−h

[
2

L
+
LR(3)

2

]
+ IA (2.14)

The trace of extrinsic curvature, Kµν ≡ ∇µnν , is K = hµνKµν , and nµ is the unit normal

vector on the r = const. hypersurface. In (2.14), IA is the boundary term associated with

the gauge field required for a well posed action principle. For grand canonical ensemble,

given by the boundary condition δAµ|∂M = 0, which is the case when Φ is kept fixed,4 it

3The electric charge is the conserved quantity obtained from the Gauss Law at spatial infinity

Q =
1

4π

∮
s2∞

?F

where ?F ≡
(
1
4

√
−gεαβµν

)
Fαβdxµ ∧ dxν and εαβµν is the totally antisymetric Levi-Civita symbol.

4The proof is as follows: δAµ|∂M = δ
(
Q
r
− Q

r+

)∣∣∣
∂M

δtµ = −(δΦ)δtµ +O(r−1) = 0 ⇔ δΦ = 0 .
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Figure 1. Equation of state for Φ = 0 (left), Φ = 0.8 (middle) and Φ = 1 (right). In the interval

0 ≤ Φ < 1, the surface develops a maximum when T is fixed. For Φ > 1, the isotherms P -v do not

develop a local maximum.

turns out that IA = 0. To obtain the canonical ensemble, however, one must add a finite

contribution [25, 81],

IA =
2

κ

∫
∂M

d3x
√
−hnµFµνAν (2.15)

Inserting the solution (2.9)–(2.10) into the action (2.14) on the Euclidean section,5 we

obtain the thermodynamic potential G for the grand canonical ensemble,

G(T,Φ, P ) ≡ IE/β =
1

2
(r+ −M) = M − TS −QΦ (2.16)

Noting that dG(T,Φ, P ) = −SdT −QdΦ + V dP , upon using the first law (2.3) we have

S = −
(
∂G
∂T

)
Φ,P

, Q = −
(
∂G
∂Φ

)
T,P

, V =

(
∂G
∂P

)
T,Φ

(2.17)

In order to study the thermodynamic behaviour of this system when Φ is fixed, let us first

obtain the equation of state. By introducing the ‘specific volume’ v, defined by the thermo-

dynamic volume divided by the total number of states (proportional to the entropy) [24]

v ≡ 3V

2S
= 2r+ (2.18)

and using it to eliminate r+, we rearrange the equation for temperature, (2.12), to get

T = Pv +

(
1− Φ2

2π

)
1

v
(2.19)

which is a particular case of the Van der Waals equation of state. Figure 1 shows the

behaviour of the equation of state (2.19) for different fixed values of Φ ∈ (0, 1).

In the interval 0 ≤ Φ < 1, the surface has a bend and, for a fixed temperature,

the pressure develops a maximum Pmax = πT 2

2(1−Φ2)
at v = 1−Φ2

πT , given by the condition

(∂P/∂v)T,Φ = 0. However, nowhere in the parameter space does the second derivative

– 5 –
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Figure 2. Thermodynamic potential vs temperature, for Φ < 1. In this interval for the conjugate

potential, there is a first order (Hawking-Page) phase transition for any P > 0.

Figure 3. Thermodynamic potential vs temperature, for Φ ≥ 1. In this interval, there is no

Hawking-Page phase transition. The extremal limit, T = 0, is reached at a finite entropy.

(∂2P/∂v2)T,Φ = 2P
v2
− 2(1−Φ2)

πv4
simultaneously vanish with the first derivative and so there

is no critical point in the grand canonical ensemble.

In figure 2 and 3, we depict the thermodynamic potential,

G(r+, P,Φ) =
r+

12

[
3
(
1− Φ2

)
− 8πPr2

+

]
(2.20)

as a function of temperature, for different values of the conjugate potential. It is easy to see

that a first-order phase transition [15, 25, 26], similar to the Hawking-Page transition [82]

for the neutral black hole, occurs in the interval 0 ≤ Φ < 1, where the charged black

hole discharges and dissolves into pure radiation with G = 0. The main point is that

the thermodynamic ensemble is different — it is the grand canonical ensemble, defined by

coupling the system to energy and charge reservoirs at fixed temperature T and potential

Φ. When the black hole undergoes a phase transition it discharges, its charge going into

the charge reservoir. This takes place at the temperature

THP =

[
8
(
1− Φ2

)
P

3π

]1/2

(2.21)

5We use the standard analytic continuation t→ −iτE , where 0 < τE < β ≡ T−1.
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which is where G(THP ) = 0 = GAdS. Observe from equation (2.21) that, provided 0 ≤
Φ < 1, the Hawking-Page phase transition occurs at a finite temperature for any positive

pressure, for black holes whose entropy is SHP = 3(1−Φ2)
8P . Within this range, there exists

a ‘cusp’. At this point, the second derivative of G is discontinous, while the first derivative

of G remains continuous.

The cusp, that corresponds to the second derivative of the thermodynamic potential

at fixed Φ (or, equivalently, to the discontinuity in the heat capacity), is located at

Tcusp =

√
2 (1− Φ2)P

π
, Gcusp =

1

24

√
2 (1− Φ2)3

πP
(2.22)

when the entropy is Scusp = 1−Φ2

8P . We can understand the disappearance of the cusp for

Φ > 1 as follows: we observe that for φ = 1 the Hawking-Page temperature vanishes and

so the black hole is extremal. Therefore, there cannot exist a phase transition of first order

when Φ > 1 and that is confirmed in figure 3. In those cases, as shown in figure 3, the

extremal limit, T = 0, is reached for a finite entropy. This can be easily seen by solving r+

from T = 0 in equation (2.12) for temperature, and evaluating S = πr2
+,

T = 0 → Sextremal =
Φ2 − 1

8P
(2.23)

The case Φ = 1 is special because the horizon shrinks to a null singularity and so the

entropy vanishes, Sextremal = 0. This corresponds to the supersymetric limit when M = Q

and that is why the thermodynamic potential also vanishes, G = 0 in this particular case.

The response functions are important in analyzing thermodynamic stability. The heat

capacity CΦ ≡ T (∂S/∂T )Φ and the electric permittivity εS ≡ (∂Q/∂Φ)S are relevant for

stability in the grand canonical ensemble, provided P is fixed. Note that, for Φ < 1, there

are two black hole configurations at a given temperature, corresponding to a small and a

large black hole. On the other hand, for Φ ≥ 1, there is only one configuration. It is easy

to compute the permittivity as εS = r+ > 0, which is the same for any configuration. On

the other hand, since CΦ = −T
(
∂G2/∂T 2

)
Φ,P

and S = − (∂G/∂T )Φ,P , only by observing

the slope and concavity of the thermodynamic potential for 0 ≤ Φ < 1, we can conclude

that the black holes with S < Scusp are thermally unstable and with S > Scusp, thermally

stable. For Φ ≥ 1, the cusp disappears and the black holes become thermally stable. This

can be explicitly seen in figure 4.

In section 3, we shall compare these results with the ones obtained for the hairy charged

black holes in the grand canonical ensemble.

2.2 Canonical ensemble (Q fixed)

By adding the boundary term (2.15) to the action, we get the thermodynamic potential

for canonical ensemble — this corresponds to a Legendre transform of the thermodynamic

potential. On the Euclidean section, this boundary term provides a new contribution,

IEA = βQΦ (2.24)

– 7 –
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Figure 4. Heat capacity as a function of the entropy, for Φ = 0.8 and Φ = 1.4. In the first case,

representing 0 < Φ < 1, we observe small thermally unstable and large thermally stable black holes.

For the second case, representing Φ > 1, the black holes become thermally stable, CΦ > 0. In the

second plot, the continuation in dotted lines indicates unphysical regions for which T < 0.

The on-shell action for the canonical ensemble becomes then

Ion−shell
E =

β

2

(
r+ −M +

2Q2

r+

)
= β(M − TS) (2.25)

and so the new thermodynamic potential is

F(T,Q, P ) ≡ IE/β = M − TS (2.26)

or, equivalently, in the differential form: dF(T,Q, P ) = −SdT+ΦdQ+V dP . The following

relations are then automatically satisfied

S = −
(
∂F
∂T

)
Q,P

, Φ =

(
∂F
∂Q

)
T,P

, V =

(
∂F
∂P

)
T,Q

(2.27)

As in the previous subsection, we can get the equation of state [23],

T = Pv +
1

2πv
− 2Q2

πv3
(2.28)

depicted in figure 5. In contrast with what was obtained in the grand canonical ensem-

ble (2.19), there is now a term proportional to v−3 (purely due to the charge), which allows

for a critical point satisfying(
∂P

∂v

)
T,Q

= 0,

(
∂2P

∂v2

)
T,Q

= 0 (2.29)

Equations (2.29) can be analytically solved, obtaining the critical point characterized by

Pc =
1

96πQ2
, vc = 2

√
6|Q|, Tc =

√
6

18π|Q|
(2.30)

These critical values satisfy Pcvc/Tc = 3/8 [23], which is exactly the same value of the Van

der Waals fluid. It is interesting that the value 3/8 does not depend on the charge of the

– 8 –
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Figure 5. Equation of state depicted for Q = 0.1 (at the left hand side) and Q = 0.3 (right hand

side).

Figure 6. Thermodynamic potential in canonical ensemble, for Q = 0.67. On the critical isobar

Pc ≈ 0.0074, the critical temperature is the temperature where the swallowtail ends, Tc ≈ 0.064, at

Fc ≈ 0.547. There is a small-large black hole first-order phase transition for T < Tc.

black hole. The critical compresibility factor Zc ≡ Pcvc/Tc is a basic parameter used for

the definition of thermodynamic similarity class of different substances. We shall compare

this result with Zc for hairy black holes, in section 3.

The thermodynamic potential that can be parametrically put in the form

F(r+, Q, P ) =
r+

4

(
1 +

3Q2

r2
+

−
8πPr2

+

3

)
(2.31)

is depicted as a function of the temperature in figure 6. The critical point occurs at

Fc =
√

6
3 |Q| > 0.

Note that there is no Hawking-Page-like phase transition for fixed charge. This is

because the charge is conserved and so, when F = 0, the system cannot dissolve into pure

radiation as this would not conserve charge. Instead there is a (small black hole)-(large

black hole) first-order phase transition at the swallowtail intersection.

– 9 –
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3 Hairy electrically charged AdS black hole

In this section, we analyze in detail the thermodynamics and phase transitions for exact

regular hairy black hole solutions in a theory with the action

I [gµν , Aµ, φ] =
1

2κ

∫
M
d4x
√
−g
[
R− eφF 2 − 1

2
(∂φ)2 − V (φ)

]
(3.1)

V (φ) is the self-interaction potential and the scalar field is non minimally coupled to the

gauge field. The equations of motion are

Rµν −
1

2
gµνR = TEMµν + T φµν (3.2)

∂µ

(√
−geφFµν

)
= 0 (3.3)

1√
−g

∂µ
(√
−ggµν∂νφ

)
=
dV (φ)

dφ
+ eφF 2 (3.4)

where the energy-momentum tensors for the gauge potential and dilaton are

TAµν = 2eφ
(
FµαFν

α − 1

4
gµνF

2

)
, T φµν =

1

2
∂µφ∂νφ−

1

2
gµν

[
1

2
(∂φ)2 + V (φ)

]
(3.5)

The solution we are going to analyze was presented in [66] for asymptotically AdS space-

time6 as a particular case of a more general class of exact solutions [83, 85–89]. The

equations of motion can be analytically solved with the following dilaton potential

V (φ) =

(
Λ

3
+ αφ

)
(4 + 2 coshφ)− 6α sinhφ (3.6)

where α is a parameter which is related to the dyonic Fayet-Iliopoulos SUGRA sector [90]

and Λ is the cosmological constant, assumed to be negative. Note that V (0) = 2Λ, consis-

tent with the AdS asymptotics:

dV

dφ

∣∣∣∣
φ=0

= 0 ,
d2V

dφ2

∣∣∣∣
φ=0

=
2Λ

3
(3.7)

The potential’s behaviour is shown in figure 7, where we observe the existence of a global

minimum.

In figure 8, we depict the curve along which the first derivative of the dilaton potential

vanishes, which is given by the implicit equation

2

(
Λ

3
+ αφ

)
sinhφ+ 4α(1− coshφ) = 0 (3.8)

where we can observe that, for a fixed given α, there is a value of the scalar field at which

the potential has a global minimum. This is true for any Λ < 0.

6The asymptotically flat solutions can be obtained in the limit for which Λ vanishes, though the potential

is still non-trivial in this case [70, 83]. Different asymptotically flat solutions that can support scalar hair

were recently reported in [84].
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Figure 7. The dilaton potential (over α) vs φ. Red curve at the top of the figure is the case

Λ = 0, while the curve in blue, at the bottom, corresponds to α−1Λ = −10. Since V has the same

dimension as α and Λ, then α−1V and α−1Λ are both dimensionless.

Figure 8. The curve shows the points where the first derivative dV/dφ vanishes. For any Λ the

potential develops a global minimum for some φ > 0.

The metric, gauge potential, and dilaton are given by

ds2 = Ω(x)

[
−f(x)dt2 +

η2dx2

x2f(x)
+ dθ2 + sin2 θdφ2

]
(3.9)

Aµ =
( q
x
− C

)
δtµ , φ = ln(x) (3.10)

where C is an additive constant and the explicit expressions for the conformal factor Ω(x)

and metric function f(x) are

Ω(x) =
x

η2(x− 1)2
, f(x) = α

(
x2 − 1

2x
− lnx

)
+
η2(x− 1)2

x

(
1− 2q2

x

)
− Λ

3
(3.11)

Black holes exist provided the horizon equation f(x+) = 0 is satisfied. The constant C in

the gauge potential is again chosen to fix At(x+) = 0. Without loss of generality, because it

appears as η2 in the solution, the integration constant η is chosen to be a positive definite
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quantity. In this coordinate system, the solution is known for describing two disconnected

spacetimes, since one can approach the boundary (located at x→ 1) either from the ‘left’

(x → 1−) or from the ‘right’ (x → 1+). The negative branch is defined by the domain

0 < x < 1; for this spacetime, φ < 0 (hence the name), whereas the positive branch

corresponds to the range 1 < x < ∞ when the scalar field is positive definite (for more

details on the general solution and its properties, see [66]). We emphasize that the scalar

field and Ricci scalar diverge at x =∞ and so this point corresponds to the singularity of

the hairy black hole.

The thermodynamic properties of these two branches must be independently studied.

We will shall focus only on the positive branch that, interestingly, in the limit Λ = 0

corresponds to thermodynamically stable black holes in flat space [70].

3.1 Counterterm method and the usual thermodynamics

The counterterm method in AdS was developed in [78–80, 91, 92] and, in the presence

of scalar fields with mixed boundary condition, in [93–95]. This method was successfully

applied not only to black hole solutions, but also to other solutions that are locally asymp-

totically AdS [96–101].

In this subsection, we are going to compute the on-shell Euclidean action and show

that the quantum statistical relation is satisfied. In this regard, we should consider the full

regularized action that consists of the bulk part, Gibbons-Hawking boundary term IGH ,

gravitational counterterm for asymptotically AdS spacetime Ig [78], and a boundary term

for the scalar field Iφ [95, 102, 103],

I =
1

2κ

∫
M
d4x
√
−g
[
R− eφF 2 − 1

2
(∂φ)2 − V (φ)

]
+

1

κ

∫
∂M

d3x
√
−hK + Ig + Iφ (3.12)

where

Ig = −1

κ

∫
∂M

d3x
√
−h

[
2

L
+
LR(3)

2

]
(3.13)

Iφ = − 1

2κ

∫
∂M

d3x
√
−h
[
φ2

2L
+
W (a)

La3
φ3

]
(3.14)

Here, a and b ≡ dW (a)/da are the leading and sub-leading components of the asymptotic

expansion of the scalar field in canonical coordinates, φ = a/r + b/r2 + O(1/r3). With

the coordinate change r =
√

Ω(x) in the asymptotic limit, the scalar field (3.10) has the

fall-off φ = − 1
ηr +O(r−3), that is, a = − 1

η and b = 0 (corresponding to W = 0).

Let us now compute the on-shell action for the grand canonical ensemble, that is for

the following boundary condition of the gauge field: δAµ|∂M = 0. In order to obtain the

on-shell action in canonical ensemble, the boundary term for the gauge field that must be

added to the action is, in this case,

IA =
2

κ

∫
∂M

d3x
√
−heφnµFµνAν (3.15)
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The total (regularized) action is

IE = IEbulk + IEGH + IEφ + IEg (3.16)

=
β

2η(x+ − 1)
− β

2η(x− 1)
+

β

4η

(
xf ′Ω + 2xfΩ′

)∣∣
xb

(3.17)

+
β

L

[
f1/2Ω3/2

(
1 +

φ2

8

)]∣∣∣∣
xb

+
βL

2

(
f1/2Ω1/2

)∣∣∣
xb

and, by evaluating on the solution, we get

IE = β

[
q2

2η
− x+ + 1

4η(x+ − 1)
− α

24η3

]
+O (xb − 1) (3.18)

Now, to get the energy of hairy black hole, let us use the quasilocal formalism of Brown

and York [104] to obtain the boundary stress tensor, τab, defined as

τab ≡
2√
−g

δI

δhab
= −1

κ

(
Kab − habK +

2

L
hab − LGab

)
− hab

2κL

(
φ2

2
+
W (a)

a3
φ3

)
(3.19)

The components of the boundary stress tensor are

τtt =
1

κ

[
−xf

3/2Ω′

ηΩ1/2
+ Lf +

2Ωf

L

(
1+

φ2

8

)]
=

12η2q2 − α
48πη2L

(xb − 1) +O
[
(xb − 1)2

]
(3.20)

τθθ =
1

κ

[
−x(Ωf ′ + 2fΩ′)

2ηΩ1/2f1/2
− 2Ω

L

(
1 +

φ2

8

)]
=

(
12η2q2 − α

)
L

96πη2
(xb − 1) +O

[
(xb − 1)2

]
(3.21)

and τϕϕ = τθθ sin2 θ. To obtain the stress tensor of the dual field theory, one has to

rescale the boundary stress tensor with the conformal factor 1/(xb− 1) [105] to get a finite

expression. One can check, as expected, that the stress tensor is covariantly conserved and

its trace vanishes.

The energy of the spacetime is then

E =

∮
s2∞

d2σ
√
σntτttξ

t =
12η2q2 − α

12η3
(3.22)

where ξ = ∂/∂t is the Killing vector and the normal unit to the hypersurface t = const is

na = δta/
√
−gtt. We can also obtain the electric charge from the Gauss law at infinity,

Q =
1

4π

∮
s2∞

eφ ? F =
1

4π

∮
s2∞

√
−geφF txdθ ∧ dφ = − q

η
(3.23)

and its conjugate potential is

Φ ≡ At(x+)−At(x = 1) =
q(1− x+)

x+
(3.24)

By eliminating the conical singularity on the Euclidean section, the black hole’s tempera-

ture is related to the periodicity of the Euclidean time:

T =
1

β
= − x+

4πη

df(x)

dx

∣∣∣∣
x=x+

=
(x+ − 1)2

8πηx+

[
−α− 2η2

(
x+ + 1

x+ − 1

)
+ 4η2q2

(
x+ + 2

x+

)]
(3.25)
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Finally, with the black hole entropy given by the event horizon area

S =
A

4
=

πx+

η2(x+ − 1)2
(3.26)

one can check that the quantum statistical relation, G = IE/β ≡ E − TS − QΦ, and the

first law of thermodynamics, dE = TdS + ΦdQ, are satisfied.

3.2 Extended thermodynamics

In the previous subsection, we have obtained the thermodynamic quantities for the hairy

black hole (3.9). Since the conformal symmetry is preserved in the boundary, our result for

the energy should match the Ashtekar-Magnon-Das (AMD) mass [106, 107]. Since from a

technical point of view it is direct and simple, we take advantage of the method proposed

in [108] for general mixed boundary conditions of the scalar field to obtain the AMD mass.

Expanding the metric and gauge potential near the boundary and performing the change

of coordinates Ω(x) = r2 +O
(
r−2
)
, we find

x = 1 +
1

ηr
+

1

2η2r2
+

1

8η3r3
+O

(
r−4
)

(3.27)

Under this change of coordinates, note that the time component of the gauge poten-

tial (3.10) becomes At = − q
ηr + c0 +O

(
1
r2

)
and so the physical electric charge is Q = − q

η

that matches the result in the previous section. The mass can be read off from

gtt = 1 +
α− 12η2q2

6η3r
− 1

3
Λr2 +

q2

η2r2
+O

(
1

r3

)
(3.28)

and it consistently follows that the AMD mass matches the energy of the system computed

previously by using the quasilocal formalism:

M =
12q2η2 − α

12η3
(3.29)

Note also that, from the horizon equation, the integration constant, η, can be rewritten as

a function of the horizon location in the following compact form:

η2 =
3αx+

(
x2

+ − 1− 2x+ lnx+

)
− 2Λx3

+

[2q2 (x+ − 1)− x+] (x+ − 1)2
(3.30)

Using dimensional analysis, and supplementing with equation (3.30), one can obtain a

generalized Smarr formula as

M = 2TS + ΦQ− 2

(
∂M

∂Λ

)
Λ− 2

(
∂M

∂α

)
α ≡ 2TS + ΦQ− 2VΛ− 2ωα (3.31)

where V ≡
(
∂M
∂Λ

)
S,Q,α

and ω ≡
(
∂M
∂α

)
S,Q,Λ

have the following expressions:

V = − x+

12η3

x+ + 1

(x+ − 1)3
, ω =

1

4η3

[
x2

+ + 10x+ + 1

6 (x+ − 1)2 − x+ lnx+ (x+ + 1)

(x+ − 1)3

]
(3.32)
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One can additionally show that, if α and Λ were allowed to represent thermodynamic

variables, the first law should be extended by including their variations

dM = TdS + ΦdQ+ V dΛ + ω dα (3.33)

In this work, however, we shall be interested in theories with α fixed and the cosmological

constant treated as the pressure of spacetime, P = − Λ
8π . The thermodynamic volume for

this theory, recognized as V = −8πV, is

V ≡
(
∂M

∂P

)
S,Q

=
2πx+

3η3

x+ + 1

(x+ − 1)3
(3.34)

Note that by using the change of coordinate (3.27), evaluated on the horizon, the thermo-

dynamic volume recieves the first leading contribution from the Euclidean horizon volume

plus the hairy corrections

V =
4πr3

+

3
+
πr+

6η2
+O

(
1

r+

)
(3.35)

Reverse isoperimetric inequality. It has been conjectured that the thermodynamic

volume of black holes satisfies the so-called reverse isoperimetric inequality [20], which

states that

R ≡
[

(d− 1)V

Ωd−2

] 1
d−1
(

Ωd−2

A

) 1
d−2

≥ 1 (3.36)

where d is the dimensionality of spacetime and Ωd−2 the area of the unit-(d − 2) cross

section. For RN-AdS, it is easy to check that, with d = 4 and Ω2 = 4π the area of the unit

2-sphere,

RRN−AdS =

(
3V

4π

) 1
3
(

4π

A

)
= 1 (3.37)

since V = 4πr3
+/3 and A = 4πr2

+. This can can be interpreted as if, for a given thermody-

namic volume, RN-AdS maximized the required entropy.

It can be explicitly proven that, for the hairy black hole under consideration, the

isoperimetric ratio (3.36) depends on the horizon location,

Rhairy =
x+ + 1

2
√
x+
≥ 1 (3.38)

and satisfies the inequality. Therefore, the reverse isoperimetric inequality remains valid

for hairy black holes. In this case, it can be said that, for a fixed thermodynamic volume,

the hairy black hole has a smaller entropy than that of the RN-AdS black hole.

To begin the thermodynamic analysis, it will be highly convenient to replace ther-

modynamic quantities by equivalent dimensionless ones. The rescaling is made by using

powers of α, which is going to be assumed fixed and positive for this analysis. Then, we

will use η̄ = η√
α

and Λ̄ = Λ
α , where the bar symbol “ ¯ ” denotes dimensionless quantities.

The dimensionless version of the thermodynamic quantities is

M̄ =
√
αM, T̄ =

T√
α
, S̄ = αS, Q̄ =

√
αQ, P̄ =

P

α
, V̄ = α3/2V (3.39)
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Φ = 0.6, Φ = 0.85, and Φ = 1.4. Criticality occurs within the interval 1/
√

2 < Φ < 1.

3.2.1 Criticality in grand canonical ensemble

First, let us investigate the equation of state given by the isotherms P̄ vs v̄. We are going

to use the following parametric expressions: P̄ = P̄ (Λ̄), T̄ = T̄ (Λ̄,Φ, x+), and the specific

volume v̄ = v̄(Λ̄,Φ, x+), which is

v̄ ≡ 3

2

(
V̄

S̄

)
=

1

η̄

(
x+ + 1

x+ − 1

)
(3.40)

We can solve the horizon equation to express η̄ = η̄(Λ̄,Φ, x+) as

η̄2 =
3(x2

+ − 1)− (2Λ̄ + 6 lnx+)x+

6(x+ − 1) (2Φ2x+ − x+ + 1)
(3.41)

Notice that, by using the change of coordinates (3.27), we recover the specific volume for

RN-AdS in the leading approximation: v = 2r+ +O(r−1
+ ).

In figure 9, where we graphically represent the equation of state, one can observe in one

of the plots the existence of a critical point, characterized by the conditions (∂P̄ /∂v̄)T̄ ,Φ =
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Figure 10. Thermodynamic potential vs temperature, at fixed P̄ = 0.01. The swallowtail

develops when Φ increases, from below, to 1/
√

2. The critical point (occurring on Φ ≈ 0.778) is not

included in the figure.

(∂2P̄ /∂v̄2)T̄ ,Φ = 0. The existence of an interval for the electric potential Φ for which there

exists a non-trivial critical behaviour in grand canonical ensemble is, by its own, a novel

property of these hairy charged black holes. At first sight, the nature of the critical point

seems very similar with the one in RN-AdS, but in canonical ensemble (see figure 5, in the

previous section). The relevant quantities in terms of (P̄ ,Φ, x+) are

M̄ =
Φ2x2

+

(x+ − 1)2
− 1

12η̄3
, T̄ =

(x+ + 2)η̄Φ2

2π
−

(x2
+ − 1)η̄

4πx+
− (x+ − 1)2

8πη̄x+
(3.42)

and the thermodynamic potential is obtained by computing the regularized on-shell ac-

tion, as done previously, with the boundary condition δAµ|∂M = 0. In terms of rescaled

quantities, we parametrically obtain

Ḡ(P̄ ,Φ, x+) =
1

24η̄3
−

2Φ2x2
+ − x2

+ + 1

4(x+ − 1)2η̄
(3.43)

with η̄ given by the equation (3.41) and Λ̄ = −8πP̄ . This thermodynamic potential is

depicted in figure 10, for fixed pressure and different values of Φ, and in figure 11 and 12

for fixed Φ and different values of P . A careful analysis of the region of criticality provides

the following range of validity for the conjugate potential:

1√
2
< Φ < 1 (3.44)

In figure 10, the new feature of ‘snapping swallowtails’ appears when the value of

the conjugate potential crosses the critical value Φc = 1/
√

2, after which it resembles the

behaviour of the RN-AdS black hole in the canonical ensemble where there exists a critical

charge. We can observe that the thermodynamic potential (3.43) simplifies drastically for

this critical value, Φc = 1/
√

2. For the interval 0 < Φ ≤ 1/
√

2 there is a Hawking-Page

phase transition at G = 0, between the large black hole and pure thermal radiation. A
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Figure 11. Thermodynamic potential in grand canonical ensemble, for three fixed Φ. Given
1√
2
< Φ = 0.8 < 1, it is observed a critical isobar (black dash-dotted line) for which a critical point

appears.

Figure 12. Thermodynamic potential in grand canonical ensemble, for Φ = 1 and Φ = 1.4.

simple argument to check that, indeed, the thermodynamic potential G can vanish is that,

from equation (3.41), we observe that η diverges when the factor 2Φ2x+ − x+ − 1 goes

to zero. This limit occurs for x+ = −1
2( 1

Φ2− 1
2

), that is, for Φ ≤ 1√
2

(in positive branch).

A drastic change appears when Φ > 1√
2
, namely a swallowtail can develop as can be

seen in figure 10. At the swallowtail intersection there is a large-small black hole phase

transition. The particular value Φ = 1, which is also relevant for our analysis, is more

easily understood because, as can be observed in figure 12, the thermodynamic potential

cannot vanish. Indeed, if we compute η̄ from equation (3.43) when Ḡ = 0 and Φ = 1

and replace it in equation (3.42), we obtain a negative temperature, a situation that is

physically impossible. If we keep the chemical potential fixed in the interval 1√
2
< Φ < 1

and vary the pressure, then there is a critical pressure for the snapping of the swallowtail

similar to that of the snapping swallowtail in accelerating black hole thermodynamics [55].
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Let us present further arguments that support our findings. From the equations (3.40)

and (3.41), we can obtain P̄ = P̄ (Φ, v̄, x+). The derivative
(
∂P̄ /∂v̄

)
Φ,T̄

is given by

(
∂P̄

∂v̄

)
Φ,T̄

=

(
∂P̄

∂v̄

)
Φ,x+

+

(
∂P̄

∂x+

)
Φ,v̄

(
∂x+

∂v̄

)
Φ,T̄

(3.45)

where (∂x+/∂v̄)Φ,T̄ is obtained from equation (3.25). To get the second derivative(
∂2P̄ /∂v̄2

)
Φ,T̄

, let us define P̄2 ≡
(
∂P̄ /∂v̄

)
Φ,T̄

and then we obtain

(
∂2P̄

∂v̄2

)
Φ,T̄

=

(
∂P̄2

∂v̄

)
Φ,x+

+

(
∂P̄2

∂x+

)
Φ,v̄

(
∂x+

∂v̄

)
Φ,T̄

(3.46)

It is possible to explicitly get, though cumbersome to write down, parametric expressions

for the conditions of criticality,
(
∂P̄ /∂v̄

)
Φ,T̄

= 0 and
(
∂2P̄ /∂v̄2

)
Φ,T̄

= 0. Let us analyze

the first condition for the first derivative equal to zero, which is

Φ4 + g1(v̄, x+)Φ2 + g2(v̄, x+) = 0 (3.47)

with

g1(v̄, x+) = −
(x+ − 1)

[
(x+ − 1)3 v̄2 + 2 (x+ − 3) (x+ + 1)2

]
2x+ (x+ − 4) (x+ + 1)2 (3.48)

g2(v̄, x+) =
(x+ − 1)4

[
(x+ − 1)4v4 + 4 (x+ − 1) (x+ + 1)3 v2 + 4 (x+ + 1)4

]
16x3

+ (x+ − 4) (x+ + 1)4 (3.49)

The second condition, for the second derivative, is more complicated, but schematichally it

looks like Φ8 + h1Φ6 + h2Φ4 + h3Φ2 + h4 = 0, for hi = hi(v̄, x+). In figure 13, we illustrate

separately the surfaces of points where the first and second derivatives vanish. Despite

both having a similar shape, they do not meet for the whole range of Φ. In figure 14 we

depict, in the (v̄,x+) plane the curve along which both conditions for criticality hold.

Also, in figure 15, on the plot in the left hand side, we show the coexistence line for

the particular value Φ = 0.85. This line is similar to the coexistence line for RN-AdS in

the canonical ensemble. On the same figure, but in the plot from the right hand side, the

trajectory of the critical points for the range of criticality 1/
√

2 < Φ < 1 is shown.

3.2.2 Criticality in canonical ensemble

The canonical ensemble corresponds to a fixed charge and it can be obtained from a Leg-

endre transform of the thermodynamic potential in grand canonical ensemble. The black

holes are thermodynamic systems, but also geometric objects, and from a geometric point

of view the Legendre transform between ensembles is equivalent to adding the boundary

term (3.15) that will contribute non-trivially to the Euclidean action (for the corresponding

boundary conditions of the canonical ensemble). Since fixing Q is equivalent to fixing Q̄,

provided α is fixed, it is convenient to express the thermodynamic quantities in terms of
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Figure 13. At the left hand sid the surface where
(
∂P̄ /∂v̄

)
Φ,T̄

= 0 is shown. At the right hand

side we show the surface where
(
∂2P̄ /∂v̄2

)
Φ,T̄

= 0.

Figure 14. The left hand side depicts simultaneously the two surfaces corresponding to the

conditions for criticality (figure 13); the surface in yellow corresponds to
(
∂P̄ /∂v̄

)
Φ,T̄

= 0 and the

surface in green to
(
∂P̄ 2/∂v̄2

)
Φ,T̄

= 0. The intersection occurs inside the interval 1/
√

2 < Φ < 1,

which is shown in the right hand side, in the (v̄,x+) plane.

Q̄, instead of Q. Using (3.39) we obtain

M̄ =
12Q̄2η̄4 − 1

12η̄3
, T̄ =

(x+ − 1)2

8πη̄x+

[
−1− 2η̄2

(
x+ + 1

x+ − 1

)
+ 4η̄4Q̄2

(
x+ + 2

x+

)]
(3.50)

S̄ =
πx+

η̄2 (x+ − 1)2 , Φ = Q̄η̄

(
x+ − 1

x+

)
, V̄ =

2πx+

3η̄3

x+ + 1

(x+ − 1)3
(3.51)

where η̄ = η̄
(
Q̄, P̄ , x+

)
can be obtained from the horizon equation (3.30)

η̄ =
1

2Q̄

√
x+

x+ − 1

1 +

√
1 +

4
(
16πx+P̄ − 6x+ lnx+ + 3x2

+ − 3
)
Q̄2

3x+ (x+ − 1)

 1
2

(3.52)
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Figure 15. Left hand side: the dotted line is the coexistence line, finishing at the critical point

(the red point), in the grand canonical ensemble for a fixed Φ = 0.85. Right hand side: trajectory

of the critical points with respect to Φ. In the limit Φ = 1, the critical point goes to (0, 0). In the

limit Φ = 1/
√

2, the critical point corresponds to large values of P̄ and T̄ .

Figure 16. Equation of state, given Q̄ = 0.67. The two plots correspond to different regions of the

same phase space. Left : in this region, we observe a critical point similar to that in RN-AdS. Right:

here, we observe a purely hairy critical point. Note that, for a given temperature, as the pressure

increases, the specific volume decreases until it reaches a minimum and the surface develops a bend.

Next both P and v increase until, for a critical isotherm, the hairy critical point emerges.

We have used (3.40) to eliminate η̄ in order to express T̄ = T̄ (Q̄, P̄ , x+) and v̄ =

v̄(Q̄, P̄ , x+). Since it is not possible to get an analytic expression T̄ = T̄ (P̄ , v̄), we plot the

equation of state in figure 16 for a particular value of electric charge, Q̄ = 0.67.
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Figure 17. Left : it was fixed Q̄ = 0.67. The red point, at the left, is the RN-AdS-like critical

point. The second blue point, at the right, is the hairy critical point. The dotted lines indicate the

coexistence line. Right : magnification near the RN-AdS-like critical point and its coexistence line.

Figure 18. Trajectory of both critical points, parametrized by Q̄. Red points, at the left,

correspond to RN-AdS-like critical point and blue ones, at the right, to the hairy critical points.

The zone where the points are more concentrated corresponds to the limit Q̄→∞, while the more

diluted zone corresponds to the limit Q̄→ 0.

One interesting novel aspect of the equation of state in the canonical ensemble is the

existence of two configurations satisfying simultaneously the criticality conditions(
∂P̄

∂v̄

)
T̄ ,Q̄

= 0,

(
∂2P̄

∂v̄2

)
T̄ ,Q̄

= 0 (3.53)

These two critical points simultaneously exist for any value of Q̄. One of these points is the

expected RN-AdS-like critical point at large volume and low temperature; the other one

is at small volume and high temperature; it is a new feature of this solution and presents

different properties. In figure 17, we plot the coexistence curves for both phases for a given

value of Q̄. The trajectories of the critical points in P–T space as a function of charge are

depicted in figure 18.

From figure 18, we observe that, for increasing charge (starting from Q̄ = 0, corre-

sponding to the more diluted zone), the new critical point — the curve in blue, at the
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Figure 19. Critical compresibility factor Zc ≡ Pcvc/Tc as function of Q̄. The red curve below

represents the RN-AdS-like critical points, and the blue one above, the hairy critical points. As

expected, the RN-AdS-like critical approaches to Zc = 3/8 when
√
αQ� 1, while the hairy critical

points approaches to Zc ≈ 1.52.

right — decreases in pressure and temperature up to some minimum temperature, when

the point (Pc, Tc−min) is reached. As charge further increases (towards the more concen-

trated zone), the critical point moves to increasingly high temperature but still decreasing

pressure.

The RN-AdS-like critical compressibility factor approaches Zc = 3/8 = 0.375 in the

limit Q � α−1/2, and to Zc ≈ 0.22 when Q̄ = 0, as shown in figure 19. It seems a mere

coincidence that several critical compressibility factors for different chemical substances

are located between these two numerical values (see, e.g., [109, 110]), but the fact that Zc
depends on the charge suggests that Q̄ plays the role of a fluid parameter, i.e., its value

modifies the nature of the fluid in the dual theory. This observation could be important in

the context of AdS/CFT duality.

4 Discussion

Scalar fields arise naturally as moduli in the context of string theory when considering spe-

cific compactifications and the low energy limit. The dilaton can couple non-trivially to the

electromagnetic field [111]. Since string theory is a fundamental theory that could describe

nature, it is important to understand the influence of the dilaton on the thermodynamic

behaviour of black holes. Furthermore, in the context of gauge-gravity duality, the study

of asymptotically Anti-de Sitter black holes is important because it may provide specific

insights into new phenomena and phases of matter of the dual field theories.

For these reasons we present a possible new interpretation of the ‘extended thermo-

dynamics’ program within string theory. The traditional interpretation within general

relativity is that, once the cosmological constant becomes dynamical, the first law should

be modified by a new term, PdV , and the mass of the black hole becomes, in fact, the

enthalpy of spacetime [77]. Clearly, this interpretation calls for a more careful scrutiny in

the context of gauge-gravity dualities.7 However, even in the traditional sense, there is

7Despite some results [112, 113], the interpretation in AdS-CFT duality is still unsettled.

– 23 –



J
H
E
P
1
1
(
2
0
1
9
)
0
4
3

some tension in modifying the first law of thermodynamics when a parameter of the theory

varies. The first law is a statement between two configurations/solutions in thermodynamic

equilibrium. Modifying the cosmological constant is like modifying the theory and the cor-

rect picture is rather that a single configuration (the black hole) should be considered in

different theories characterized by different cosmological constants.

In clarifying this puzzle, we would like to briefly present the recent resolution of a

similar puzzle for the scalar charges [114]. Since in string theory the dilaton is a modulus

whose expectation value controls the (dimensionless) string constant, gs, it makes sense to

understand how a variation of its asymptotic value affects the thermodynamics of asymp-

totically flat hairy black holes. Such a study was performed in [115] with a surprising

result. That is, the first law of hairy black hole thermodynamics should be supplemented

with contributions from the scalar fields. However, recently, it was shown in [114] that

when the correct variational principle is considered, the total (quasilocal) energy has a new

contribution that depends of the asymptotic value of the scalar field and there is no need

modify the first law by adding new terms depending on the non-conserved scalar charges.

This fits well with the string theory interpretation that changing the boundary condition

for the dilaton is equivalent with changing the string coupling.

Similar reasoning can be made when the cosmological constant becomes dynamical.

Once embedded in string/M theory [116], the radius of AdS is related to the radius of

the external sphere. Therefore, changing the cosmological constant is equivalent to a

geometrical process, namely one with a (dynamical) variation of the volume (modulus)

of the five/four/seven-sphere depending if one considers AdS5, AdS7 or AdS4. So, this

hints to a new interpretation for which the same black hole configuration (characterized by

its conserved charges) in AdS can be embedded in different theories obtained by various

compactifications. Therefore, the total energy of the black hole computed in a different

theory should be, obviously, different. Then, once embedded in string theory, the criticality

phenomenon comes with a critical pressure that in fact corresponds geometrically to a

specific ‘critical compactification’. An important observation is that the potential we have

considered (3.6) comes with another independent parameter, α. We can consider also α as

a dynamical parameter and, in a particular case, we can exactly cancel out the PdV term

by a specific variation of α. Then, despite the fact that the cosmological constant is not

kept constant, there is no extra contribution in the first law as it should if the interpretation

of [77] would be correct.

There is an important difference with the proposal of [77], which is in the context of

general relativity where the boundary conditions are in general kept fixed. In the first law

only variations of the conserved charges (integration constants) of a solution enter, not

variations of the parameters of the theory. Although one can regard the perspective in [77]

as being about variation of the parameter Λ, this perspective is not required, since Λ can

emerge, for example, as the constant of integration of a 4-form gauge field (see, e.g., [17]).

To conclude, the cosmological constant in this context plays the role of a parameter in

the action, rather than an integration constant characterizing a specific solution, and so its

variation is going to change the theory in a similar way the asymptotic value of the dilaton is

doing when considering asymptotically flat black holes. Therefore, a natural interpretation
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Figure 20. Critical compressibility factor Zc ≡ Pcvc
Tc

vs the conjugate potential (dashed line), in

the window for criticality, 1√
2
< Φ < 1. It is observed that 0.3 . Zc <∞. In the plot, the vertical

dotted line is Φ = 1/
√

2, and the horizontal one to the limit Zc ≈ 0.3.

could be that the same black hole is, in fact, considered in different environments with

different cosmological constants and the energy is changing accordingly.

We have considered an exact regular hairy black hole solution in Einstein-Maxwell-

dilaton theory with a non-trivial self-interaction for the scalar field. We have used the

quasilocal formalism supplemented with counterterms to investigate the thermodynamics

of this black hole. We were interested not only in the usual thermodynamics, but also

in the extended thermodynamics when the cosmological constant becomes a dynamical

parameter. Since we have presented in detail all the thermodynamic properties, we would

like to only briefly discuss the main new characteristics due to the scalar field. Compared

to RN-AdS black holes, the hairy black holes present criticality behaviour also in the grand

canonical ensemble — as we have already pointed out, there are some similarities with the

canonical ensemble of RN-AdS black hole. An interesting difference, though, it is that the

critical compressibility factor is not constant as in the case of RN-AdS black hole, but it

ranges as 0.3 . Zc <∞, as shown in figure 20.

However, some important new features appear in the canonical ensemble when the

charge is kept fixed. In this case the critical compressibility factor is not constant, but

depends on the charge and so this should also be a characteristic of the dual field theory.

Another important new characteristic is the appearance of a second critical point that does

not have a counterpart in the RN-AdS case. In figure 21, we plot independently the critical

pressure and temperature as function of Q̄ for both, the RN-AdS-like critical points (red

dots) and the hairy critical points (blue ones). One observation is that the RN-AdS-like

critical points very closely fit with the RN-AdS critical point described in the previous

section (dotted curve, in figure 21), and hence the name.
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Figure 21. Critical pressure (Left) and the critical temperature (Right) as function of Q̄. The

red dots correspond to the RN-AdS-like critical points and the blue ones to the purely hairy ones.

Black dotted lines correspond to the Reissner-Nordström-AdS black hole, given by equations (2.30).

We see that the RN-AdS-like critical points for hairy black holes closely match with the critical

points for RN-AdS, merging with them as Q/
√
α gets large.
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[11] P.A. González, E. Papantonopoulos, J. Saavedra and Y. Vásquez, Four-Dimensional

Asymptotically AdS Black Holes with Scalar Hair, JHEP 12 (2013) 021 [arXiv:1309.2161]

[INSPIRE].

[12] L.J. Henderson, R.B. Mann and S. Stotyn, Gauss-Bonnet Boson Stars with a Single Killing

Vector, Phys. Rev. D 91 (2015) 024009 [arXiv:1403.1865] [INSPIRE].

[13] Y. Brihaye, C. Herdeiro and E. Radu, Myers-Perry black holes with scalar hair and a mass

gap, Phys. Lett. B 739 (2014) 1 [arXiv:1408.5581] [INSPIRE].

[14] C. Herdeiro, J. Kunz, E. Radu and B. Subagyo, Myers-Perry black holes with scalar hair

and a mass gap: Unequal spins, Phys. Lett. B 748 (2015) 30 [arXiv:1505.02407]

[INSPIRE].

[15] D. Kubiznak and R.B. Mann, Black hole chemistry, Can. J. Phys. 93 (2015) 999

[arXiv:1404.2126] [INSPIRE].

[16] M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter Spaces, Commun. Math.

Phys. 98 (1985) 391 [INSPIRE].

[17] J.D.E. Creighton and R.B. Mann, Quasilocal thermodynamics of dilaton gravity coupled to

gauge fields, Phys. Rev. D 52 (1995) 4569 [gr-qc/9505007] [INSPIRE].

[18] D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock

Gravity, Class. Quant. Grav. 27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].

[19] D. Kastor, S. Ray and J. Traschen, Mass and Free Energy of Lovelock Black Holes, Class.

Quant. Grav. 28 (2011) 195022 [arXiv:1106.2764] [INSPIRE].
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Thermodynamics of Accelerating Black Holes, Phys. Rev. D 98 (2018) 104038

[arXiv:1805.02687] [INSPIRE].

[54] A. Anabalón, F. Gray, R. Gregory, D. Kubizňák and R.B. Mann, Thermodynamics of
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