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We reconsider a scenario in which photons and other gauge fields appear as the composite vector bosons 
made of the fermion pairs that may happen with or without spontaneous violation of Lorentz invariance. 
The class of composite models for emergent gauge fields is proposed, where these fields are required 
to be restricted by the nonlinear covariant constraint of type Aμ Aμ = M2. Such a constraint may only 
appear if the corresponding fermion currents in the prototype model, being invariant under some global 
internal symmetry G , are properly constrained as well. In contrast to the conventional approach, the 
composite bosons emerged in this way appear naturally massless, the global symmetry G in the model 
turns into the local symmetry Gloc , while the vector field constraint reveals itself as the gauge fixing 
condition. Finally, we consider the case when the constituent fermions generating emergent gauge bosons 
could be at the same time the preons composing the known quark-lepton species in the Standard Model 
and Grand Unified Theories.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One can think that local gauge invariance, contrary to a global 
symmetry case, may look like a cumbersome geometrical input 
rather than a true physical principle, especially in the framework 
of an effective quantum field theory becoming, presumably, irrel-
evant at very high energies. In this connection, one could won-
der whether there is any basic dynamical reason that necessitates 
gauge invariance and an associated masslessness of gauge fields as 
some emergent phenomenon arising from a more profound level 
of dynamics related to their truly elementary constituents. By anal-
ogy with a dynamical origin of massless scalar particle excitations, 
which is very well understood in terms of spontaneously broken 
global internal symmetries [1], one could think that the origin of 
composite massless gauge fields as the vector Nambu-Goldstone 
(NG) bosons are presumably related to spontaneous violation of 
Lorentz invariance which is in fact the minimal spacetime global 
symmetry underlying particle physics. This well-known approach 
which might in principle provide a viable alternative to quantum 
electrodynamics [2], gravity [3] and Yang-Mills theories [4,5] has a 
long history started over fifty years ago.
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This scenario proposes that a given current-current interaction 
of basic constituent fermions induces some almost gauge invari-
ant effective theory which, apart from the invariant kinetic terms, 
contain the nontrivial vector-field potential terms. These terms, no 
matter whether they exist at the tree level or appear through ra-
diative corrections, may lead in principle to spontaneous Lorentz 
invariance violation (SLIV) according to which some of compo-
nents of the emergent composite vector bosons can be viewed as 
the corresponding NG zero modes. It is worth pointing out that 
one can generally talk about SLIV regardless of whether it is ob-
servable or not. In both of cases, the corresponding zero modes 
associated with gauge fields are necessarily generated. Indeed, in 
the gauge invariance limit this violation may normally be hidden 
in gauge degrees of freedom of emergent vector fields. However, 
when these superfluous degrees are eliminated by gauge symme-
try breaking, SLIV becomes observable. In this connection, we will 
use later on the terms “inactive SLIV” and “active SLIV”, respec-
tively, in order to distinguish these two cases.

The important point, however, is that the potential-based vector 
field models which can only lead to the active or physical SLIV 
appear to be generically unstable and contradictory and, therefore, 
seems to be hardly acceptable in their present form, as we will 
argue below. On the other hand, why should one necessarily insist 
on physical Lorentz violation, if emergent gauge fields are anyway 
generated through the “safe” inactive SLIV models which recover a 
conventional Lorentz invariance?
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In the light of this reasoning, we propose here an alternative 
approach for composite gauge bosons replacing the potential-based 
vector field models by the constraint-based ones which we briefly 
sketch below in Sections 2 and 3, respectively. Later in Section 4, 
we show how such constrained gauge bosons are induced by the 
properly constrained currents of the constituent fermions involved. 
In contrast to the potential-based approach, the composite gauge 
bosons appear now to be naturally massless, though being re-
stricted by some nonlinear constraint which is then treated as 
their nonlinear gauge. So, the starting global symmetry of con-
stituent fermions G turns into the local internal symmetry Gloc of 
the gauge and matter fields involved. Further, in Section 5, we dis-
cuss a possible scenario when the constituent fermions generating 
emergent gauge bosons could be at the same time the preons com-
posing the known quark-lepton species in the Standard Model and 
Grand Unified Theories. And, finally, our conclusion is provided in 
Section 6, where we discuss why basically the proposed constraint 
pattern for vector fields could make the whole physical field sys-
tem involved to adjust itself in a gauge invariant way. Otherwise, 
as is argued, it could lose too many degrees of freedom, thus get-
ting unphysical.

2. Models with vector field potential

For an emergence of the potential-based vector field models 
one can start with the generalized prototype Lagrangian with all 
possible multi-fermi current-current interactions [6] rather than 
with the original four-fermi one [2]

L(ψ) = ψ s(iγ ∂ − m)ψs + N
∞∑

p=1

Gp

(
jμ jμ/N2

)p
(1)

where the fermion set includes N constituent fermion species ψs

(hereafter, summation over all repeated indices is implied). The La-
grangian L(ψ) possesses the U (N) global flavor symmetry under 
which the above all-fermion current jμ

jμ(ψ) = ψ sγμψs (s = 1,2, ..., N) (2)

is invariant in itself. This model is evidently non-renormalizable 
and can only be considered as an effective theory valid at suffi-
ciently low energies. The dimensionful couplings Gp are propor-
tional to appropriate powers of the UV cutoff � being ultimately 
related to some energy scale up to which this effective theory is 
valid, Gp ∼ �4−6p . Factors of N in (1) are chosen in such a way to 
provide a well defined large N limit.

The Lagrangian (1) can be re-written using the standard trick of 
introducing an auxiliary field Aμ

L(ψ, Aμ) = ψ s(iγ ∂ − γ A − m)ψs − NV(Aμ Aμ) (3)

The potential V is a power series in Aμ Aμ that can generally be 
written in the form

V(Aμ Aμ) =
∞∑

p=1

λp

(
Aμ Aμ − M2

)2p
(4)

with the coefficients λp and mass parameter M chosen such that 
by solving the algebraic equations of motion for Aμ and substitut-
ing back into (3) one recovers the starting Lagrangian (1). If instead 
one integrates out the fermions ψs , one gets an effective action in 
terms of the properly renormalized composite Aμ field which ac-
quires its own dynamics

Sef f = N

∫
d4x

[
−1

Fμν F μν + V(Aμ Aμ) + Aμ Jμ
]

(5)

4

2

Since the fermions ψs are minimally coupled to the vector field 
Aμ in (3), its kinetic term generated in this way appears gauge 
invariant provided that a gauge invariant cutoff is chosen. Fur-
thermore, since there are N species of fermions ψs the effective 
action (5) has an overall factor of N . And the last point is that one 
has to introduce in the basic Lagrangian (1), apart from the pure 
constituent fermions ψs , some actual matter fields �t interacting 
through their own conserved current Jμ

Jμ(�) = �tγμ�t (t = 1,2, ..., N�) (6)

This will generate in turn the standard gauge invariant matter cou-
pling given in the action (5). Indeed, in contrast to the heavy 
fermions ψs whose masses are normally proposed to be of the cut-
off order, the matter fermions �t can be taken to be light and even 
massless. This allows to keep them in the low energy effective ac-
tion, whereas the heavy fermions ψs are integrated out. They are 
in some sense hidden ones which are solely needed to properly in-
duce the composite vector bosons as appropriate gauge fields. Note 
that, while their number N is in fact somewhat technical one al-
lowing to properly suppress the high-order dangerous terms, N� is 
a number of the actually observed similar matter fermion species, 
say, those being among known quarks and leptons.

At the first glance, everything looks good in the effective action 
(5). However, some generic problems related to SLIV and stabil-
ity of the emerged theory may necessarily appear. Let us consider 
at the beginning only the first non-trivial term in the multi-fermi 
interactions (1) and, respectively, in the potential V (5) that just 
corresponds to the original Bjorken model [2]. As matter of fact, 
this model naturally leads to the massive QED theory rather than 
to the conventional massless QED one. Indeed, any conclusion that 
such a massive vector boson might be condensed due to its ra-
diatively produced quartic term [2] or even be massless in itself 
through a strict cancellation of its tree-level and radiative masses 
[4], seems to be rather problematic since it is related to somewhat 
formal manipulations with divergent integrals. The same could be 
said about the non-Abelian symmetry case as well.1

It might seem that the above problem would be over when the 
higher-order terms beyond the four-fermi interaction are activated 
in the basic fermion Lagrangian (1) and, respectively, in the po-
tential (4). As is readily seen from (4), the next term in it really 
gives the quartic Aμ field term in the effective action Sef f (5). 
This is enough to generate the familiar Mexican hat structure of 
the potential V(Aμ Aμ), thus coming to spontaneous Lorentz viola-
tion at a scale determined by the mass parameter |M|. Rewriting 
the action (5) in terms of the renormalized Aμ field and leaving in 
the potential only bilinear and quartic vector field terms one gets 
the effective theory being sometimes referred to as the “bumble-
bee” model [7]. This partially gauge invariant model means in fact 
that the vector field Aμ develops a constant background value and 
Lorentz symmetry S O (1, 3) breaks down to S O (3) or S O (1, 2) de-
pending on whether the M2 is positive or negative, respectively. 
In both of cases, there are three zero massless modes and a heavy 
Higgs mode in the symmetry broken phase.

The point is, however, that not only this bumblebee-like model 
but all possible potential-based models appear generally unstable. 
Their Hamiltonians (as was argued specifically for the bumblebee 

1 An interesting non-Abelian model was presented in [5]. It starts with current-
current interaction involving some large N sets of fermions assigned to the funda-
mental representation of some SU (n) group. It was then shown that in the leading 
N order, an explicit computation of the infinite fermion chain allows to completely 
reproduce the massive SU (n) Yang-Mills theory. The composite boson mass can not 
be made zero for any finite value of the binding current-current coupling constant 
in the starting fermion Lagrangian. Thus, as it happens, this emergent theory does 
not possess a true gauge symmetry as well.
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case [8] but those arguments are applicable to a general V poten-
tial as well) are not bounded from below beyond the constrained 
phase space determined by the nonlinear condition put on the vec-
tor field,

Aμ Aμ = M2 (7)

as can be readily shown using Dirac constraint analysis [9]. With 
this condition imposed, the massive Higgs mode never appears, 
the Hamiltonian turns to be positive, and the model is physically 
equivalent to the nonlinear constraint-based QED, which we con-
sider in the next section.

Note also that, apart from the instability, these models, in con-
trast to some viable effective field theories, do not posses a con-
sistent ultraviolet completion [10]. This makes their application 
rather problematic in a sense that one can not draw relevant con-
clusions about the strength of any physical effects in such an ef-
fective theory.

And one more argument against the potential-based models 
may follow from their supersymmetric extension. As one can read-
ily confirm, SUSY may only admit the bilinear mass term in the 
vector field potential energy (see [11] for more details). As a re-
sult, without the stabilizing quartic (and higher order) vector field 
terms, this type of spontaneous Lorentz violation can in no way 
be realized in the SUSY context. The same could be said about the 
prototype Lagrangian with the multi-fermi current-current inter-
actions (3) which can not be constructed from any matter chiral 
superfields.

All that means that the above-mentioned composite models 
leading eventually to the vector field potential V(Aμ Aμ), whether 
it contains only the mass term or the higher order terms as well, 
seems to be hardly acceptable in the present form. One might only 
expect that, since a mass scale |M| of SLIV is normally presumed to 
be near the Planck scale, the quantum gravity theory would make 
the ultimate conclusion on physical viability of such models.

3. Models with vector field constraint

We give here some brief sketch of the constraint-based models 
for vector fields considering first the constraint-based QED model. 
This model starts directly through the vector field “length-fixing” 
constraint (7) implemented into the conventional QED. Such type 
of models were first studied by Dirac [12] and Nambu [13] a long 
ago, and in more detail in recent years [14–21].

The constraint (7) is in fact very similar to the constraint ap-
pearing in the nonlinear σ -model for pions, σ 2 + π2 = f 2

π , where 
fπ is the pion decay constant [22]. As is well known, this con-
straint leads to spontaneous breaking of the underlying chiral sym-
metry SU (2) × SU (2) in the model. Analogously, as Nambu argued 
[13], the constraint (7) might lead to spontaneous Lorentz viola-
tion. Rather than impose by postulate, the constraint (7) may be 
implemented through the Lagrange multiplier term into the stan-
dard QED Lagrangian

L(�, A, λ) = −1

4
Fμν F μν + �t(iγ ∂ − eγ A − m)�t

− λ

2

(
Aμ Aμ − M2

)
(8)

for some charged matter fermion fields �t (t = 1, 2, ..., N�). The 
variation under the multiplier field λ(x) leads then to the vector 
field constraint (7).

Actually, this Lagrangian, when taken without matter, is the 
original Dirac theory [12] proposed for an alternative introduction 
of classical electric charge. In fact, the Lagrange multiplier term in 
(8) corresponds to interaction of vector field with the extra source 
3

current J ext
μ = λAμ . However, when the charged matter fields are 

included there appears the vector field interaction with the con-
ventional Noether current Jμ = �tγμ�t as well. As follows from 
the total Lagrangian (8), both of them are separately conserved

∂μ J ext
μ = 0 , ∂μ Jμ = 0 (9)

This extended Dirac theory contains five equations for the five field 
quantities, Aμ and λ, that includes their equations of motion and 
the extra current conservation (9). The solutions of these equations 
are fixed when the appropriate initial conditions are prescribed. 
We propose, as in the original Dirac model [12], that the starting 
values for all fields (and their momenta) involved are chosen so as 
to restrict their phase space to values providing the infinitesimal 
multiplier function λ(x). Remarkably, due to an automatic conser-
vation of the extra source current, J ext

μ (9),

∂λ/∂t = [∂i(λAi) − λ(∂0 A0)]/A0 (10)

such type of λ field will then remain for all times. One can thus 
safely keep the multiplier term in the Lagrangian (8) to derive the 
vector field constraint (7) in an ordinary way. This Lagrangian, be-
ing the ground for our further consideration, goes to the standard 
QED in the vanishing λ limit being provided again by the choice of 
the proper initial conditions. The only difference is that the vector 
potentials must now satisfy not only their equations of motion but 
the constraint (7) as well.2

One way or another, the constraint (7) means in essence that 
the vector field Aμ develops presumably the VEV along the direc-
tion given by the unit Lorentz vector nμ〈
Aμ

〉 = nμM (n2 = nμnμ = 1) (11)

causing for certainty some time-like (M2 > 0) Lorentz violation at 
a scale M , while rotational invariance is still maintained. This type 
of SLIV produces an ordinary photon as a true Goldstone vector 
boson (aμ) being orthogonal to the vacuum direction given by the 
vector nμ

Aμ = aμ + nμ

√
M2 − a2 , nμaμ = 0 (a2 ≡ aμaμ) (12)

The point is, however, that in sharp contrast to the nonlinear σ
model for pions, the constrained QED theory (8) ensures that phys-
ical Lorentz invariance in it remains unbroken. Indeed, although 
the theory in the symmetry broken phase contains a plethora of 
Lorentz and C P T violating couplings when it is expressed in terms 
of emergent aμ modes, the contributions of all these Lorentz vio-
lating couplings to physical processes completely cancel out among 
themselves. Actually, as was shown in the tree [13] and one-
loop approximations [14], the nonlinear constraint (7) applied as 
a supplementary condition appears in essence as a possible gauge 
choice for the vector field Aμ , while the S-matrix remains unal-
tered under such a gauge convention. The similar result was also 
confirmed for spontaneously broken non-Abelian theories [16,17]
and tensor field gravity [19].

Let us describe in some detail just the non-Abelian symmetry 
case since we are going to consider later the Yang-Mills theories 
with composite gauge fields. Let us assume there is such a theory 
possessing some internal symmetry G having D generators so that 

2 Note that an arbitrary finite λ field may generally cause instability of the theory 
making its Hamiltonian negative [8]. However, with the infinitesimal λ field chosen 
(that is quite enough to provide the vector field constraint (7)) the Hamiltonian is 
always positive once Gauss’ law holds [12]. It is also worth pointing out that even 
the zero limit for the infinitesimal λ field is quite imaginable, since in this limit the 
above extra charges are successively disappeared, while the vector field constraint 
remains [12].
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the nonlinear constraint for the vector field multiplet has now the 
form

Ai
μ Aμi = M2 (i = 1,2, ..., D) (13)

Remarkably, this time not only the pure Lorentz symmetry
S O (1, 3), but the much larger accidental symmetry S O (D, 3D) of 
the SLIV constraint (13) also happens to be spontaneously bro-
ken. As a result, although the pure Lorentz violation still generates 
only one true Goldstone vector boson, the accompanying pseudo-
Goldstone vector bosons related to the S O (D, 3D) breaking

Ai
μ = ai

μ + ni
μ

√
M2 − a2 , ni

μai
μ = 0

(n2 ≡ ni
μniμ = 1, a2 ≡ ai

μaiμ) (14)

also come into play properly completing the whole gauge multi-
plet of the internal symmetry group G taken. In contrast to the 
known scalar pseudo-Goldstone modes, they remain strictly mass-
less, being protected by the simultaneously generated non-Abelian 
gauge invariance [16,17].

To conclude, the constraint-based theories are in fact emer-
gent gauge theories appearing due to spontaneous Lorentz vio-
lation which we refer to as inactive SLIV. These theories, both 
Abelian and non-Abelian, when being expressed in terms of the 
pure Goldstone vector modes (aμ and ai

μ , respectively) look essen-
tially nonlinear and contain in general a variety of Lorentz and 
C P T breaking couplings. However, due to total cancellations of 
their contributions among themselves, they appear to be physi-
cally indistinguishable from the conventional QED and Yang-Mills 
theories. Their emergent nature could only be seen when taking 
the covariant gauge condition (7) into account. Any other gauge, 
e.g. Coulomb gauge, is not in line with emergent picture, since it 
“breaks” Lorentz invariance in an explicit rather than spontaneous 
way. As to an observational evidence in favor of emergent theo-
ries, the only way for SLIV to become active, thus causing physical 
Lorentz violation, would only appear if gauge invariance in these 
theories were really broken [23] rather than merely constrained 
by the gauge-fixing term. In substance, the above SLIV ansatz, due 
to which the vector field Aμ(x) develops the VEV (11), may itself 
be treated as a pure gauge transformation with a gauge func-
tion linear in coordinates, ω(x) = nμxμM . From this viewpoint, 
gauge invariance in QED or Yang-Mills theory leads to the conver-
sion of SLIV into gauge degrees of freedom of the massless gauge 
fields emerged. This is what one could refer to as the generic non-
observability of SLIV in gauge invariant theories. Moreover, as was 
shown some time ago [24], gauge theories, both Abelian and non-
Abelian, can be obtained by themselves from the requirement of 
the physical non-observability of SLIV induced by condensation of 
vector fields rather than from the standard gauge principle.

4. Constrained composite bosons

We are coming now to the most interesting question: how can 
the constrained QED Lagrangian (8) be generated from some un-
derlying dynamics of the elementary constituent fermions? One 
can readily confirm following the standard procedure that such 
basic Lagrangian for both hidden constituent and real matter 
fermions, ψs and �t , has to have the form

L(ψ,�,λ) = ψ̄s(iγ ∂ − m)ψs + �t(iγ ∂ − m)�t

+ 1

2λ
( jμ + Jμ)2 + λ

2
M2 (15)

where jμ and Jμ stand for their Noether currents (2) and (6), re-
spectively. Indeed, employing the standard trick of introducing an 
auxiliary field Aμ(x) one has instead
4

L(ψ,�,λ,Aμ) = L0(ψ)+L0 (�)−( jμ+ Jμ)Aμ− λ

2
(Aμ Aμ−M2)

(16)

with L0(ψ) and L0 (�) being the free Lagrangians for fermions ψs

and �t . Now, solving the algebraic equations of motion for Aμ ,

Aμ = −1

λ
( jμ + Jμ) (17)

and substituting back into the Lagrangian (16) one recovers the 
starting fermion Lagrangian (15). Remarkably, as one can readily 
see, the equation (17) connects the Dirac extra source current (9)
with the standard fermion currents in the theory

jμ + Jμ = − J ext
μ (18)

Now, variation of the prototype vector field Lagrangian (16) un-
der the multiplier function λ leads to the vector field constraint 
(7), mentioned above, while a similar variation of the fermion La-
grangian (15) gives in turn the constraint for the total fermion 
current in itself

( jμ + Jμ)2 = λ2M2 (19)

And eventually, integrating all constituent fermions ψs out from 
the prototype Lagrangian (16) we come to the effective Lagrangian 
(8) expressed in terms of the properly renormalized composite Aμ

field interacting with matter fermions �t in gauge invariant way. 
Indeed, since the constituent fermions ψs were minimally coupled 
to Aμ in the prototype Lagrangian, all the generated terms in the 
effective Lagrangian (including any high-order ones) appear gauge 
invariant provided a gauge invariant cutoff is chosen. The vector 
field kinetic term appears in the form

−Z3 × 1

4
Fμν F μν , Z3 = N

12π2
ln

�2

m2
(20)

where the renormalization constant Z3 is given by the usual vac-
uum polarization integral with some momentum-space cutoff �. 
The Z3 is then absorbed into the wave-function renormalization of 
Aμ field which in turn renormalizes the gauge coupling, multiplier 
field and SLIV scale as well

Aμ → Aμ/
√

Z3 , 1 → e = 1/
√

Z3 , λ → λ/Z3 , M2 → M2 Z3

(21)

that leads eventually to the gauge invariant effective Lagrangian 
(8) (with all the former notations remained). The nonlinear vec-
tor field constraint term in it, though being noninvariant, appears 
in fact as gauge condition in an otherwise gauge invariant and 
Lorentz invariant theory. So, in sharp contrast to the potential-
based models considered above, all radiative corrections which 
may appear in the effective Lagrangian (8) have to necessarily be 
both Lorentz invariant and gauge invariant. In fact, in one-loop ap-
proximation it was explicitly demonstrated some time ago [14].

Interestingly, while the nonlinear vector field constraint (7)
turns into the gauge condition, the constraint (19) put on the cur-
rents could mean some relation between currents of the hidden 
constituents and matter fermions. Actually, this relation also in-
cludes an extra source of charge density given by the λ field which 
is taken to be infinitesimal in our model. This means that the hid-
den and the actual matter currents appear to be approximately 
opposite to each other, jμ ≈ − Jμ . In this connection, one could 
notice that our basic field-current identity (17) is in fact the ra-
tio of two infinitesimal field quantities giving eventually the finite 
vector field Aμ . While in the prototype Lagrangian (16) it couples 
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with the infinitesimal sum of the currents jμ + Jμ , in the effective 
Lagrangian (8) emerging after integrating out of the hidden con-
stituent fermions ψsa the vector field interaction is solely given by 
the finite coupling with the matter fermions

Aμ Jμ = Aμ�tγ
μ�t (t = 1,2, ..., N�) (22)

And last but not least, it is worth pointing out that the 
constraint-based models possess one more remarkable advantage 
as compared to the potential-based ones – they do not need in 
general to have the enormously large number N of the hidden con-
stituent fermion species. Actually such a number N was mainly im-
posed to properly suppress the large physical Lorentz violation at 
low energies which could otherwise appear through the uncontrol-
lably large radiative corrections to the effective Lagrangians. That 
is not expected at all in the constraint-based models and, there-
fore, the number of the constituent fermions ψsa (s = 1, 2, ..., N)

may be determined now by only their own dynamics.
Let us now briefly describe a possible extension of this ap-

proach to the non-Abelian G symmetry case employing the non-
Abelian model with constrained vector field multiplet that we dis-
cussed in the previous section. Now, all the N and N� species 
of hidden constituent and matter fermions, ψs and �t belong to 
the fundamental representations of G , ψsa and �ta (a = 1, 2, ..., n), 
while the emerging composite vector fields will complete its ad-
joint multiplet. This extension can readily be made just by the 
corresponding replacements in the above equations (15)-(19)

Aμ → Ai
μ , jμ → ji

μ , Jμ → J i
μ (i = 1,2, ..., D) (23)

(D stands for the G symmetry group dimension). One can then 
proceed in a conventional way [4] to generate the vector field 
kinetic energy term together with the three- and four-vector self-
couplings from the relevant loop diagrams. We eventually arrive 
at the totally gauge invariant theory with an obvious replacement 
in the QED Lagrangian (8), Fμν → F i

μν , where F i
μν is the standard 

strength-tensor for the constrained vector field multiplet Ai
μ . The 

modified Lagrange multiplier term providing the constraint (13)
appears again as the pure gauge-fixing condition.

5. Composite quarks, leptons and gauge bosons

We present here some scenario how one could in principle 
combine this type models of composite gauge bosons with mod-
els for quarks and leptons composed from preons (some significant 
references can be found in [25]). The preons are usually viewed as 
the truly elementary carriers of all known physical charges, such 
as weak isospin, color, family number, etc. (which we refer to 
as “metaflavors”). Apart from metaflavors, they normally possess 
some metacolor forces that bind them inside quarks and leptons. 
And last but not least, they should be massless (or having some 
tiny masses) that is required to have at large distances the ob-
served quarks and leptons with masses which much less than their 
composition scale. For that, as is well known, the chiral symmetry 
of the preons should be remained so that the anomaly matching 
condition of preons at small distances and their composites at the 
large ones has to be satisfied [26].

In the light of this, the above massive constituent fermions 
ψs composing gauge bosons can not be used for composition of 
quarks and leptons. The most direct way would be to treat the 
matter fields as the massless preon candidates supplying them 
with both metacolor and metaflavor symmetries G MC and G M F

�ak , a = 1,2, ...,nMC , k = 1,2, ...,nM F (24)

where indices a and k belong to their fundamental representations, 
respectively. They are still global symmetries which then will be 
5

converted into the local ones by the proper current-current inter-
action of the hidden constituent fermions, such as it was described 
above. We propose that they are assigned to the symmetry groups 
G MC and G M F in the same way

ψak , a = 1,2, ...,nMC , k = 1,2, ...,nM F (25)

Note that in the both cases (24) and (25), we identify the number 
of fermions, the hidden constituent and matter ones, with number 
of metaflavors in the symmetry group G M F

N = N� = nM F (26)

One might, of course, introduce some independent large N number 
of the hidden constituent fermions (25). However, as was men-
tioned above, in the constraint-based models, one can have it as 
low as it is required by the composite dynamics itself.

So, technically, we can start with the pure fermion Lagrangian 
like that of (15) but being extended to the non-Abelian symmetry 
corresponding to the still global metacolor and metaflavor sym-
metries G MC and G M F , respectively. One can then readily use the 
above procedure (16), (17) of introducing the auxiliary vector fields

Ai
μ = Aa

bμ(T i)b
a , Ar

μ = Ak
l (T

r)l
k

(i = 1,2, ..., D MC ; r = 1,2, ..., D M F ) (27)

in the Lagrangian through the interrelated Noether currents of the 
above fermions (24) and (25)

Ai
μ = − 1

2λMC
( ji

μ + J i
μ) , ji

μ = ψγμT iψ , J i
μ = �γμT i�

Ar
μ = − 1

2λM F
(jrμ +J r

μ) , jrμ = ψγμT rψ , J r
μ = �γμT r� (28)

Here T i and T r stand for generators of the symmetry groups 
G MC and G M F having dimensions D MC and D M F , respectively, 
while λMC (x) and λM F (x) are the corresponding Lagrange mul-
tiplier fields. Note also that the metacolor currents ji

μ and J i
μ

are invariant under the metaflavor symmetry G M F , as well as the 
metaflavor currents jrμ and J r

μ are invariant under the metacolor 
symmetry G MC (the corresponding fermion indices are properly 
summed up in them).

Further, a subsequent integration of the massive constituent 
fermion multiplets ψak out will convert the global symmetries 
G MC and G M F into the local ones with the metacolor and metafla-
vor gauge fields Ai

μ and Ar
μ interacting with the presumably 

massless preon multiplets �ak . After the appropriate renormaliza-
tion of all the composite vector fields involved one arrives at the 
final preon Lagrangian

L(�, A,A) = L0 (�) − 1

4
F i
μν F iμν − 1

4
F r

μνF rμν

−g J i
μ Aiμ − gJ r

μArμ − λMC (Ai
μ Aiμ − M2

A)

−λM F (Ar
μArμ − M2

A) (29)

with the vector field constraints included, which contain the cor-
responding Lagrange multiplier functions λMC (x) and λM F (x), as 
well as the SLIV scales M A and MA , respectively. The equations 
(28) show that both metacolor and metaflavor gauge field multi-
plets, Ai

μ and Ar
μ , apart from the hidden constituent fermions ψak

(25), are also consisted of the preons �ak (24) which at the same 
time compose the observed quarks and lepton through the meta-
color forces. It goes without saying that their composition scale 
�MC is always less than the cutoff � of the prototype fermion 
theory.
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After all that, some whole scenario with composite quarks and 
leptons interacting with composite gauge bosons may be properly 
developed depending on the particular symmetry groups G MC and 
G M F taken. One possible scenario could be realized in the model 
of composite quarks and leptons that was recently presented in 
[27]. We give below some of its key elements:

(1) It is proposed that there are 2K elementary massless left-
handed and right-handed preons at small distances, PkL and Q kR
(k = 1, . . . , K ), which possess a common local symmetry SU (K )M F
unifying all known metaflavors, such as weak isospin, color, family 
number, etc. The preons, both PkL and Q kR , transform under fun-
damental representation of SU (K )M F and their metaflavor theory 
has presumably an exact L-R symmetry. Actually, the SU (K )M F
appears at the outset as some vectorlike symmetry which then 
breaks down at large distances to some of its chiral subgroup.

(2) In contrast to their common metaflavors, the left-handed 
and right-handed preon multiplets are taken to be chiral under the 
local metacolor symmetry G MC = S O (3)L × S O (3)R . They appear 
with different metacolors, P a

kL and Q a′
kR , where a and a′ are indices 

of the corresponding metacolor subgroups S O (3)L (a = 1, 2, 3) and 
S O (3)R (a′ = 1,2,3), respectively. They are generically anomaly-
free and provide the minimal three-preon configurations for com-
posite quarks and leptons. Due to the chiral metacolor, there are 
two types of composites at large distances being composed indi-
vidually from the left-right and left-handed preons, respectively.

(3) Obviously, the preon condensate 
〈
P L Q R

〉
which could cause 

the metacolor scale �MC order masses for composites is princi-
pally impossible in the left-right metacolor model taken. This may 
be generally considered as a necessary but not yet a sufficient 
condition for masslessness of composites. The genuine massless 
fermion composites are presumably only those which preserve the 
chiral SU (K )L × SU (K )R symmetry of preons at large distances 
that is controlled by the ’t Hooft’s anomaly matching condition 
[26].

(4) The strengthening of this condition in a way that the mass-
less fermion composites, both left-handed and right-handed, are 
required to complete a single representation of the SU (K )M F
rather than some set of its representations, allows to fix the num-
ber of basic metaflavors K . Particularly, just eight left-handed 
and eight right-handed preons and their composites preserving 
the global chiral symmetry SU (8)L × SU (8)R are turned out to 
uniquely identify the local metaflavor symmetry SU (8)M F as the 
grand unified symmetry of preons at small distances.

(5) An appropriate violation or the starting L-R symmetry at 
large distances breaks then this vectorlike SU (8)M F symmetry for 
preons down to the chiral SU (5) × SU (3)F symmetry for compos-
ites that contains the conventional SU (5) GUT with an extra local 
family symmetry SU (3)F and three standard families of composite 
quarks and leptons.

We can see now that in order to adapt the constrained gauge 
bosons to this scenario one has to generate the local vector-
like metaflavor symmetry SU (8)M F together with the local chi-
ral metacolor symmetry S O (3)L × S O (3)R binding separately the 
left-handed and right-handed preons. This means that, while the 
metaflavor part in the above preon Lagrangian (29) is left intact, its 
metacolor part has to be properly changed. Namely, it should now 
include separately both left-handed and right-handed preons, P a

kL

and Q a′
kR , being assigned to the different metacolor groups S O (3)L

and S O (3)R though to the same metaflavor symmetry SU (8)M F . 
Also, there are the two metacolor currents, J a

μ and J a′
μ of S O (3)L

and S O (3)R with the corresponding gauge bosons Aa
μ and Aa′

μ , 
as well as the two constraining Lagrange multiplier terms with 
the λMC and λ′

MC fields in the modified Lagrangian. It is clear 
that this Lagrangian is emerged in turn after integration out of 
the corresponding massive constituent fermion fields ψa

k and ψa′
k

which, in contrast to chiral preons, are vectorlike (ψa ≡ (ψL,R)a , 
k k

6

ψa′
k ≡ (ψL,R)a′

k ) with respect to their own symmetry group, S O (3)L

or S O (3)R , respectively. It is worth noting that these constituents 
will produce themselves the composite states due metacolor forces 
they possess. However, they will definitely appear very heavy (of 
the order of the metacolor scale taken) and might only influence 
physics at high energies comparable with the grand unification 
scale or so.

We have thus briefly demonstrated one particular way of unifi-
cation of the constrained composite gauge bosons with composite 
quarks and leptons that could appear due to the effective preon La-
grangian (29) and its extensions. There are presumably some other 
ways as well.

6. Conclusion

We have considered the class of composite models for gauge 
fields, which are emerged from the prototype fermion model taken 
in the current-current interaction form. In contrast to the con-
ventional approach where such interactions lead generally to the 
unstable vector field potential, in our model with the properly con-
strained fermion currents the composite gauge bosons come out 
to be only restricted by the nonlinear covariant constraint of type 
A2

μ = M2. They appear naturally massless as the NG modes of SLIV, 
so that the global internal symmetry G in the model turns into the 
local symmetry Gloc , while the vector field constraint reveals itself 
as the gauge fixing condition.3

Whereas the field-current identity for the massive vector fields, 
underlying the conventional argumentation, has a long story dating 
back to the paper of Kroll, Lee and Zumino [30], such an identity 
for massless vector fields seems hardly possible unless they are 
properly constrained. The crucial point, as we could see, happens 
to be the relation (18) between the standard matter currents and 
extra classical current introduced by Dirac [12]. Actually, one now 
has in a sense the current-current identity rather than field-current 
one.

We can go a bit further and wonder why basically the pro-
posed constraint pattern for vector fields could make the whole 
physical field system involved to adjust itself in a gauge invari-
ant way. The possible answer seems to be that the only theories 
compatible with the nonlinear vector field constraints taken are 
the gauge invariant ones, as has been generally argued in [17] (see 
also [28,29]). Indeed, once the SLIV constraint (7) or (13) is im-
posed, it is therefore not possible to satisfy another supplementary 
condition since this would superfluously restrict the number of de-
grees of freedom for the vector field. To avoid this, its equation of 
motion should be automatically divergenceless since otherwise one 
would have one more condition. However, such an equation of mo-
tion is only possible in the gauge invariant theory. Actually, gauge 
invariance in theories considered appears in essence as a response 
of an interacting field system to putting the covariant constraint 
(7), (13) on its dynamics, provided that we allow parameters in 
the corresponding Lagrangian density to be adjusted so as to en-
sure self-consistency without losing too many degrees of freedom. 
Otherwise, a given field system could get unphysical in a sense 
that a superfluous reduction in the number of degrees of freedom 
would make it impossible to set the required initial conditions in 

3 Generally, apart from the current-current interaction terms, there are many 
other fermion bilinears and their interactions that could be included in our proto-
type Lagrangian (15). The above “bosonization” procedure could then be generalized 
so as to introduce a new auxiliary field (scalar, vector or tensor one) for each bilin-
ear that eventually would lead to an effective action for a set of interacting auxiliary 
fields [6]. In contrast to the above massless Aμ fields induced by the current bilin-
ears, they are not constrained and, presumably, acquire large masses. On general 
grounds, these masses have to be of the cutoff order and, therefore, all such states 
can be neglected at low energies.
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the appropriate Cauchy problem. Namely, it would be impossible 
to specify arbitrarily the initial values of the vector and other field 
components involved, as well as the initial values of the momenta 
conjugated to them. Furthermore, in quantum theory, to choose 
self-consistent equal-time commutation relations would also be-
come impossible [31]. So, the nonlinear SLIV condition (7), (13), 
due to which true vacuum in the theory is chosen and massless 
gauge fields are generated, may provide a dynamical setting for all 
underlying internal symmetries involved through such an emer-
gence conjecture.

One can see that the gauge theory framework, be it taken from 
the outset or emerged, makes in turn SLIV to be physically unob-
servable both in Abelian and non-Abelian symmetry case that is 
also favored by the supersymmetric SLIV version. We referred to it 
above as the inactive SLIV in contrast to the active SLIV case where 
physical Lorentz violation could effectively occur. From the present 
standpoint, the only way for an inactive SLIV to be activated would 
be if emergent gauge symmetries presented above were slightly 
broken at small distances being presumably controlled by quan-
tum gravity. One might even think that quantum gravity could in 
principle hinder the setting of the required initial conditions in the 
appropriate Cauchy problem, thus admitting a superfluous restric-
tion of vector fields in terms of some high-order operators which 
occur at the Planck scale order distances. This is just the range of 
distances where the composite gauge fields, as well as the compos-
ite quarks and leptons, should presumably emerge in order to be 
properly adapted to the grand unification landscape. So, some trace 
of the gauge symmetry breaking and therefore physical Lorentz 
violation might accompany their composition processes. We may 
return to this special issue elsewhere.
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