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We investigate precision observables sensitive to custodial-symmetric/-violating UV physics beyond the
Standard Model. We use the Standard Model effective field theory (SMEFT) framework which in general
includes nonoblique corrections that require a generalization of the Peskin-Takeuchi T parameter to
unambiguously detect custodial symmetry/violation. We take a first step towards constructing a SMEFT
reparametrization-invariant replacement, which we call T , valid at least for tree-level custodial-violating
contributions. We utilize a new custodial basis of νSMEFT (SMEFTaugmented by right-handed neutrinos)
which explicitly identifies the global SUð2ÞR symmetries of the Higgs and fermion sectors, which in turn
permits easy identification of higher-dimensional operators that are custodial preserving or violating. We
carefully consider equation-of-motion redundancies that cause custodial-symmetric operators in one basis
to be equivalent to a set of custodial-symmetric and/or -violating operators in another basis. Utilizing
known results about tree/loop operator generation, we demonstrate that the basis-dependent appearance of
custodial-violating operators does not invalidate ourT parameter at tree level. We illustrate our results with
several UV theory examples, demonstrating that T faithfully identifies custodial symmetry violation,
while T can fail.
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I. INTRODUCTION

It is widely anticipated that there is new physics beyond
the Standard Model (SM). In the absence of directly
producing the new particles of the beyond-the-SM
(BSM) sector, we would like to maximize the information
we can glean about the UV physics from indirect probes. In
this approach, the LEP era established the importance of
electroweak precision data [1,2], which could test the SM
to an accuracy of ∼0.1%. Constraints on the scale of new
physics can be Λ≳ 10 TeV for those contributing to
electroweak precision observables at the order v2=Λ2.
Directly calculating the contributions to electroweak

precision observables from a given UV theory is in
principle straightforward. However, it must be done on a
case-by-case basis and consequently, does not (necessarily)
provide general insights about the new physics. Peskin and
Takeuchi demonstrated that the new physics effects can be
efficiently categorized by utilizing three precision

parameters: S, T, and U [3]. These parameters provide a
simple, stunningly ubiquitous bridge between the effects of
a new UV sector and electroweak precision data, and have
become popular tests in determining the phenomenologi-
cally viable parameter space for BSM theories. In particu-
lar, the T parameter is identified as the manifestation of
“custodial” symmetry-breaking effects from the UV sector.
Theories beyond the SM are often constructed to respect
custodial symmetry in order to avoid the strong bounds on
the T parameter, including originally technicolor [4] (for a
review, see Ref. [5]), as well as composite Higgs (e.g.,
Refs. [6–10]), little Higgs theories [11–15], and dark matter
theories [16–18].
The Peskin-Takeuchi T parameter can be constrained

from a variety of electroweak data. There are two observ-
ables that are often associated with directly constraining T:
ρ̂�ð0Þ, the ratio of charged current to neutral current (CC/
NC) in the limit of zero momentum [3], and the Veltman

ρ̂≡ m2
W

m2
Z cos

2 θ
[19]. We emphasize that these two are quite

different observables1 despite often being confused with
each other (see, e.g., Ref. [20]). In particular, ρ̂�ð0Þ only
depends on T, where a nonzero value can be directly
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associated with custodial violation. The Veltman ρ̂, on the
other hand, depends on all of S, T, and U, and can deviate
from 1 due to custodial-symmetricUVeffects (see Ref. [3]):

ρ̂�ð0Þ − 1 ¼ αT; ð1aÞ

ρ̂ − 1 ¼ α

cos 2θ

�
−
1

2
Sþ cos2 θT þ cos 2θ

4 sin2 θ
U

�
: ð1bÞ

In determining the strongest experimental constraints on T
(and S,U), the simplicity of Eq. (1a) may be outweighed by
the precision on the Veltman ρ̂ observable and associated Z-
pole observables that can simultaneously constrain S, T,
and U.
The S, T, U parameters, however, have limitations. In

particular, a key assumption, clearly stated at the time, is
that the UV physics contributes only “obliquely,” i.e., via
the two-point functions of the SM electroweak gauge
bosons. Another assumption is that the analysis only
accounts for up to p2 terms in gauge boson two-point
functions. As precision increased, the framework was
generalized to p4 order by introducing the new parameters
V, W, X, and Y [21–24], though the oblique assumption
remains in place.
Following the discovery of the Higgs boson [25,26], the

Standard Model effective field theory (SMEFT) [27–29]
has become a new popular framework for model-indepen-
dent analyses of BSM physics, especially given the null
results for the various direct BSM searches at the LHCİn
this framework, new physics is considered as sufficiently
heavy, such that it can be integrated out, resulting in higher-
dimensional operators, supplementing the SM Lagrangian.2

From the SMEFT point of view, only a very restricted set
of UV theories (the so-called universal theories [24,42,43])
contribute only obliquely; fully general UV sectors cap-
tured by SMEFT also have nonoblique corrections [44]. In
addition, even for universal theories, oblique corrections do
not remain oblique: nonoblique corrections are generated as
soon as renormalization group effects are included [45,46].
Therefore, a generalization of the T parameter that does not
rely on restricting to oblique-only corrections would be of
significant importance to determine custodial symmetry or
its violation of a generic UV theory.

In this paper we present a first step in resolving this issue.
Note that once we generalize beyond the oblique
assumption, exactly what one means by custodial sym-
metry becomes more subtle and needs to be revisited. The
CC/NC ratio, universal for purely oblique corrections, now
depends on what fermions are considered. Given this
ambiguity in defining custodial symmetry, we make a
choice that resembles the definition from ρ̂�ð0Þ.
Specifically, we define UV physics to be custodial sym-
metric when an SUð2ÞR global symmetry is preserved (in
the limit of zero hypercharge coupling) by all UV inter-
actions with the Higgs sector of the SM.
In the SMEFT framework, one works with effective

operators whose constituents have manifest transformation
properties under the global SUð2ÞR symmetries in the SM
Higgs and/or fermion sectors. In this sense, the Wilson
coefficients are superior to the S, T, U parameters, as they
can directly indicate SUð2ÞR symmetries or their violation.
This is a simplification compared to the oblique framework,
where one has to infer the SUð2ÞR symmetry from the CC/
NC ratio. To better utilize this feature of SMEFT, we take
linear combinations of operators in the dimension-six (dim-
6) Warsaw basis, extended to include right-handed neu-
trinos (thus νSMEFT, rather than SMEFT), and map them
into a new custodial basis where all operators have
manifest transformation properties under the global
SUð2ÞR symmetries in the SM. This allows us to directly
identify UV custodial symmetry/violation from the Wilson
coefficients generated by matching.
Assisted by the custodial ðνÞSMEFT basis, we construct

a linear combination of Wilson coefficients that we callT l,
a new precision parameter that serves as a generalization of
the T parameter to indicate custodial symmetry/violation in
nonoblique theories. We show that T l can be constructed
from Z-pole observables and mW , faithfully determining at
tree level if the UV sector contains “hard” custodial
violation (that persists even when the hypercharge gauge
coupling vanishes), independent of whether the UV sector
contributes only obliquely. Importantly, as our new T l
parameter involves multiple electroweak observables. As a
consequence, the constraint on custodial violation that it
sets is only as strong as the weakest link, namely, that the
least precise component observable determines the true
bound on custodial violation of UV physics.
Our new parameter T l is a first step only, as it does not

capture loop corrections from the SM or SMEFTİn par-
ticular, modifications to the parameter are required to
account for the known SM violation of custodial symmetry
at the one-loop level (arising mainly from top-loop con-
tributions). Furthermore, incorporating loop-level effects in
SMEFT requires a substantial amount of additional effort
due to an ambiguity that arises from equation-of-motion
(EOM) redundancies. When custodial-symmetric UV
physics is integrated out, it generates custodial-symmetric
operators, but not necessarily in the Warsaw or custodial

2Classifying the general form of these operators has had a long
history [28,29]. The “Warsaw” basis [30], for instance, provides a
nonredundant parametrization of the set of all dim-6 operators.
Other operator bases, e.g., the SILH basis [10] can be related
through integration-by-parts and equations-of-motion redundan-
cies [31]. A systematic classification and counting of SMEFT
operators has been recently achieved using the Hilbert series
technique [32–36] up to dimension eight and beyond [37–40].
The number of operators grows rapidly with the dimension
[39,40]. At dim-6, SMEFT contains 3045 operators [39,41],
assuming all of the global symmetries of the SM are broken.
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basis of ðνÞSMEFT. Ordinarily one simply utilizes inte-
gration-by-parts (IBP) and EOM redundancies to rewrite
the UV-generated operators in terms of whatever basis one
prefers, in our case our custodial basis of ðνÞSMEFT.
However, the EOM redundancy can trade custodial-sym-
metric operators for custodial-violating operators propor-
tional to the SM violation of custodial symmetry. This is
simply because the EFT as a whole does not respect
custodial symmetry, even if the integrated-out UV physics
does. This could have sunk any chance to isolate observ-
ables only sensitive to UV sector violations of custodial
symmetry. Fortunately, from known results about tree/loop
operator generation [47–49], we find that restricting to tree-
level-generated operators, our set of observables, and hence
our T l parameter, remain faithful in identifying hard
custodial violation of UV physics. This is the main result
of this paper.
The layout of the rest of this paper is as follows. In Sec. II

we establish notation and review the global SUð2ÞR
symmetries of the Higgs and fermion sectors of the SM,
as well as how they are broken by various interactions. This
will help us lay out our working definition of custodial
symmetry. Next, in Sec. III we introduce the custodial basis
for ðνÞSMEFT and classify operators in that basis accord-
ing to their properties under our custodial symmetry. We
also provide mapping between this basis and conventional
SMEFT bases which will be useful for quickly importing
past results. In Sec. IV we select a set of electroweak
precision observables and determine a particular combina-
tion of them that is sensitive to hard UV custodial violation
at tree level. Our new electroweak precision parameter T l
arises from this combination, and serves as a generalization
of the T parameter to UV theories with nonoblique

corrections. This section contains our main results. The
impact (or lack thereof) of EOM redundancies is the subject
of Sec. V. In Sec. VI we investigate several example UV
theories to demonstrate the validity of our new T l
parameter constructed in Sec. IV. Finally, we conclude
in Sec. VII.

II. SUð2ÞR SYMMETRIES IN ðνÞSM AND
CUSTODIAL SYMMETRY

In this section, we discuss the (approximate) global
SUð2ÞR symmetries in ðνÞSM (Secs. II A and II B), identify
their breaking sources (Sec. II C), and then introduce our
definition of the custodial symmetry (Sec. II D).
Let us first establish our notation for the group theory

and field content. We use τa ¼ τaR ¼ σa with a ¼ 1, 2, 3 to
denote Pauli matrices. The SUð2ÞL and SUð2ÞR generators
in the fundamental representation are hence ta ¼ 1

2
τa and

taR ¼ 1
2
τaR, respectively. The SUð3Þc generators in the

fundamental representation are denoted by TA with
A ¼ 1;…; 8. The SM covariant derivative is

Dμ ¼ ∂μ − ig3GA
μTA − ig2Wa

μta − ig1Bμy; ð2Þ

with y denoting the hypercharge, GA
μ ;Wa

μ; Bμ denoting the
gauge fields, and g3, g2, g1 denoting the gauge couplings. A
general field strength is denoted as Xμν ∈ fGA

μν;Wa
μν; Bμνg.

For the dual, we adopt the convention X̃μν ≡ 1
2
ϵμναβXαβ,

with ϵ0123 ¼ þ1. We use the usual Dirac matrices γμ,
and σμν ≡ i

2
½γμ; γν�.

Our notation for the SM Lagrangian is

LSM ¼ −
1

4
GA

μνGAμν −
1

4
Wa

μνWaμν −
1

4
BμνBμν þ jDHj2 − λ

�
jHj2 − 1

2
v2
�

2

þ
X
ψ

ψ̄iDψ − ðYuq̄ H̃ uþ Ydq̄Hdþ Yel̄Heþ H:c:Þ; ð3Þ

where for the SM fermions ψ we follow Ref. [30] to use
fq; lg for left-handed SUð2ÞL doublets and fu; d; eg for
right-handed SUð2ÞL singlets. In the above, the Yukawa
couplings Yu, Yd, Ye are 3 × 3 matrices in the generation
space, but we have suppressed the generation indices for
compactness. We can also extend the SM to include right-
handed neutrinos ν—what we refer to as νSM. In this case,
the Lagrangian is augmented as

LνSM ¼ LSM þ ν̄iDν − ðYνl̄ H̃ νþ H:c:Þ: ð4Þ

A Majorana mass for the right-handed neutrinos can be
written, Mν̄ν, which is allowed by the gauge symmetries,

but violates lepton number by 2 units. For this term to be
present in the low-energy effective theory, the Majorana
mass scale M must be less than the cutoff scale of
νSMEFT.3

A. Higgs sector: SUð2ÞRH
We begin our discussion of global SUð2ÞR symmetries

with the Higgs doublet

3As we will see, none of the observables that we consider
depend on the presence or absence of a Majorana mass smaller
than the cutoff scale of the effective theory.
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H ¼
�

Gþ

ðvþ hþ iG0Þ= ffiffiffi
2

p
�
: ð5Þ

The Higgs potential is invariant under an SOð4Þ symmetry,

SOð4Þ ∼ SUð2ÞL × SUð2ÞRH; ð6Þ

where SUð2ÞL and the t3R generator of SUð2ÞRH are gauged
in ðνÞSM. This symmetry is spontaneously broken to
SOð3Þ ∼ SUð2ÞV when the Higgs develops a vacuum
expectation value (VEV).
We can reexpress the Higgs field in terms of a (2,2)

bifundamental scalar field that transforms under the
ðUL;URÞ ∈ SUð2ÞL × SUð2ÞRH as4

Σ≡ðH̃ HÞ

¼
�ðvþh−iG0Þ= ffiffiffi

2
p

Gþ

−G− ðvþhþiG0Þ= ffiffiffi
2

p
�
→ULΣU†

R:

ð7Þ

In principle, all interactions are built out of Σ, but it is
sometimes helpful to make use of the identity

Σ†
iRiL

≡ ϵiRjRϵiLjLΣjLjR ; ð8Þ
and write operators with Σ†, where the SUð2Þ transforma-
tion properties are easier to recognize. For example, the SM
Higgs potential can be written as

V ¼ λ

�
jHj2 − v2

2

�
2

¼ λ

4
½trðΣ†ΣÞ − v2�2; ð9Þ

where the SUð2ÞL × SUð2ÞRH symmetry is manifest.
Similarly, one can rewrite the Higgs SUð2ÞL and Uð1ÞY
currents as

H†iD
↔a

μH ≡H†τaiDμH þ H:c: ¼ trðΣ†τaiDμΣÞ; ð10aÞ

H†iD
↔

μH ≡H†iDμH þ H:c: ¼ −trðΣ†iDμΣτ3RÞ; ð10bÞ

where the SUð2Þ-preserving/-violating structures are more
explicit.

B. Fermion sector: SUð2ÞRqR , SUð2ÞRlR
Turning to the fermion sector of the SM, there are several

approximate SUð2ÞR symmetries that become exact in the
limit of neglecting hypercharge coupling g1 and the
Yukawa couplings. Focusing on one generation of fermions

for the moment, the right-handed up-type quark u and down-
type quark d can be grouped together to form a doublet

qR ≡
�
u

d

�
; ð11Þ

which has a Uð2ÞqR global symmetry. We can break this
symmetry into the baryon number Uð1ÞB and a global
SUð2ÞR quark isospin symmetry that we will call SUð2ÞRqR :

Uð2ÞqR ¼ Uð1ÞB × SUð2ÞRqR: ð12Þ
Similarly, when the SM is extended to νSM, we can build a
right-handed lepton doublet

lR ≡
�
ν

e

�
; ð13Þ

which has a global Uð2ÞlR symmetry that we identify as
consisting of lepton number and isospin:

Uð2ÞlR ¼ Uð1ÞL × SUð2ÞRlR : ð14Þ

In the case of three generations, we will get the quark
isospin SUð2ÞRqR and the lepton isospin SUð2ÞRlR for each
generation.

C. SUð2ÞR violation in ðνÞSM
With the global SUð2ÞR symmetries in ðνÞSM identified,

we can now classify the symmetry-breaking sources,
namely, Yukawa couplings and the gauging of hypercharge.
For simplicity, we will focus on the one-generation case.5

Yukawa couplings play two roles: 1) they tie the Higgs
SUð2ÞRH symmetry to the isospin symmetries SUð2ÞRqR;
SUð2ÞRlR , and 2) they break these symmetries. To disen-
tangle these two effects, we can first write the Yukawa
interactions in terms of the bidoublet Higgs Σ, e.g., for
quarks,

Yuq̄ H̃ uþ Ydq̄Hd ¼ q̄Σ
�
Yu 0

0 Yd

�
qR; ð15Þ

and then split the above Yukawa matrix as
�
Yu 0

0 Yd

�
¼ Yu þ Yd

2
12×2 þ

Yu − Yd

2
τ3R: ð16Þ

This way, the symmetry-breaking pattern becomes clear.
The term proportional to 12×2 leads to SUð2ÞRH×
SUð2ÞRqR → SUð2Þ, while the τ3R term breaks SUð2ÞRH×
SUð2ÞRqR → Uð1Þ. By the same logic, the Yukawa inter-
actions in the lepton sector of νSM can be grouped into a
combination that ties SUð2ÞRH to SUð2ÞRlR and a4Here H̃ ≡ iσ2H� ¼ ϵH�, which transforms in the same way

as H itself under the SUð2ÞL symmetry; ϵij ¼ −ϵji is an SUð2Þ-
invariant tensor, and we take ϵ12 ¼ þ1. 5Similar arguments hold for the case of three generations.
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combination that breaks SUð2ÞRH × SUð2ÞRlR → Uð1Þ. [A
Majorana mass for the right-handed neutrinos explicitly
breaks SUð2ÞRlR to nothing.] The matrices 12×2 and τ3R will
appear often in this work, so we will adopt the convenient
shorthand

Pþ ≡ 12×2; P− ≡ τ3R: ð17Þ
We will use P� to apply to both SUð2ÞRqR and SUð2ÞRlR
spaces; exactly which space we are working with should be
clear from the context.
On the other hand, gauging hypercharge corresponds to

gauging the τ3R generators of SUð2ÞRH, SUð2ÞRqR , and
SUð2ÞRlR . This breaks all of them simultaneously down to
Uð1ÞY—exactly the Uð1Þ left intact by P− from Yukawa
breaking.

D. Custodial SUð2ÞR
Now that we have identified the SUð2ÞR symmetries and

violation in ðνÞSM, we are ready to precisely define
custodial symmetry in this paper:

UVphysics iscustodial symmetricwhen there is a

globalSUð2ÞR symmetrypreserved; in the limitg1 → 0;

byallUVinteractionswith theHiggs sector of theSM:

Here, the preserved SUð2ÞR symmetry could be either
SUð2ÞRH itself or a diagonal subgroup of SUð2ÞRH×
SUð2ÞRqR , SUð2ÞRH×SUð2ÞRlR , or SUð2ÞRH×SUð2ÞRqR×
SUð2ÞRlR . That is, the SUð2ÞR group must involve SUð2ÞRH
in some way. A few important comments are in order about
this definition:
(1) Our definition is exclusively about the UV sector.

Therefore, even in the case where the UV sector
respects custodial symmetry, the identified SUð2ÞR
symmetry is still not an exact symmetry of the whole
Lagrangian [the UV sector plus ðνÞSM. In particular,
the hypercharge coupling g1 and the mismatch in
Yukawa couplings [Yu − Yd and Yν − Ye; see, e.g.,
Eq. (16)] in νSM break it. Only in the limits g1 → 0,
Yu − Yd → 0, Yν − Ye → 0, will the custodial
SUð2ÞR become an exact symmetry of the entire
UVþ SM theory.

(2) Also, because our definition is exclusive to the UV
interactions, whether or not aUV sector is adjudicated
to be custodial symmetric does not depend on the
presence or absence of ðνÞSMYukawa couplings. By
contrast, the hypercharge coupling g1 could play a
role, as it could participate in the UV interactions
when some UV particles have nonzero hypercharge.

(3) The breaking of custodial SUð2ÞR by the UV
interactions can thus be categorized as follows:
(a) “Soft” breakings that vanish in the limit g1 → 0.
(b) “Hard” breakings that persist in the limit g1 → 0.

In our definition above, a UV sector with “soft” custodial
SUð2ÞR breaking is defined as custodial symmetric. This is
because our interest in this paper is “hard” custodial
violation. In the rest of this paper, we will utilize this
terminology strictly unless explicitly stated otherwise,
namely, that our “custodial-violating UV physics” contains
“hard” custodial breakings, and our “custodial-symmetric
UV physics” allows for soft breakings.
In the above, we have established a definition of the

custodial symmetry for UV physics. However, as explained
in the Introduction, we are not interested in analyzing UV
theories case by case. Instead, we would like to follow the
spirit of the electroweak precision parameters S, T, U, and
use a general framework to analyze UV physics indepen-
dent of the UV model. In this paper, the framework we use
is dim-6 ðνÞSMEFT. This motivates us to divide the dim-6
ðνÞSMEFT operators into two categories: “custodial-
preserving/-violating operators” that can/cannot be pos-
sibly generated by custodial-symmetric UV physics.
Usually, a symmetry possessed by the UV theory gets

inherited by the EFT (as long as the heavy states integrated
out do not break it). In the case of our custodial SUð2ÞR,
however, the situation is less straightforward, precisely
because it is not an exact symmetry of the whole UV
Lagrangian. Nevertheless, if we restrict ourselves to the
leading matching order (which could be tree level, one-loop
level, or even higher, depending on the UV theory), there
are only heavy particle propagators in the contributing
diagrams, and hence only UV interactions beyond ðνÞSM
will participate. In this case, all of the resulting ðνÞSMEFT
operators will preserve the custodial SUð2ÞR symmetry. For
the rest of the paper, we only consider the leading matching
order unless explicitly stated otherwise. This allows us to
make the above desired ðνÞSMEFT operator division
simply based on their SUð2ÞR transformation properties,
a task we will tackle in the next section.

III. CUSTODIAL BASIS OF ðνÞSMEFT

In this section, we introduce a new basis for dim-6
ðνÞSMEFT—the custodial basis—to facilitate the identi-
fication of operators that preserve/violate the custodial
symmetry. Using this basis, we then identify the operators
that can/cannot be possibly generated by integrating out
custodial-symmetric UV sectors.
Our presentation of the operator basis largely follows

Refs. [30,41,50,51], extended to include right-handed
neutrinos [52]. As preparation, we first present in
Table II all of the independent baryon-number-preserving
and lepton-number-preserving operators in the Warsaw
basis for νSMEFT (suppressing flavor indices).6 In addition
to the 76 ¼ 42þ ð17þ H:c:Þ SMEFT operators, there are

6For easy reading/contrasting, we have gathered all of the
tables of operator bases and the relevant translation dictionaries in
Appendix C.
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25 ¼ 7þ ð9þ H:c:Þ new operators involving right-handed
neutrinos. Reducing νSMEFT back to SMEFT is straight-
forward by restricting appropriate Wilson coefficients to
zero, which we show in Table VII.
Now we build the custodial basis. Our basic approach is

to recombine the Warsaw basis operators Qi such that their
transformation properties under the global SUð2ÞRH and
isospin symmetries SUð2ÞRqR , SUð2ÞRlR become manifest,
close to what we did for νSM in Eqs. (15) and (16). It is also
worth mentioning that a similar rewriting of dim-6 SMEFT
in other bases exists; see, e.g., [53]. Performing this
recombination for all of the operators in Table II, we arrive
at our custodial basis operatorsOi, summarized in Table III.
An explicit translation dictionary between the two operator
bases is further given in Table IV. Many operators do not
change in going from the Warsaw basis to the custodial
basis. In particular, operators built purely out of SUð2ÞR
singlets translate trivially. All operators that involve exclu-
sively the left-handed fermion fields of the SM fall into this
category. On the other hand, significant differences from
the Warsaw basis can be observed in the operators
involving the right-handed fermion fields.
From the translation dictionary in Table IV, we can also

easily determine the corresponding relations between the
Wilson coefficients in these two bases:

LEFT − LSM ¼
X
i

aiOi ¼
X
i

CiQi: ð18Þ

We provide explicit translation dictionaries between the
Wilson coefficients in Tables V and VI. Note that we have
absorbed the scale suppressing theQi andOi into theWilson
coefficients, making them dimensionful, ½Ci� ¼ ½ai� ¼ −2.
This is a bit unconventional, but it compactifies the notation.
One can express our results in terms of dimensionlessWilson
coefficients and a new physics scale Λ by replacing Ci →
C̃i=Λ2; ai → ãi=Λ2 everywhere.
We now wish to identify operators in Table III that can/

cannot be possibly generated by custodial-symmetric UV
physics. Recall that in the limit g1 → 0, custodial-sym-
metric UV physics preserves an SUð2ÞR symmetry.
Consequently, in this limit, only operators that preserve
the same SUð2ÞR symmetry could be generated by match-
ing (at the leading order). However, there are four pos-
sibilities for this SUð2ÞR:
(1) SUð2ÞRH.
(2) The diagonal subgroup of SUð2ÞRH × SUð2ÞRqR .
(3) The diagonal subgroup of SUð2ÞRH × SUð2ÞRlR .
(4) The diagonal subgroup of SUð2ÞRH × SUð2ÞRqR×

SUð2ÞRlR .
Therefore, if an operator in Table III preserves any of the
four SUð2ÞR’s above in the limit g1 → 0, then it can
potentially be generated, and should be categorized as a
“custodial-preserving operator.” For example, in the limit
g1 → 0, the operator

Oð3Þþ
HlR

≡ trðΣ†iDμΣτaRÞðl̄RγμτaRPþlRÞ ð19Þ

preserves the diagonal subgroup of SUð2ÞRH × SUð2ÞRlR ,
and hence is a custodial-preserving operator. Note in
particular that any operator with an explicit Bμν should
be understood as accompanied by a power of g1. Therefore,
in the limit g1 → 0 these operators vanish, and so they are
classified as custodial-preserving operators as well.

A. Flavor indices of the Wilson coefficients

In Tables II–VII we have suppressed all of the flavor
indices, but it should be understood that each fermion field
actually comes with a generation index, so are the corre-
sponding Wilson coefficients. For example, the two-
fermion operatorQð3Þ

Hl and four-fermion operatorQll should
actually read

Qð3Þ
Hl
pr

¼ ðH†iD
↔a

μHÞðl̄pγμτalrÞ; ð20aÞ

Q ll
prst

¼ ðl̄pγμlrÞðl̄sγμltÞ: ð20bÞ

The EFT Lagrangian therefore has a sum over these
generation indices:

LEFT ⊃
X3
p;r¼1

Cð3Þ
Hl
pr
Qð3Þ

Hl
pr

þ
X3

p;r;s;t¼1

C ll
prst
Q ll

prst

¼
X3
p;r¼1

að3ÞHl
pr
Oð3Þ

Hl
pr

þ
X3

p;r;s;t¼1

a ll
prst
O ll

prst
: ð21Þ

However, we often suppress the flavor indices when it is
clear from the context.
As we will see, most four-fermion operators do not

contribute to the observables to be discussed in Sec. IV.
However, one exception is the mixed first- and second-
generation four-lepton operator, which contributes to ĜF.
We give this operator a special name for future conven-
ience:

Q12 ≡ ðl̄1γμl2Þðl̄2γμl1Þ≡O12: ð22Þ

Clearly, the corresponding Wilson coefficients are related
to our general notation as

C12 ¼ C ll
1221

þ C ll
2112

¼ a ll
1221

þ a ll
2112

¼ a12: ð23Þ

IV. OBSERVABLES SENSITIVE TO CUSTODIAL
SYMMETRY/VIOLATION IN ðνÞSMEFT

In this section, we study an example set of precision
observables that will allow us to identify whether the UV
physics contain hard custodial violation:
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fα̂; ĜF; m̂2
Z; m̂

2
W; Γ̂ZνL ν̄L ; Γ̂ZeLēL ; Γ̂Zeēg: ð24Þ

In order, these are the (electromagnetic) fine-structure
constant, the Fermi constant, the pole masses of the Z
and W bosons, and the partial decay widths of the Z boson
to left-handed neutrinos, left-handed electrons, and right-
handed electrons.
In what follows, we compute corrections from dim-6

ðνÞSMEFT operators to these observables in Secs. IVA and
IV B, at leading matching order (tree level in SMEFT), and
then in Sec. IV C we construct from them a T parameter
generalization T l that serves as an indicator of custodial
violation in general ðνÞSMEFT. Reparametrization invari-
ance (RPI) plays an important role in our construction of
T l, which we will explain in Sec. IV D. Our “observables”
here refer to quantities that we can calculate in the
ðνÞSM/ðνÞSMEFT that do not depend on the choice of
operator basis, and they can in principle be measured by
experiments. Some of these observables can be directly
measured, such as α̂, ĜF, m̂2

Z, m̂
2
W , while others need to be

inferred from other measurements. In Sec. IV E we discuss
how to extract these observables from experimental mea-
surements. The observable set chosen in Eq. (24) is only a
demonstration example. There are more observables avail-
able in the canonical LEP choice, such as the hadronic
branching ratio, the bottom quark branching ratio, or the
total decay width of Z. We discuss these observables in
Appendix B.

A. Observables in the SM

In the SM, the observables in Eq. (24) are given by
the three Lagrangian parameters g1; g2; v as7

α̂SM ¼ g21g
2
2

4πðg21 þ g22Þ
; ð25aÞ

ĜF;SM ¼ 1ffiffiffi
2

p
v2

; ð25bÞ

m̂2
Z;SM ¼ 1

4
ðg21 þ g22Þv2; ð25cÞ

m̂2
W;SM ¼ 1

4
g22v

2; ð25dÞ

Γ̂ZνL ν̄L;SM ¼ m̂Z;SM

96π

g22
c2θ

; ð25eÞ

Γ̂ZeLēL;SM ¼ m̂Z;SM

96π

g22
c2θ

c22θ; ð25fÞ

Γ̂Zeē;SM ¼ m̂Z;SM

24π

g22
c2θ

s4θ; ð25gÞ

where θ denotes the Weinberg angle

cθ ¼ cos θ≡ g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p ; sθ ¼ sin θ≡ g1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p :

ð26Þ

B. Observables in SMEFT

Since the SM has only three inputs, the full set in
Eqs. (25a)–(25g) can be completely determined in terms of
any subset of three observables. Typically, the most
precisely measured subset is chosen: fα̂; m̂2

Z; ĜFg or
fm̂2

W; m̂
2
Z; ĜFg. Once we include the contributions from

SMEFT operators, three observables are no longer enough,
as all of Eqs. (25a)–(25g) will be polluted with different
combinations of Wilson coefficients Ci. Said another way,
it is still possible to swap out g1, g2, and v for fα̂; m̂2

Z; ĜFg
or fm̂2

W; m̂
2
Z; ĜFg; however, in the presence of SMEFT

effects, g1, g2, and v will be functions of Ci rather than
numbers fixed by experiment. This Ci dependence is
referred to as the “electroweak input shifts” in the literature.
The exact form of the shifts depends on which three
observables are used to solve for g1, g2, and v: either
the α̂ scheme (fα̂; m̂2

Z; ĜFg) or the m̂W scheme
(fm̂2

W; m̂
2
Z; ĜFgÞ.8 In this paper, we will exclusively use

the α̂ scheme. Of course, the input shifts are only one place
Wilson coefficients can enter, as every observable will also
carry process-specific factors of Ci depending on the fields
and vertices involved.
Removing fα̂; m̂2

Z; ĜFg, we are left with four observ-
ables: fm̂2

W; Γ̂ZνLν̄L ; Γ̂ZeLēL ; Γ̂Zeēg. To make it easier to spot
and quantify the effects from SMEFT, we swap out m̂2

W for
the Veltman ρ̂, and divide all partial widths by their SM
values:

ρ̂≡ m̂2
W

m̂2
Z

2

x̂
ð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − x̂

p
Þ; ð27aÞ

r̂ZνLν̄L ≡
24πffiffiffi
2

p
ĜFm̂3

Z

Γ̂ZνLν̄L ; ð27bÞ

r̂ZeLēL ≡
24πffiffiffi

2
p

ĜFm̂3
Zð1 − x̂Þ Γ̂ZeLēL ; ð27cÞ

r̂Zeē ≡ 24πffiffiffi
2

p
ĜFm̂3

Zð1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − x̂

p Þ2 Γ̂Zeē; ð27dÞ

where we have introduced the convenient combination

7Throughout this paper, we neglect the lepton masses in Z
decay widths.

8Discussions of the strengths and weaknesses of the two
schemes can be found in Ref. [46].
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x̂≡ 2
ffiffiffi
2

p
πα̂

ĜFm̂2
Z

; with x̂SM ¼ s22θ: ð28Þ

The four observables in Eqs. (27a)–(27d) are unity in SM, but are modified in SMEFT. Because we are only interested in the
corrections from SMEFT at the dim-6 level, we only need to keep up to the linear terms in the Wilson coefficients Ci (see
Table II for definitions of Warsaw basis operators). Assuming universality among fermion generations, we obtain

ρ̂ ¼ 1þ v2

c2θ

�
−2s2θ

�
cθ
sθ

CHWB þ Cð3Þ
Hl

�
þ 1

2
s2θC12 −

1

2
c2θCHD

�
; ð29aÞ

r̂ZνL ν̄L ¼ 1þ v2
�
1

2
C12 −

1

2
CHD − 2Cð1Þ

Hl

�
; ð29bÞ

r̂ZeLēL ¼ 1þ v2

c22θ

�
−4s2θ

�
cθ
sθ

CHWB þ Cð3Þ
Hl

�
þ 1

2
C12 −

1

2
CHD þ 2c2θC

ð1Þ
Hl

�
; ð29cÞ

r̂Zeē ¼ 1þ v2

c2θ

�
2

�
cθ
sθ

CHWB þ Cð3Þ
Hl

�
−
1

2
C12 þ

1

2
CHD −

c2θ
s2θ

CHe

�
: ð29dÞ

More details of deriving these results are explained in Appendix A. We have checked that these results agree with Ref. [54]
(see also Refs. [53,55]). Note that our expression for the Veltman ρ̂ in Eq. (29a) reduces to the Peskin-Takeuchi expression

in Eq. (1b) in the special case of oblique corrections only where Cð3Þ
Hl ¼ C12 ¼ 0, upon identifying9

αS ¼ 2v2s2θCHWB; ð30aÞ

αT ¼ −
1

2
v2CHD; ð30bÞ

αU ¼ 0: ð30cÞ

On the other hand, Eqs. (29a)–(29d) hold for general SMEFT in the Warsaw basis. In addition, these results apply to
SMEFT and νSMEFT alike, since we did not consider observables involving right-handed neutrinos.10

C. Constructing T l for ðνÞSMEFT to replace Peskin-Takeuchi T

In order to work out a replacement of the T parameter in the ðνÞSMEFT framework that serves to identify hard UV
custodial symmetry violation, we rewrite the results in Eqs. (29a)–(29d) into our custodial basis operators given in Table III.
This is straightforward, utilizing the translation relations provided in Table VI:

ρ̂ ¼ 1þ v2

c2θ

�
2s2θ

�
2cθ
sθ

aHWB − að3ÞHl

�
þ 1

2
s2θa12 − 2c2θaHD

�
; ð31aÞ

r̂ZνL ν̄L ¼ 1þ v2
�
1

2
a12 − 2aHD þ 2að1ÞHl

�
; ð31bÞ

r̂ZeLēL ¼ 1þ v2

c22θ

�
4s2θ

�
2cθ
sθ

aHWB − að3ÞHl

�
þ 1

2
a12 − 2aHD − 2c2θa

ð1Þ
Hl

�
; ð31cÞ

9Note that S, T, U are already linear order in the Wilson coefficients, so the further difference between α̂SM and α̂ in their
accompanying coefficients is beyond our SMEFT order. For this reason, we simply write the multiplying factor as α. The same holds
for our generalization T to be presented below.

10In principle, one could also include the partial width Γ̂ZνRνR in νSMEFT. However, we cannot construct a convenient ratio r̂ZνRνR ,
because Γ̂ZνRνR vanishes in νSM. Furthermore, the existence of this partial width also relies on assuming that the mass of the right-
handed neutrino is below the electroweak scale.
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r̂Zeē ¼ 1þ v2

c2θ

�
−2

�
2cθ
sθ

aHWB − að3ÞHl

�
−
1

2
a12 þ 2aHD þ c2θ

s2θ
ðað1ÞþHlR

− að1Þ−HlR
− að3ÞþHlR

þ að3Þ−HlR
Þ
�
: ð31dÞ

In the absence of custodial violation, these observables become

ρ̂ − 1 ⟶
v2

c2θ

�
2s2θ

�
2cθ
sθ

aHWB − að3ÞHl

�
þ 1

2
s2θa12

�
; ð32aÞ

r̂ZνL ν̄L − 1 → v2
�
1

2
a12

�
; ð32bÞ

r̂ZeLēL − 1 →
v2

c22θ

�
4s2θ

�
2cθ
sθ

aHWB − að3ÞHl

�
þ 1

2
a12

�
; ð32cÞ

r̂Zeē − 1 →
v2

c2θ

�
−2

�
2cθ
sθ

aHWB − að3ÞHl

�
−
1

2
a12 −

c2θ
s2θ

að3ÞþHlR

�
: ð32dÞ

While none of Eqs. (32a)–(32d) vanish in the custodially symmetric limit, the first three observables are governed by only
two independent combinations of (custodial-symmetric) Wilson coefficients. Therefore, it is easy to identify the following
linear combination that vanishes when there is no custodial violation:

ðρ̂ − 1Þ þ 1

2
ðr̂ZνL ν̄L − 1Þ − 1

2
c2θðr̂ZeLēL − 1Þ → 0: ð33Þ

Therefore, this combined observable can serve as an indicator of our custodial symmetry/violation. Going back to the
general ðνÞSMEFT case where custodial violation is present, we see from Eqs. (29a)–(29d) and (31a)–(31d) that this
combined observable is given by

ðρ̂ − 1Þ þ 1

2
ðr̂ZνLν̄L − 1Þ − 1

2
c2θðr̂ZeLēL − 1Þ ¼ −

1

2
v2½CHD þ 4Cð1Þ

Hl �

¼ −2v2½aHD − að1ÞHl �≡ αT l: ð34Þ

We hence define the Wilson coefficients combination in the
second line as αT l—a generalization of the Peskin-
Takeuchi T parameter that is valid for general
ðνÞSMEFT (written in the appropriate basis, i.e., Warsaw
or our custodial basis). Clearly, in the special case of just

oblique corrections, Cð1Þ
Hl ¼ 0, our αT l reduces back

to Eq. (30b).
We see from the above that if there is no custodial

violation, aHD ¼ að1ÞHl ¼ 0, then T l ¼ 0. However, the
converse is not true. Custodial violation can conspire to
yield a vanishingT l. This is a limitation of our example set
of observables chosen in Eq. (24). As we will explain in
Sec. IV D, adding more observables does not resolve this
issue until we move beyond 2 → 2 fermion experiments.
Our generalization above is named T l and not just T .

This is because, in the presence of nonoblique corrections,
one can in fact construct different generalizations of the T
parameter with different flavors of fermions. Our construc-
tion above used lepton partial widths of the Z boson, and

hence the name T l. We will discuss quark generalizations
T q and T qR in Appendix B.

D. The role of RPI in SMEFT

The first three observables in Eqs. (32a)–(32d) depend
on three custodial-symmetric Wilson coefficients aHWB,

að3ÞHl , and a12, so in general one would not expect a linear
relation among them like Eq. (33). From this point of view,
it seems that we were lucky to have the two Wilson

coefficients aHWB and að3ÞHl feeding into Eqs. (32a)–(32d)
only as a single linear combination,

�
2cθ
sθ

aHWB − að3ÞHl

�
¼ −

�
cθ
sθ

CHWB þ Cð3Þ
Hl

�
: ð35Þ

In fact, this grouping was inevitable due to an important
property of the observables that we consider: the RPI when
restricting to observables that only involve 2 → 2 fermion
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experiments [46]. Observables in 2 → 2 fermion experi-
ments do not receive contributions from the following two
operators outside the Warsaw basis:

ig2ðDμHÞ†τaðDνHÞWa
μν; ð36aÞ

ig1ðDμHÞ†ðDνHÞBμν: ð36bÞ

These two operators are equivalent to two linear combi-
nations of Warsaw basis operators, which are hence two
free directions that one can shift the Warsaw basis Wilson
coefficients without affecting the 2 → 2 fermion observ-
ables. These are known as RPI shifts in SMEFT [46].
In terms of the Wilson coefficients relevant for

Eqs. (29a)–(29d), these RPI shifts are

�CHWB

Cð3Þ
Hl

�
→

�CHWB

Cð3Þ
Hl

�
þ ϵW

�− tan θ

1

�
; ð37aÞ

0
BBB@

CHWB

CHD

Cð1Þ
Hl

CHe

1
CCCA →

0
BBB@

CHWB

CHD

Cð1Þ
Hl

CHe

1
CCCAþ ϵB

0
BBB@

cot θ

−4
1

2

1
CCCA; ð37bÞ

where ϵW and ϵB are arbitrary coefficients. The first shift
above is especially strong, as there are only two Wilson
coefficients involved. Staring at Eq. (37a), one can see that

the only RPI combination ofCHWB andC
ð3Þ
Hl is what appears

in Eq. (35). This explains why each of our observable’s
dependence on CHWB in Eqs. (29a)–(29d) arises as this RPI
combination.
Of course, one can also check that each of our observ-

able’s expression in Eqs. (29a)–(29d) satisfies the second
RPI above [Eq. (37b)] as well. In fact, if one were to solve
the six unknown Wilson coefficients in Eqs. (29a)–(29d)
from the four equations given measured values of the four
observables, one would find precisely Eqs. (37a)–(37b) as
the two undetermined directions. This means that our
example set of observables chosen in Eq. (24) saturates
the resolving ability of 2 → 2 lepton observables; no
undetermined directions remain beyond the RPI shifts.
Therefore, adding more 2 → 2 fermion observables to
Eqs. (29a)–(29d), such as W decay widths, would not help
pin down the Wilson coefficients.
Finally, we emphasize that our T l is also an RPI

combination, because it is constructed in Eq. (34) with
RPI observables. This can be readily checked against
Eqs. (37a)–(37b). On the other hand, T l is not the only
SMEFT RPI generalization of the Peskin-Takeuchi T
parameter; there are other T f that can be constructed with
hadronic widths of the Z boson, as we will show in
Appendix B.

E. Experimental measurements of our observables

We have presented our results in terms of the observables

fρ̂; Γ̂ZνL ν̄L ; Γ̂ZeLēL ; Γ̂Zeēg ð38Þ

and an additional set of hadronic observables in
Appendix B. Let us now consider how to extract these
observables from experimental measurements:
(1) We need the accurately measured α̂, ĜF, m̂2

Z as basic
inputs.

(2) The observable ρ̂ requires a measurement of m̂2
W .

(3) The widths fΓ̂ZeLēL ; Γ̂Zeēg are not directly measured
in practice. Instead, we extract them from the
measurements on the total partial width Γ̂ZeLēL þ
Γ̂Zeē and the forward-backward asymmetry Â0;e

FB.
Direct measurements of the angular distributions
of eþe− → eþe− on the Z resonance can determine
Â0;e
FB [1].

(4) The partial width into electrons Γ̂ZeLēL þ Γ̂Zeē is not
directly measured either. Instead, one uses measure-
ments of the total rate eþe− → eþe− on the Z
resonance as well as the total width of the Z boson,
ΓZ, determined by separate measurements scanning
the line shape of eþe− → hadrons [1].

(5) The partial width of Z into neutrinos must be
inferred by subtracting the measured contributions
of the Z partial widths from the measured total width
ΓZ [1]. For this presentation, we assume flavor
universality and neglect the masses of the quarks
and leptons. The Z partial width into neutrinos is

3Γ̂ZνLν̄L ¼ ΓZ − Γ̂Zll − Γ̂Zqq; ð39Þ

where we emphasize that the observable we have
used throughout this paper, Γ̂ZνLν̄L , is the width into
just one generation of neutrinos, and Γ̂Zll; Γ̂Zqq are
the measured decay widths of Z into leptons and
hadrons, respectively.

We are finally in a position to evaluate Eq. (34) using
experimental data on our observables as determined above.
If one were to evaluate this expression using experimental
measurements matched to just the tree-level relations, one
would obtain a sizable numerical difference from zero. This
is not surprising, since the Weinberg angle determined from
the Veltman ρ̂ differs substantially from the Weinberg angle
determined from the charged lepton asymmetries [20]. The
main source of the discrepancy is the one-loop contribution
from the top quark to the W and Z self-energies. Including
this loop contribution to the Veltman ρ̂ parameter will cause
the numerical evaluation of T l to be nearly 0 within
experimental errors. The more important quantity is thus
the experimental error, i.e., sensitivity, on T l. This is
determined by including the errors on all of the experimental
inputs ρ̂, r̂ZνL ν̄L , and r̂ZeLēL . The least well-measured
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observable is r̂ZeLēL , and thus the experimental error on this
quantity dominates the constraint on the custodial-violating

contribution −2v2½aHD − að1ÞHl �. We find

−2v2½aHD − að1ÞHl � ≃ 0� 0.003; ð40Þ

which implies, in the absence of an accidental cancellation,

ΛCV ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jaHD − að1ÞHl j

q ≃ 3.1 TeV: ð41Þ

This is much smaller than the scale that would be deduced by
doing a global fit to S, T parameters under the assumption
that the new physics contributes only to oblique corrections
ΛPDG
CV ≃ 6.6 TeV [20].11 This simple analysis illustrates that

“maximal” custodial violation (tree-level contributions to

aHD − að1ÞHl ) is allowed by precision electroweak data with a
considerably lower scale of new physics than would be
deduced under the assumption of oblique-only contributions.

V. CUSTODIAL-VIOLATING COMPLICATIONS
FROM EOM REDUNDANCIES

There is an intuitive but crucial assumption underlying
our analysis in Sec. IV, as was established in Sec. III:

(i) When the UV sector is custodial symmetric, any
EFT operators generated by matching would pre-
serve the identified custodial SUð2ÞR in the limit
g1 → 0, and therefore all of the custodial-violating
operators in our custodial basis (Table III) are
absent.

Interestingly, this is not completely true. Only the first half
of the above statement is true, while the second half can be
invalidated by the EOM redundancies in ðνÞSMEFT
After integrating out a custodial-symmetric UV sector, the

resulted EFToperators have to be custodial SUð2ÞR-singlets
(in the limit g1 → 0), but may lie outside of an arbitrarily
chosen operator basis. In order to present the entireEFTin the
Warsaw/custodial basis, one may need to apply redundancy
relations to trade outside operators with linear combinations
of Warsaw/custodial basis operators. While IBP and Fierz
redundancies do not change the SUð2ÞR-preserving/-
violating nature of operators, the EOM redundancies may
mix operators that preserve the custodial SUð2ÞR with those
that do not, because ðνÞSMYukawa couplings break it. As a
result, the linear combinations traded from outside operators
may contain custodial-violating operators in our custodial
basis in Table III.
To better illustrate this issue, we take a closer look at a

specific example that we will actually encounter later in
some of our example UV theories in Sec. VI. Consider the

operator QR ≡ jHj2jDHj2. Upon taking the limit g1 → 0,
this operator preserves the global symmetry SUð2ÞRH.
Therefore, according to our discussions in Sec. III, it can
be possibly generated by custodial-symmetric UV sectors.
For example, it is indeed generated at tree level by integrating
out a heavyW0

L gauge boson, aswewill see in Sec. VI B. The
problem, however, is thatQR does not belong to theWarsaw/
custodial basis; we need to use IBP and Higgs EOM
redundancy relations to trade it into Warsaw/custodial basis
operators. From the νSM Lagrangian given in Eqs. (3) and
(4), we obtain the Higgs EOM relation

H†D2HþH:c:

¼ 2λv2jHj2 − 4λjHj4
− ðYuq̄ H̃ uþ Ydq̄Hdþ Yνl̄ H̃ νþ Yel̄HeþH:c:Þ: ð42Þ

Note that in order to make the expression compact, we have
multiplied the EOM by H† from the left and also added its
Hermitian conjugate. Combining this with IBP, we can
convert QR into

QR ¼ jHj2jDHj2

≡ 2λQH þ 1

2
QH□ þ 1

2
QY − λv2jHj4; ð43Þ

where we have defined the operator combination

QY ≡ YuQuH þ YdQdH þ YνQνH þ YeQeH þ H:c:

¼ 1

4
½ðYu þ YdÞOþ

qH þ ðYu − YdÞO−
qH

þ ðYν þ YeÞOþ
lH þ ðYν − YeÞO−

lH� þ H:c: ð44Þ

Due to the Yukawa mismatch Yu ≠ Yd and Yν ≠ Ye, this
combination contains custodial-violating operatorsO−

qH and
O−

lH.We see that once traded into theWarsaw/custodial basis,
the SUð2ÞRH-preserving operator QR corresponds to a
mixture of custodial-preserving and -violating operators in
our custodial basis. This is a consequence of applying Higgs
EOM redundancies relations in Eq. (42), which breaks
SUð2ÞRH.

A. Robustness of our observables and T l parameter

Our observable results given in Eqs. (32a)–(32d)
assumed the presence of only custodial-preserving oper-
ators in our custodial basis. Now, given that custodial-
violating operators could also appear from EOM redun-
dancies, our analysis in Sec. IV is potentially incomplete. In
this section, we show that this EOM subtlety does not affect
our results in Sec. IV, provided we restrict to tree-level
matching.
As was originally worked out in Refs. [47,48] and

recently emphasized and generalized in Ref. [49], only a
small subset of dim-6 SMEFT operators can be generated

11The number was obtained by taking the upper and lower
bounds on T from the 90% S-T ellipse presented in Ref. [20].
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by tree-level matching.12 In particular, dim-6 operators with
field strengths Xμν cannot be generated at tree level. This
immediately removes the EOMs for gluons, the W boson,
and the B boson from consideration. So the only potentially
problematic EOMs are those for the Higgs H and the
fermions ψ . Next, let us find all of the νSMEFT dim-6
custodial SUð2ÞR-singlet operators containing an EOM
factor of H or ψ, i.e., containing D2H, Dψ , or Dψ̄. Using
the Hilbert series technique [32–36], with these EOM
redundancy relations relaxed,13 we find that there are 38
additional real custodial SUð2ÞR singlets outside of the
Warsaw basis. They can be divided into six classes
according to the field content, as listed in Table I.
When restricted to tree-level matching, again due to the

argument given in Refs. [47–49], only the first two classes
in Table I, i.e.,H4D2 and ψ̄ψH2D, can be generated. Let us
examine what custodial-violating operators in our Table III
can be obtained from trading these two classes of operators
into the Warsaw/custodial basis. They contain nine oper-
ators, which are nothing but the νSMEFT “kinetic terms”
multiplied by jHj2:

jHj2jDHj2; ð45aÞ

jHj2ψ̄iDψ þ H:c:; with ψ ¼ q; l; qR; lR: ð45bÞ

We already analyzed the first operator above, and showed
the result of transforming it into the Warsaw basis through
EOM in Eqs. (43) and (44). The second operator trans-
formed into the Warsaw basis becomes

jHj2q̄iDq ¼ YuQuH þ YdQdH; for ψ ¼ q; ð46Þ

and similarly for the others. We see that the custodial-
violating operators obtained through this procedure are all
in “class 5” of Table II: ψ̄ψH3. However, it is clear from
Eqs. (29a)–(29d) that none of these operators would feed
into the observables discussed in Sec. IV, even when they
are present.14 Therefore, our results in Eqs. (32a)–(32d)
stand, and hence the subsequent analysis presented in

Sec. IV, provided that we limit ourselves to tree-
level matching.15 For example, let us rearrange the EOM
relation in Eq. (43) as

QY ¼ 2QR − 4λQH −QH□ þ 2λv2jHj4:

When restricted to Z-pole observables and also neglecting
the fermion masses as in Sec. IV, the lhs does not
contribute, and so neither does the rhs. Therefore, the
combination on the rhs is a free direction that can be viewed
as a new set of RPI shifts among SUð2ÞR singlets. In this
language, when the outside operator QR is generated,
one can use this new RPI shift to trade it for other
SUð2ÞR singlets, which will then be in our Warsaw/
custodial basis.

VI. APPLICATION TO UV THEORIES WITH
CUSTODIAL SYMMETRY/VIOLATION

In this section, we examine several UV theories and
demonstrate that our T l parameter is sensitive to (hard)
custodial symmetry/violation. We consider in Sec. VI A a
real triplet scalar; in Sec. VI B a heavyW0

L from embedding
SUð2ÞL into SUð2ÞA × SUð2ÞB; in Sec. VI C a heavy Z0
from a spontaneously broken Uð1ÞB−L theory; in Sec. VI D
heavyW0’s and Z0’s from embedding the electroweak group
into SUð2ÞL × SUð2ÞR ×Uð1ÞB−L; and finally in Sec. VI E
two heavy vector-like fermions transforming as SUð2ÞL
singlets. Several highlights of the lessons that we learn
from these UV examples are as follows:
(1) Our T l parameter works perfectly for all of these

examples. When the UV sector is custodial sym-
metric or violating, our T l is zero or nonzero
accordingly.

(2) The heavyW0
L example in Sec. VI B reminds us that

the Veltman ρ̂ can possibly deviate from unity in the
case of custodial-symmetric UV physics.

(3) The vector-like fermions theory discussed in
Sec. VI E serves as a striking example that our new
T l parameter captures nonoblique custodial violation
of the UV theory while, unsurprisingly, the Peskin-
Takeuchi T parameter fails to do so.

A. Triplet scalar extension

The first UV example we consider is the well-studied
SM extension by a real SUð2ÞL-triplet scalar ϕa; see, e.g.,
Refs. [56–61]. The most general renormalizable Lagrangian
for this model is

TABLE I. Custodial SUð2ÞR invariants outside of the Warsaw
basis, which could yield custodial-violating operators in the
Warsaw basis upon using H and ψ EOM redundancies.

Total H4D2 ψ̄ψH2D H2D4 ψ̄ψD3 ψ̄ψXD ψ̄ψHD2

38 1 8 1 4 8 16

12Note that this argument is not limited to the Warsaw basis
operator set.

13This can be achieved by taking H, ψ , and ψ̄ (and their
descendants) as “long representations” of the conformal group, as
opposed to “short representations.” See Ref. [36] for details.

14Recall that we have neglected the fermion masses in the
decay widths.

15Amusingly, the argument here can also be recast into a (new)
reparametrization-invariance relation among SUð2ÞR-singlet op-
erators, in the same spirit as that in Ref. [46] (see our discussion
in Sec. IV D).
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LUV ¼ LSM þ 1

2
ðDμϕaÞðDμϕ

aÞ − 1

2
M2ϕaϕa − AH†taHϕa − κjHj2ϕaϕa − λϕðϕaϕaÞ2: ð47Þ

ThisUV theory has (hard) custodial violation due to the interaction termH†taHϕa. It iswell known that this custodial violation
shows up already at tree level in the EFTİn what follows below, we check that our new T l parameter captures this effect.
Integrating out ϕa at tree level, we obtain a SMEFT up to dim-6,

LSMEFT ¼ LSM þ A2

8M2
jHj4 − κA2

4M4
QH −

A2

2M4

�
1

4
QH□ þQHD −QR

�

¼ LSM þ A2

8M2

�
1 −

4λv2

M2

�
jHj4 − A2

4M4
ðκ − 4λÞQH −

A2

2M4

�
−
1

4
QH□ þQHD −

1

2
QY

�
: ð48Þ

As expected, the custodial-violating operator QHD is
generated. We also see the appearance of the operator
QR which is outside of theWarsaw basis. In the second line,
we have traded it into combinations of Warsaw basis
operators using Eq. (43), and hence obtained an additional
custodial-violating operator QY [see Eq. (44) for the
definition]. Reading off the Warsaw basis Wilson coeffi-
cients Ci from the above and translating to our custodial
basis ai using Table V, we obtain

aH ¼ −
A2

32M4
ðκ − 4λÞ; ð49aÞ

aH□ ¼ A2

4M4
; ð49bÞ

aHD ¼ −
A2

8M4
; ð49cÞ

a�lH ¼ A2

16M4
ðYν � YeÞ; ð49dÞ

a�qH ¼ A2

16M4
ðYu � YdÞ: ð49eÞ

Note that in addition to the aHD, the “class 5” (see Table III)
custodial-violating operators a−lH and a−qH also show up due
to the EOM subtlety discussed in Sec. V, but as explained in
Sec. VA, they do not invalidate our analysis.
Now using our definition in Eq. (34), we obtain

αT l ¼ −2v2½aHD − að1ÞHl � ¼
v2A2

4M4
≠ 0: ð50Þ

We see that our T l parameter captures the hard custodial
violation. Since there is no vertex correction in this example
[see the first line of Eq. (48)], ourT l reduces to the Peskin-
Takeuchi T parameter as explained before. So they work
equally well in this case.

B. A heavy W 0
L gauge boson

In this section, we consider a UV theory of embedding
the SUð2ÞL of the SM into SUð2ÞA × SUð2ÞB. Specifically,
the gauge sector of the UV Lagrangian is

LUV ⊃ −
1

4
Wa

AμνW
aμν
A −

1

4
Wa

BμνW
aμν
B

þ 1

2
tr½ðDμΦÞ†ðDμΦÞ� − VΦ; ð51Þ

where the heavy scalar field Φ is a 2 × 2 matrix that
transforms as a bifundamental under ðUA;UBÞ ∈
SUð2ÞA × SUð2ÞB:

Φ → UAΦU†
B: ð52Þ

Therefore, the concrete form of its covariant derivative is

DμΦ ¼ ∂μΦ − igAWa
Aμt

aΦþ igBΦWa
Bμt

a; ð53Þ

where ta ¼ 1
2
σa are the SUð2Þ generators in the funda-

mental representation.
The symmetry SUð2ÞA × SUð2ÞB is spontaneously bro-

ken by the VEV of the heavy scalar field:

Φ ⊃
vΦffiffiffi
2

p
�
1 0

0 1

�
: ð54Þ

The unbroken group is the diagonal SUð2Þ formed by the
generators taA þ taB, which we identify as our SUð2ÞL group
in the SM. The corresponding gauge boson is theW boson.
For the broken generators, the corresponding gauge boson
W0

L acquires mass from vΦ:

1

2
tr½ðDμΦÞ†ðDμΦÞ�

⊃
1

8
v2ΦðgAWaμ

A − gBW
aμ
B ÞðgAWa

Aμ − gBWa
BμÞ

¼ 1

8
v2Φðg2A þ g2BÞW0

L
aμW0

L
a
μ: ð55Þ
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We see that m2
W0

L
¼ 1

4
ðg2A þ g2BÞv2Φ, and

W0
L
a
μ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2A þ g2B
p ðgAWa

Aμ − gBWa
BμÞ; ð56aÞ

Wa
μ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2A þ g2B
p ðgBWa

Aμ þ gAWa
BμÞ: ð56bÞ

With the above rotation, we can rewrite the general
covariant derivative as

Dμ ¼ ∂μ − igAWa
Aμt

a
A − igBWa

Bμt
a
B

¼ ∂μ − ig2Wa
μðtaA þ taBÞ

− iW0
L
a
μ

�
g2Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2A þ g2B
p taA −

g2Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2A þ g2B

p taB

�
; ð57Þ

with the SM gauge coupling g2 ¼ gAgBffiffiffiffiffiffiffiffiffiffi
g2Aþg2B

p identified.

For the UV interactions between the gauge sector in
Eq. (51) and the SM fields, we assume thatWA plays the role
of W before the symmetry breaking, namely, that
the SM fields couple to WA exactly the way they couple
to theW boson in SM, and do not couple toWB at all.16 This
means that for nontrivially SUð2ÞL-charged SM fields,
taA ≠ 0 but taB ¼ 0. From Eq. (57), we see that after the
symmetry breaking, the SM fields couple to bothW andW0

L.
In the following, we will match this UV theory with

SMEFT by integrating out the heavy W0
L gauge boson at

the tree level. As is clear from the setup, the UV interactions
in this example respect the symmetry SUð2ÞRH [as well as
the other SUð2ÞR symmetries discussed in Sec. II], and
hence are custodial symmetric by our definition. We
therefore expect a vanishing T l in the resulting EFT.
Up to linear power in W0

L, the UV interaction is

LUV ⊃
g2Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2A þ g2B
p W0

L
a
μJ

aμ
W ; ð58Þ

where JaμW denotes the SM SUð2ÞL current:

JaWμ ¼
1

2

�
H†iD

↔a
SM;μH þ

X
ψ

ψ̄ γμτ
aψ

�
: ð59Þ

Integrating out W0
L at tree level, we obtain a SMEFT up to

dim-6 as

LSMEFT ¼ −
g4A

g2A þ g2B

1

2m2
W0

L

JaWμJ
aμ
W

¼ −
2c4A
v2Φ

JaWμJ
aμ
W ; ð60Þ

where we have defined the mixing angle cA ≡ gAffiffiffiffiffiffiffiffiffiffi
g2Aþg2B

p .

Clearly, this EFT Lagrangian preserves SUð2ÞRH. Plugging
in Eq. (59), we obtain

LSMEFT ¼ −
c4A
v2Φ

�
1

2
QR þ 1

8
QH□ þQð3Þ

Hl þQð3Þ
Hq þ

1

2
Qll þ

1

2
Qð3Þ

qq þQð3Þ
lq

�

¼ −
c4A
v2Φ

�
λQH þ 3

8
QH□ þ 1

4
ðYuQuH þ YdQdH þ YνQνH þ YeQeH þ H:c:Þ

þQð3Þ
Hl þQð3Þ

Hq þ
1

2
Qll þ

1

2
Qð3Þ

qq þQð3Þ
lq

�
: ð61Þ

From the first line above, we see that all of the effective
operators are SUð2ÞRH preserving, as expected from
Eq. (60). However, in the second line, the SUð2ÞRH-
breaking operator QY [see Eq. (44) for the definition]
shows up, due to trading QR for operators in the Warsaw
basis using Eq. (43). Reading off the Warsaw basis Wilson
coefficients Ci from the above and translating to our
custodial basis ai using Table V, we obtain

8<
:

aH ¼ − c4A
v2Φ

1
8
λ

aH□ ¼ − c4A
v2Φ

3
8

8<
:

a�lH ¼ − c4A
v2Φ

1
16
ðYν � YeÞ;

a�qH ¼ − c4A
v2Φ

1
16
ðYu � YdÞ;

ð62aÞ

að3ÞHl ¼ að3ÞHq ¼ 2all ¼ 2að3Þqq ¼ að3Þlq ¼ −
c4A
v2Φ

: ð62bÞ

Again, we find the appearance of the “class 5” (see
Table III) custodial-violating operators a−lH and a−qH, as
expected from the EOM subtlety discussed in Sec. V.
Nevertheless, they do not invalidate our analysis because
they do not feed into our observables discussed in Sec. IV,
as we explained in Sec. VA.

16While this is the simplest coupling scheme, it is also possible to
split the left-handed fermion generations between coupling toWA
and coupling to WB. In this case, after the SUð2ÞA × SUð2ÞB →
SUð2ÞL breaking all left-handed fermions will couple as usual to
WL but the interactions with W0

L will be flavor dependent.
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From the Wilson coefficients above and Eq. (34), it is
straightforward to see that T l vanishes,

αT l ¼ −2v2½aHD − að1ÞHl � ¼ 0; ð63Þ

which demonstrates the consistency with the UV physics
being custodial symmetric.
As a side note, this example also reminds us that the

Veltman ρ̂ can deviate from 1 in the presence of custodial-
symmetric UV physics.17 To see this point, we can compute
ρ̂ with Eqs. (31a)–(31d). However, we first need to extract
the a12 [defined in Eq. (23)] from the all result above. To do
so, we restore the generation indices in Qll from Eq. (60):

LSMEFT ⊃ −
c4A
2v2Φ

X3
p;r¼1

ðl̄pγμτalpÞðl̄rγμτalrÞ: ð64Þ

To make this into the form of Q ll
prst
, we need to also restore

the SUð2ÞL indices being contracted, and use the group
identity:

τaijτ
a
kl ¼ 4

�
1

2
δilδjk −

1

4
δijδkl

�
: ð65Þ

Substituting this in, we get

LSMEFT ⊃ −
c4A
2v2Φ

X3
p;r¼1

ðl̄ipγμτaijljpÞðl̄krγμτaklllrÞ

¼ −
c4A
2v2Φ

X3
p;r¼1

½2ðl̄ipγμljpÞðl̄jrγμlirÞ− ðl̄ipγμlipÞðl̄jrγμljrÞ�

¼ −
c4A
2v2Φ

X3
p;r¼1

½2ðl̄pγμlrÞðl̄rγμlpÞ− ðl̄pγμlpÞðl̄rγμlrÞ�:

ð66Þ

To obtain the last line above, we have used the Fierz
identity for the first term in the square brackets, and then
suppressed the SUð2ÞL indices as usual. Now we can read
off the Wilson coefficient with generation indices:

a ll
prst

¼ −
c4A
2v2Φ

ð2δptδrs − δprδstÞ: ð67Þ

Now from Eq. (23) we get

a12 ¼ a ll
1221

þ a ll
2112

¼ −2
c4A
v2Φ

: ð68Þ

Plugging all of the relevant Wilson coefficients into
Eqs. (31a)–(31d), we obtain ρ̂ as

ρ̂ ¼ 1þ v2

c2θ

�
2s2θ

�
2cθ
sθ

aHWB − að3ÞHl

�
þ 1

2
s2θa12 − 2c2θaHD

�

¼ 1þ s2θ
c2θ

c4Av
2

v2Φ
≠ 1: ð69Þ

Note that ρ̂ ≠ 1 in this example is from the nonoblique

corrections að3ÞHl and a12. On the other hand,
aHD ¼ aHWB ¼ 0, so a naive implementation of
Eqs. (1b) and (30a)–(30c) would misleadingly predict that
the Veltman ρ̂ ¼ 1. This highlights one limitation of the
oblique framework (although this is not about custodial
symmetry).
In fact, the UV theory in this example is actually a

“universal theory,” in the sense that one can find an operator
basis (different from the Warsaw/custodial basis) in which
all of the effective operators are oblique corrections.
Concretely, the SMEFT Lagrangian we obtained in
Eq. (60) can be fully written into a single effective operator
ðDμWa

μνÞ2 by using the SM W boson EOM, which is then
obviously oblique (only contributing to the two-point
function of the W boson). However, even in the case of
a universal theory, finding the desired basis and working
out the oblique parameters in that basis requires additional
effort, and must again be done on a case-by-case basis. On
the other hand, restricting to the Warsaw basis and
accommodating the nonoblique corrections provides a
more systematic approach.

C. A heavy Z0 associated with the Uð1ÞB−L symmetry

In this section, we consider a UV model with a heavy Z0
gauge boson, associated with theUð1ÞB−L symmetry in SM
(see, e.g., Ref. [62]). This classical symmetry can be broken
at the quantum level through triangle anomalies. To
consistently gauge the symmetry, one has to ensure that
the triangle anomaly contributions from different fermion
species are canceled. This can be simply achieved by
introducing three SM-singlet right-handed neutrinos ν, a
requirement that is satisfied automatically by νSM
and νSMEFT.
Assuming that this Uð1ÞB−L gauge boson Z0 couples to

the B − L current jB−L ≡ jB − jL through a coupling 1
2
gZ,

our UV Lagrangian is18

17This issue is unfortunately quite confusing in Ref. [20],
which suggests that ρ̂ ≠ 1 implies custodial symmetry violation,
which is not correct in general.

18In principle, our Uð1ÞB−L gauge boson Z0
B−L can also mix

with the hypercharge gauge boson B through a coupling
1
2
ϵBμνZ0

μν. We set this coupling to zero for simplicity in this
UV theory example. This is legitimate in our analysis as we only
focus on the tree-level matching and neglect radiative effects.
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LUV ¼ LSM −
1

4
Z0
μνZ0μν þ 1

2
M2Z0

μZ0μ

þ gZZ0
μ

X
ψ¼q;u;d;l;ν;e

ψ̄γμy0ψψ : ð70Þ

Here the specific values of the charge y0ψ ¼ 1
2
ðB − LÞ are

y0q ¼ y0u ¼ y0d ¼
1

6
≡ y01 for quarks; ð71aÞ

y0l ¼ y0ν ¼ y0e ¼ −
1

2
≡ y02 for leptons: ð71bÞ

We have also assumed that the Z0 has a large mass M ≫ v.
This can be acquired through the Higgsing from a heavy
scalar in the UV which only couples to Z0, or via a
Stueckelberg mechanism which allows M to be a free
parameter in the model.
This example is trivially custodial symmetric by our

definition, because the UV interactions do not involve the
SM Higgs, and hence the SUð2ÞRH symmetry is trivially
preserved. The νSMEFT side of the story is similarly
trivial. Only operators not involving the Higgs field can be
generated at the tree level (the four-fermion operators in
this case, as we will see); they are custodial-preserving
operators due to trivially respecting SUð2ÞRH. In particular,
no custodial-violating operators can be possibly generated
by this example, so we can already get T l ¼ 0 without
carrying out the matching calculation.
Nevertheless, this example is still interesting, because

apart from the custodial symmetry [which must involve
SUð2ÞRH; see Sec. II D], our custodial basis also helps
make manifest the operator structure under the isospin
symmetries SUð2ÞRqR and SUð2ÞRlR . The UV interactions

in Eq. (70) with the charges given in Eqs. (71a)–(71b)
clearly also preserve these two isospin symmetries. Below,
we will check that no isospin-violating operators will be
generated in the resulting νSMEFT.
Integrating out the Z0 at tree level, we obtain the

νSMEFT Lagrangian

LνSMEFT ¼ −
g2Z
2M2

�X
f

ψ̄γμy0ψψ
��X

f

ψ̄γμy0ψψ
�
; ð72Þ

where f ¼ fq; u; d; l; ν; eg. We see that only four-fermion
operators of the type ðL̄LÞðL̄LÞ, ðR̄RÞðR̄RÞ, and ðL̄LÞðR̄RÞ
are generated. In the Warsaw basis, the Wilson coefficients
can be summarized as

Cð1Þ
ud ¼Cð1Þ

qu ¼Cð1Þ
qd ¼2Cð1Þ

qq ¼2Cuu¼2Cdd¼−
g2Z
2M2

2ðy01Þ2;
ð73aÞ

Cνe ¼ Clν ¼ Cle ¼ 2Cll ¼ 2Cνν ¼ 2Cee ¼ −
g2Z
2M2

2ðy02Þ2;
ð73bÞ

Cð1Þ
lq ¼ Cνu ¼ Cνd ¼ Ceu ¼ Ced ¼ Clu ¼ Cld

¼ Cqν ¼ Cqe ¼ −
g2Z
2M2

2y01y
0
2: ð73cÞ

Transforming to our custodial basis defined in Table III
(again by applying the dictionary in Table V), we see that
the only nonzero Wilson coefficients are those preserving
both of the isospin symmetries SUð2ÞRqR × SUð2ÞRlR :

8>>><
>>>:

all ¼ − g2Z
2M2 ðy02Þ2

að1Þqq ¼ − g2Z
2M2 ðy01Þ2

að1Þlq ¼ − g2Z
2M2 2y01y

0
2

8>>><
>>>:

aþþ
lRlR

¼ − g2Z
2M2 ðy02Þ2

að1Þþþ
qRqR ¼ − g2Z

2M2 ðy01Þ2

að1Þþþ
lRqR

¼ − g2Z
2M2 2y01y

0
2

8>>>>>><
>>>>>>:

aþllR ¼ − g2Z
2M2 2ðy02Þ2

aþlqR ¼ − g2Z
2M2 2y01y

0
2

aþqlR ¼ − g2Z
2M2 2y01y

0
2

að1ÞþqqR ¼ − g2Z
2M2 2ðy01Þ2

ð74Þ

No isospin-violating operators in our Table III are gen-
erated, consistent with what we expected from the UV
physics.

D. Heavy W’s and Z’s from a UV theory
with SUð2ÞL × SUð2ÞR × Uð1ÞB−L

In this section, we consider a simple custodial-symmetric
UV embedding of the electroweak sector, by promoting
the electroweak gauge symmetry to SUð2ÞL × SUð2ÞR×

Uð1ÞB−L, which we hence refer to as the 2-2-1 model. The
covariant derivative is now

Dμ ¼ ∂μ − igWa
μta − igRRa

μtaR − igKy0Kμ; ð75Þ

where Ra
μ; Kμ are the gauge bosons and taR; y

0 are the
corresponding generators for SUð2ÞR and Uð1ÞB−L. Note
that the gauge coupling gR forces the three different SUð2ÞR
symmetries in νSM to be the same; in other words, it breaks
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them down to the diagonal subgroup of SUð2ÞRH×
SUð2ÞRqR × SUð2ÞRlR .
In order to break the enlarged symmetry SUð2ÞL ×

SUð2ÞR ×Uð1ÞB−L down to electroweak symmetry at
low energy, we introduce a new heavy scalar field Φ,
which is an SUð2ÞR doublet with y0Φ ¼ 1

2
and an SUð2ÞL

singlet. Upon acquiring a VEV,

Φ ⊃
1ffiffiffi
2

p
�

0

vϕ

�
; ð76Þ

it breaks SUð2ÞR ×Uð1ÞB−L to Uð1ÞY , with the hyper-
charge y ¼ t3R þ y0.19 In this example, the custodial sym-
metry is an exact symmetry respected by the UV theory at
the high energy scale. However, it is spontaneously broken
at the scale vϕ. Once we integrate out the heavy gauge
bosons and Φ, this vϕ gives rise to (all) the custodial-
violating effects in the resulting SMEFT, putting the
hypercharge part of the dim-4 custodial violations
and those at higher mass dimensions on the same footing.
This is in analogy with the case of minimal flavor
violation [63].20

The UV sector in this example is

LUV ⊃ −
1

4
Wa

μνWa;μν −
1

4
Ra
μνRa;μν −

1

4
KμνKμν

þ jDΦj2 − VΦ þ jDHj2 þ ψ̄iDψ : ð77Þ
Herewe have switched off any possible interactions between
Φ and H for simplicity, and hence focus on the effects of
integrating out the heavy gauge bosons. After the symmetry
breaking, we can identify the mass eigenstates of the gauge
bosons

ðRa
μ; KμÞ → ðR�

μ ; Xμ; BμÞ; ð78Þ
among which Bμ remains massless, but R�

μ and Xμ obtain
masses

m2
R ¼ 1

4
g2Rv

2
ϕ; ð79aÞ

m2
X ¼ 1

4
ðg2R þ g2KÞv2ϕ: ð79bÞ

We then integrate out these heavy gauge bosons (together
with the heavy scalar Φ) at tree level, and obtain the EFT
Lagrangian up to dim-6,

LEFT ¼ LSM þ g2R
2m2

R

�
ðiDμ

SMH̃
†ÞH þ

X
qR;lR

ψ̄ γμt−Rψ

��
H†ðiDSM;μH̃Þ −

X
qR;lR

ψ̄ γμt
þ
Rψ

�

−
g2R

2m2
Xc

2
R

�
c2R
2
ðH†iD

↔μ

SMHÞ þ
X
qR;lR

ψ̄ γμðt3R − s2RyÞψ
��

c2R
2
ðH†iD

↔

SM;μHÞ þ
X
qR;lR

ψ̄ γμðt3R − s2RyÞψ
�
: ð80Þ

Here the mixing angle is defined as usual

cR ¼ cos θR ≡ gRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ g2K

p ; ð81Þ

and the SM gauge coupling for hypercharge is recovered as

g21 ¼
g2Rg

2
K

g2R þ g2K
: ð82Þ

We see from the result in Eq. (80) that there are
generically custodial-violating operators, such as QHD
appearing in the following combinations:

½ðiDμ
SMH̃

†ÞH�½H†ðiDSM;μH̃Þ� ¼ QHD −QR; ð83Þ

ðH†iD
↔μ

SMHÞðH†iD
↔

SM;μHÞ ¼ QH□ þ 4QHD: ð84Þ

This is simply a reflection of the fact that the SUð2ÞR is
spontaneously broken by vϕ. Next, we carry out the
standard routine of expanding the EFT Lagrangian, trading
operators outside of our desired basis (such as QR above)
into the Warsaw basis, reading off the Wilson coefficients
Ci, and translating them into our custodial basis ai. The end
result contains a large set of Wilson coefficients. The
coefficients relevant for computing our observables in
Eqs. (31a)–(31d) are

aHD ¼ −
1

2
að1Þ−HlR

¼ 1

2v2ϕ
ð1 − c4RÞ; ð85aÞ

að1ÞHl ¼ að1ÞþHlR
¼ 1

v2ϕ
s2Rc

2
R; ð85bÞ

19The story is completely in parallel with how the SM HiggsH
breaks SUð2ÞL × Uð1ÞY to Uð1ÞEM, with electric charge
Q ¼ t3 þ y.

20Note that this example would not account for the Yukawa-
induced custodial violation in the SM.
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að3ÞþHlR
¼ 1

v2ϕ
: ð85cÞ

First we notice the appearance of að3ÞþHlR
. It is generated

because in the 2-2-1 model, the gauging of SUð2ÞR reduces
the three independent global SUð2ÞRH × SUð2ÞRqR ×
SUð2ÞRlR down to one single gauged SUð2ÞR. In fact,

að3ÞþHqR
and að3Þþþ

lRqR
are generated as well, but not listed above

as they do not enter into our observables.
Next, a nonzero aHD and að1ÞHl indeed means that the UV

theory violates custodial symmetry. Plugging Eqs. (85a)–
(85c) into Eq. (34), our T l parameter serves as a good
indicator of the custodial symmetry/violation:

αT l ¼ −2v2½aHD − að1ÞHl � ¼ −
v2

v2ϕ
s4R: ð86Þ

Clearly, T l is generically nonzero in the 2-2-1 model.
However, fixing g1 and recalling the relations between g1
and the primordial couplings gR, gK in Eqs. (81) and (82),
there are two interesting limits: gR ≫ gK and gR ≪ gK .
(1) In the limit gR ≫ gK , we have gK → g1, gR ≫ g1,

and sR → 0. Then, T l → 0 in this limit. More
specifically, the behavior of the custodial-violating

operators in T l are aHD; a
ð1Þ
Hl →

g2
1

v2ϕg
2
R
→ 0. They are

not only small but also proportional to the SM
hypercharge coupling g1. This limit is asymptoti-
cally custodial symmetric.

(2) In the limit of gR ≪ gK , we have gR → g1, gK ≫ g1,
and sR → 1. We see that αT l → − v2

v2ϕ
approaching

its maximum size allowed. More specifically, the

Wilson coefficient að1ÞHl →
g2
1

v2ϕg
2
K
→ 0, while aHD →

1
2v2ϕ

≠ 0. One may naively think that this limit ought

to work precisely as the Z0
B−L boson model dis-

cussed in Sec. VI C. However, this is not the case.
Although gR is small compared to gK , it has not been
completely switched off, and the EFT does not
necessarily imply a light mR, because g1vϕ should
be viewed as parametrically larger compared to the
electroweak scale (as vϕ ≫ v). So in this limit, we
actually decouple mX instead of mR, resulting in a
custodial-violating UV theory, as indicated by the
nonzero T l parameter.

E. Heavy vector-like fermions

In this section, we illustrate an example of integrating out
a UV sector with heavy vector-like fermions that interact
with the Standard Model charged leptons and neutrinos
[64–66]. Such a UV model does not belong to the category
of universal theories [24,42,43], and thus the oblique
assumption is not admissible. Below, we will see explicitly
that the Peskin-Takeuchi T parameter fails to detect the

hard custodial violation in the UV interactions, while our
new T l parameter works perfectly.
Consider a UV model with two vector-like fermions N

and E that are SM SUð2ÞL singlets. They share a common
mass M ≫ v and interact with the SM in the same way as
the νSM right-handed leptons ν and e,

LUV ¼ LSM þ N̄ðiD −MÞN þ ĒðiD −MÞE
− ðYNl̄ H̃ N þ YEl̄HEþ H:c:Þ: ð87Þ

The new UV Yukawa interactions can be rewritten follow-
ing the same method shown in Eq. (15):

YNl̄ H̃ N þ YEl̄HE ¼ l̄Σ
�
YN 0

0 YE

��
N

E

�
: ð88Þ

We see that if jYN j ¼ jYEj, the SUð2ÞRH symmetry can be
preserved by the UV sector21 in the limit g1 → 0 (N and E
have different hypercharges). In this case, the UV sector is
custodial symmetric. Otherwise, it has hard custodial
violation. Let us now check if our T l parameter can
distinguish these two scenarios.
Integrating the heavy vector-like fermions out at tree

level, we obtain a SMEFT Lagrangian at dim-6 as22

LSMEFT ⊃ ðYNl̄ H̃Þ iD
M2

ðY�
NH̃

†lÞ

þ ðYEl̄HÞ iD
M2

ðY�
EH

†lÞ: ð89aÞ

Expanding this SMEFT Lagrangian and trading operators
into the Warsaw and custodial basis, we obtain the Wilson
coefficients

að3ÞHl ¼ −
1

4M2
ðjYN j2 þ jYEj2Þ; ð90aÞ

að1ÞHl ¼ −
1

4M2
ðjYN j2 − jYEj2Þ; ð90bÞ

a�lH ¼ 1

8M2
ðYνjYN j2 � YejYEj2Þ: ð90cÞ

Plugging these into Eq. (34), we get

αT l ¼ −2v2½aHD − að1ÞHl �

¼ −
v2

2M2
ðjYN j2 − jYEj2Þ: ð91Þ

21The phase mismatch between YN and YE can be absorbed by
redefining the field N or E.

22As is well known, the dim-5 “neutrino mass” operator is also
generated by this UV theory, but it is irrelevant for our current
discussion.
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We see that indeed our T l parameter vanishes only if
jYN j ¼ jYEj, and does not vanish in general. Thus, T l
serves as a perfect indicator of the UV custodial violation.
In addition, we notice that in this example the SMEFT
framework captures the UV custodial violation through the

Wilson coefficient að1ÞHl , a nonoblique correction, while
aHD ¼ 0. Therefore, the Peskin-Takeuchi T parameter fails
to capture custodial violation in this UV theory. Explicitly,

αT ¼ −
1

2
v2CHD ¼ −2v2aHD ¼ 0: ð92Þ

This example demonstrates the utility of our new T l
parameter for indicating both oblique and nonoblique
custodial violation arising in ðνÞSMEFT.

VII. DISCUSSION

We have investigated how to faithfully detect hard
custodial symmetry/violation in the UV physics beyond
the SM,where hard refers to violations that persist in the limit
of vanishing Uð1ÞY gauge coupling g1 → 0. Working with
dim-6 ðνÞSMEFT, we introduced a new basis—the custodial
basis—which is simply a rewriting of the Warsaw basis
operators to make manifest the symmetric/breaking struc-
tures of the various SUð2ÞR symmetries in ðνÞSM. This
custodial basis facilitates the recognition of operators that
can/cannot be generated at tree level by custodial-symmetric
UV physics. With the help of electroweak precision observ-
ables, we then identified several example RPI combinations
of dim-6 SMEFTWilson coefficientsT l (as well asT q and
T qR , in Appendix B) that serve as generalizations of the
Peskin-Takeuchi T parameter to accommodate nonoblique
corrections from general UV physics.
Given measurements of α̂; ĜF; m̂2

Z, we showed that the
electroweak precision observables

fρ̂; r̂ZνLν̄L ; r̂ZeLēLg ð93Þ
can be used to construct T l [see Eq. (34)]:

ðρ̂ − 1Þ þ 1

2
ðr̂ZνLν̄L − 1Þ − c2θ

2
ðr̂ZeLēL − 1Þ

¼ −
1

2
v2½CHD þ 4Cð1Þ

Hl �

¼ −2v2½aHD − að1ÞHl �
≡ αT l: ð94Þ

The measurement T l ≠ 0 implies that the UV sector
violates custodial symmetry at tree level. Importantly,
the converse is not true: T l ¼ 0 does not immediately
imply no custodial violation in the UV sector. There are
several exceptions that we have highlighted throughout the
paper. For example, our observable has been demonstrated
to capture just hard breaking of custodial symmetry, and is
not sensitive to soft custodial violations arising from the
gauging of hypercharge. In addition, T l is unable to rule

out the accidental cancellation aHD ¼ að1ÞHl . Furthermore, we
have emphasized in Sec. V that T l is not sensitive to all
custodial-violating ðνÞSMEFT operators, e.g., it is not
sensitive to O−

lH or O−
qH. As we argued in Sec. V, this is a

good thing since they may be faked by the EOM redundancy
in rewriting custodial-symmetric operators outside our cus-
todial basis. Finally, ourT l is also not sensitive to custodial
violation that appears only at loop level at leading matching
order. Here we should distinguish between two possibilities:
there are well-known loop corrections to our observables
purely from the SM physics, such as the contribution to ρ̂
from the custodial-violating difference between the top and
bottom quark Yukawa couplings. These effects could be
incorporated into the framework by redefining our observ-
ables to include the SM loop effects (e.g., the Particle Data
Group provides a prescription to do this for the Veltman ρ
parameter [20]). However, additional contributions to our
observables that arise from radiative corrections from
ðνÞSMEFT operators are not included. For some theories,
radiative corrections are known, such as the singlet scalar
model [67,68]. In future work wewill investigate if there are
persistent patterns that belie a UV theory with custodial
symmetry even after radiative corrections are included. This
may be more conveniently accomplished by changing to the
input electroweak parameter set ĜF; m̂2

Z; m̂
2
W , to simplify the

Wilson coefficient dependence in loop calculations.
Following the same logic used to construct T l, one can

use the hadronic pseudo-observables discussed in
Appendix B to construct two additional parameters, T q

and T qR [see Eqs. (B5) and (B6)]:

ðρ̂ − 1Þ − 3 − 4s2θ
2

ðr̂ZuLūL − 1Þ þ 3 − 2s2θ
2

ðr̂ZdLd̄L − 1Þ

¼ −
1

2
v2½CHD − 12Cð1Þ

Hq�

¼ −2v2½aHD þ 3að1ÞHq�
≡ αT q; ð95Þ

ðρ̂ − 1Þ þ 2s2θðr̂Zuū − 1Þ − s2θðr̂Zdd̄ − 1Þ

¼ −
1

2
v2½CHD − 6ðCHu þ CHdÞ�

¼ −2v2½aHD þ 3að1ÞþHqR
þ 3að3Þ−HqR

�
≡ αT qR: ð96Þ

For the first generation, of course we cannot separately
measure the partial widths into left-handed or right-handed
up and down quarks. If we were to assume flavor
universality, one could use the measurements of the
forward-backward asymmetry of bottom quarks and charm
quarks [1] combined with the partial widths into (sepa-
rately) bottom and charm quarks to construct T q and T qR .
However, the measurements of the quark partial widths and
asymmetries are somewhat weaker than the lepton partial
widths and asymmetries, and so we expect the actual
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constraints fromT q andT qR to be weaker thanT l that we
focused on in the body of the paper.
Wedemonstrated theviability andusefulness of our results

by calculatingT l for several example UV theories. In some
cases, the result is trivial. For example, for the heavy Z0
associated with Uð1ÞB−L [Sec. VI C], the prediction is
T l ¼ 0, and more specifically ρ̂ ¼ r̂ZνL ν̄L ¼ r̂ZeLēL ¼
r̂Zeē ¼ 1. By itself, this is uninformative, since predicting
that these observables do not deviate from unity is indis-
tinguishable from the SM. However, when combined with
other observables that deviate from the SMprediction, e.g., a
new/modified four-fermion interaction, measuring T l con-
sistent with zero provides evidence that the UV physics is
custodial symmetric and consistent with a Uð1ÞB−L inter-
pretation. Similar arguments applies to the heavyW0

L boson
example [Sec. VI B], which is also custodial symmetric. In
addition, this example also reminded us that the Veltman
ρ̂ ≠ 1 is possible for custodial-symmetric UV physics.
We also considered UV sectors that (generically) possess

hard custodial violations. In the real SUð2ÞL-triplet scalar
example [Sec. VI A], our T l works exactly the same as the
Peskin-Takeuchi T parameter. Both parameters indicate the
presence of hard custodial violation in theUVsector. In the2-
2-1 example [Sec. VI D], we embedded the SM into a larger
gauge symmetry, SUð2ÞL × SUð2ÞR ×Uð1ÞB−L. In this
case, the gauging of all three global symmetries SUð2ÞRH ×
SUð2ÞRqR × SUð2ÞRlR marries them into one single SUð2ÞR.
Then, the spontaneous breaking of SUð2ÞR ×Uð1ÞB−L →
Uð1ÞY down to the SM generically leads to hard custodial
violation, where we found that T l is in general nonzero.
Finally, the heavy vector-like fermions [Sec. VI E] are a
striking example where the UV physics is not a “universal”
theory and requires our replacement parameter T l. Hard
custodial violation feeds into SMEFT via the nonoblique

correction að1ÞlH (but not aHD). As a result, the Peskin-
Takeuchi T parameter fails to detect it, but our new T l
parameter works perfectly.
In this paper, we have assumed flavor universality in

constructing our T f parameters. One can certainly general-
ize our analysis in Sec. IVand Appendix B to include flavor-
dependent deviations to the observables. This would allow
for a construction of flavor-sensitive T f parameters, which
could be used for probing nontrivial flavor structure in the
UV custodial violation. The SM Yukawa couplings are
examples of flavor-dependent custodial violation. Unlike
the hypercharge coupling, they have no direct linkagewith a
general UV sector. However, for UV theories with “minimal
flavor violation” [63], couplings in the UV sector are
proportional to (powers of) the SM Yukawa couplings.
Such UV sectors are necessarily custodial violating (as well
as flavor violating). Nevertheless, with the aforementioned
generalization, our T f parameters are capable of capturing
this custodial violation, provided that custodial-violating
dim-6 operators (beyond those in “class 5” of our Table III)
are generated at tree level.
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APPENDIX A: DETAILS OF MAPPING ONTO
OBSERVABLES

In this Appendix we provide some details on the
intermediate steps that lead to our results in Eqs. (29a)–
(29d). We work with the Warsaw basis of dim-6 νSMEFT
shown in Table II, assuming flavor universality. We
perform tree-level mapping, and only up to dim-6.
First, we find the corrections to the two-point functions

of electroweak gauge bosons,

ΠWWðp2Þ ¼ 2p2v2CHW; ðA1aÞ

ΠZZðp2Þ ¼ 1

2
m̂2

Z;SMv
2CHD

þ 2p2v2ðc2θCHW þ s2θCHB þ cθsθCHWBÞ;
ðA1bÞ

Πγγðp2Þ ¼ 2p2v2ðs2θCHW þ c2θCHB − cθsθCHWBÞ; ðA1cÞ

ΠγZðp2Þ ¼ p2v2½2cθsθðCHW − CHBÞ − ðc2θ − s2θÞCHWB�;
ðA1dÞ

where as usual ΠVVðp2Þ denotes the transverse part of the
full two-point function of the gauge bosons:

iΠμν
VVðp2Þ¼ iΠVVðp2Þ

�
ημν−

pμpν

p2

�
þ
�
i
pμpν

p2
term

�
:

ðA2Þ

Next, we move on to the three-point vertices. For the
observables considered in Sec. IV, the relevant vertex
corrections between the electroweak gauge bosons and
the leptons are

VZνLν̄L ¼ 1 − v2½Cð1Þ
Hl − Cð3Þ

Hl �; ðA3aÞ

VZeLēL ¼ 1þ v2

c2θ
½Cð1Þ

Hl þ Cð3Þ
Hl �; ðA3bÞ

VZeē ¼ 1 −
v2

2s2θ
CHe; ðA3cÞ

VWll̄ ¼ 1þ v2Cð3Þ
Hl : ðA3dÞ
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Note that corrections to the four-fermion vertices would not
feed into α̂ due to the lack of pole structure. The only four-
fermion vertex that needs to be considered in our analysis is
C12 (as mentioned in Sec. III A), which will feed into ĜF.
With the above, we would like to find the modifications

to Eqs. (25a)–(25g). The first four observables are rela-
tively simple:

α̂ ¼ g21g
2
2

4πðg21 þ g22Þ
�

p2

p2 − Πγγðp2Þ
����
p2→0

�

¼ α̂SM½1þ 2v2ðs2θCHW þ c2θCHB − cθsθCHWBÞ�; ðA4aÞ

ĜF¼
ffiffiffi
2

p
g22
8

V2
Wll̄

�
−1

p2−m̂2
W;SM−ΠWWðp2Þ

����
p2→0

�
−

1

2
ffiffiffi
2

p C12

¼ ĜF;SM½1þ2v2Cð3Þ
Hl −

1

2
v2C12�; ðA4bÞ

m̂2
Z ¼ m̂2

Z;SM þ ΠZZðm̂2
Z;SMÞ

¼ m̂2
Z;SM

�
1þ 1

2
v2CHD þ 2v2ðc2θCHW

þ s2θCHB þ cθsθCHWBÞ
�
; ðA4cÞ

m̂2
W ¼ m̂2

W;SM þ ΠWWðm̂2
W;SMÞ ¼ m̂2

W;SMð1þ 2v2CHWÞ:
ðA4dÞ

These will lead us to the ρ̂ expression in Eq. (29a).

For the decay widths in Eqs. (25a)–(25g), we need a bit
more setup. We define the amplitude iM̂ as the strength κ̂
multiplied by the polarization kinematics:

iM̂Zψψ̄ ≡ iκ̂ðϵμūψγμPL=Rvψ̄ Þ; ðA5Þ

with ϵμ denoting the polarization vectors for the Z boson, u
and v denoting the Dirac spinors for the fermion legs, and

PL=R ¼ 1∓γ5

2
denoting the projector depending on the

chirality of the fermion ψ . With this, one can compute
the decay width

Γ̂Zψψ̄ ¼ 1

16πm̂Z
jM̂Zψψ̄ j2 ¼

m̂Z

24π
κ̂2; ðA6Þ

where fermion masses are neglected. The r̂ observables
defined in Eqs. (27b)–(27d) can then be expressed as

r̂ZνLν̄L ¼ κ̂2ZνL ν̄Lffiffiffi
2

p
ĜFm̂2

Z

; ðA7aÞ

r̂ZeLēL ¼ κ̂2ZeLēLffiffiffi
2

p
ĜFm̂2

Zð1 − x̂Þ ; ðA7bÞ

r̂Zeē ¼
κ̂2Zeēffiffiffi

2
p

ĜFm̂2
Zð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − x̂

p Þ2 ; ðA7cÞ

where x̂ is defined as before by Eq. (28). In the SM, these
ratios are unity. In the SMEFT dim-6 Warsaw basis, the
above strengths are modified as

κ̂ZνLν̄L ¼ κ̂ZνLν̄L;SMðRZÞ1=2VZνL ν̄L

¼ κ̂ZνLν̄L;SM½1þ v2ðc2θCHW þ s2θCHB þ cθsθCHWBÞ − v2ðCð1Þ
Hl − Cð3Þ

Hl Þ�; ðA8aÞ

κ̂ZeLēL ¼ κ̂ZeLēL;SMðRZÞ1=2
�
VZeLēL þ

s2θ
c2θ

1

p2
ΠγZðp2Þ

�

¼ κ̂ZeLēL;SM

�
1þ v2ðc2θCHW þ s2θCHB þ cθsθCHWBÞ þ v2

1

c2θ
ðCð1Þ

Hl þCð3Þ
Hl Þ þ v2

s22θ
c2θ

ðCHW −CHBÞ− 2v2cθsθCHWB

�
;

ðA8bÞ

κ̂Zeē ¼ κ̂Zeē;SMðRZÞ1=2½VZeē −
cθ
sθ

1

p2
ΠγZðp2Þ�

¼ κ̂Zeē;SM

�
1þ v2ðc2θCHW þ s2θCHB þ cθsθCHWBÞ − v2

1

2s2θ
CHe − v22c2θðCHW − CHBÞ þ v2

cθ
sθ

c2θCHWB

�
; ðA8cÞ

where RZ is the residue of the Z boson at the pole mass:

RZ ¼ 1þ
�

d
dp2

ΠZZðp2Þ
�����

p2¼m̂2
Z;SM

¼ 1þ 2v2ðc2θCHW þ s2θCHB þ cθsθCHWBÞ: ðA9Þ
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Plugging Eqs. (A8a)–(A8c) and (A4a)–(A4d) into
Eqs. (A7a)–(A7c) will lead us to the expressions for the
partial widths in Eqs. (29a)–(29d).

APPENDIX B: HADRONIC
PSEUDO-OBSERVABLES

In this Appendix we consider a set of four-quark partial
widths—pseudo-observables—in addition to those listed in
Eq. (24):

fΓ̂ZuLūL ; Γ̂ZdLd̄L ; Γ̂Zuū; Γ̂Zdd̄g: ðB1Þ

In order, these denote the partial decay widths of the Z
boson to left-handed up-type quarks, left-handed down-
type quarks, right-handed up-type quarks, and right-handed
down-type quarks. Note that in Z decay measurements, the
first two generations of quarks are essentially indistin-
guishable. The measurable observables in practice are Γ̂Zqq

(which will be needed in measuring Γ̂ZνL ν̄L ; see discussions
in Sec. IV E) and measurements involving the b quark. For
this reason, we refer to these hadronic partial widths of Z as
pseudo-observables to distinguish them from the observ-
ables discussed in Sec. IV.
We present our results in terms of definite-parity had-

ronic final states in order to most easily compare with the
results in Sec. IV. In the SM they are given by the three
Lagrangian parameters g1; g2; v:

Γ̂ZuLūL;SM ¼ m̂Z;SM

288π

g22
c2θ

ð3 − 4s2θÞ2; ðB2aÞ

Γ̂ZdLd̄L;SM ¼ m̂Z;SM

288π

g22
c2θ

ð3 − 2s2θÞ2; ðB2bÞ

Γ̂Zuū;SM ¼ m̂Z;SM

18π

g22
c2θ

s4θ; ðB2cÞ

Γ̂Zdd̄;SM ¼ m̂Z;SM

72π

g22
c2θ

s4θ: ðB2dÞ

We then construct the following ratios [similar to
Eqs. (27a)–(27d)] to keep track of the deviations from
the SM:

r̂ZuLūL ≡
72πffiffiffi

2
p

ĜFm̂3
Zð1þ 2

ffiffiffiffiffiffiffiffiffiffiffi
1 − x̂

p Þ2 Γ̂ZuLūL ; ðB3aÞ

r̂ZdLd̄L ≡
72πffiffiffi

2
p

ĜFm̂3
Zð2þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − x̂

p Þ2 Γ̂ZdLd̄L ; ðB3bÞ

r̂Zuū ≡ 18πffiffiffi
2

p
ĜFm̂3

Zð1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − x̂

p Þ2 Γ̂Zuū; ðB3cÞ

r̂Zdd̄ ≡ 72πffiffiffi
2

p
ĜFm̂3

Zð1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − x̂

p Þ2 Γ̂Zdd̄; ðB3dÞ

where x̂ is defined as before by Eq. (28). These four ratios
are unity in the SM, but will get modified in SMEFT.
Following the same procedure shown in Appendix A, we
obtain their general Warsaw basis corrections as

r̂ZuLūL ¼ 1þ v2

c2θð3− 4s2θÞ
�
−8s2θ

�
cθ
sθ
CHWB þCð3Þ

Hl −
1

4
C12

�
− 6c2θ

�
Cð3Þ
Hl −Cð3Þ

Hq −
1

4
C12

�
−
1

2
ð3− 2s2θÞCHD − 6c2θC

ð1Þ
Hq

�
;

ðB4aÞ

r̂ZdLd̄L ¼ 1þ v2

c2θð3 − 2s2θÞ
�
−4s2θ

�
cθ
sθ

CHWB þ Cð3Þ
Hl −

1

4
C12

�
− 6c2θ

�
Cð3Þ
Hl − Cð3Þ

Hq −
1

4
C12

�

−
1

2
ð3 − 4s2θÞCHD þ 6c2θC

ð1Þ
Hq

�
; ðB4bÞ

r̂Zuū ¼ 1þ v2

c2θ

�
2

�
cθ
sθ

CHWB þ Cð3Þ
Hl −

1

4
C12

�
þ 1

2
CHD þ 3c2θ

2s2θ
CHu

�
; ðB4cÞ

r̂Zdd̄ ¼ 1þ v2

c2θ

�
2

�
cθ
sθ

CHWB þ Cð3Þ
Hl −

1

4
C12

�
þ 1

2
CHD −

3c2θ
s2θ

CHd

�
: ðB4dÞ

Although there are eight Wilson coefficients Ci involved in the above, they only come with six different combinations.
Furthermore, recall from Eq. (29a) that we have

KRIBS, LU, MARTIN, and TONG PHYS. REV. D 104, 056006 (2021)

056006-22



ρ̂ ¼ 1 −
v2

c2θ

�
2s2θ

�
cθ
sθ

CHWB þ Cð3Þ
Hl −

1

4
C12

�
þ 1

2
c2θCHD

�
:

We see that in the three quantities fρ̂; r̂ZuLūL ; r̂ZdLd̄Lg, only
two independent combinations of custodial-preserving
operators show up. Therefore, analogous to the procedure
of constructing T l from Eqs. (32a)–(34), we can construct
a new T parameter generalization T q using ρ̂ and the left-
handed partial widths:

ðρ̂ − 1Þ − 3 − 4s2θ
2

ðr̂ZuLūL − 1Þ þ 3 − 2s2θ
2

ðr̂ZdLd̄L − 1Þ

¼ −
1

2
v2½CHD − 12Cð1Þ

Hq�

¼ −2v2½aHD þ 3að1ÞHq�
≡ αT q: ðB5Þ

Similarly, a T qR can be constructed using ρ̂ and the right-
handed partial widths:

ðρ̂ − 1Þ þ 2s2θðr̂Zuū − 1Þ − s2θðr̂Zdd̄ − 1Þ

¼ −
1

2
v2½CHD − 6ðCHu þ CHdÞ�

¼ −2v2½aHD þ 3að1ÞþHqR
þ 3að3Þ−HqR

�
≡ αT qR: ðB6Þ

In the second lines of Eqs. (B5) and (B6), we have used
Table VI to write them in terms of our custodial basis
Wilson coefficients ai, where it becomes manifest that T q

and T qR receive contributions only from custodial-violat-
ing operators in our Table III.

APPENDIX C: TABLES OF OPERATORS,
COEFFICIENTS, AND TRANSLATIONS

In this Appendix we gather tables of operator bases and
relevant translation relations. Table II summarizes all of the
independent baryon-number-preserving and lepton-
number-preserving operators in the Warsaw basis for

TABLE II. νSMEFT dim-6 baryon-number-preserving and
lepton-number-preserving operators in the Warsaw basis. In
addition to the 76 ¼ 42þ ð17þ H:c:Þ SMEFT operators, there
are 25 ¼ 7þ ð9þ H:c:Þ new operators involving right-handed
neutrinos ν.

1∶ X3

QG fABCGAν
μ GBρ

ν GCμ
ρ

QG̃ fABCG̃Aν
μ GBρ

ν GCμ
ρ

(Table continued)

TABLE II. (Continued)

1∶ X3

QW ϵabcWaν
μ Wbρ

ν Wcμ
ρ

QW̃ ϵabcW̃aν
μ Wbρ

ν Wcμ
ρ

2∶ H6

QH jHj6

3∶ H4D2

QH□ −ð∂μjHj2Þð∂μjHj2Þ
QHD ½ðDμH†ÞH�½H†ðDμHÞ�

5∶ ψ̄ψH3 þ H:c:

QνH jHj2ðl̄ H̃ νÞ
QeH jHj2ðl̄HeÞ
QuH jHj2ðq̄ H̃ uÞ
QdH jHj2ðq̄HdÞ

4∶ X2H2

QHG jHj2GA
μνGAμν

QHG̃ jHj2G̃A
μνGAμν

QHW jHj2Wa
μνWaμν

QHW̃ jHj2W̃a
μνWaμν

QHB jHj2BμνBμν

QHB̃ jHj2B̃μνBμν

QHWB H†τaHWa
μνBμν

QHW̃B H†τaHW̃a
μνBμν

6∶ ψ̄ψXH þ H:c:

QνW ðl̄σμννÞτaH̃Wa
μν

QeW ðl̄σμνeÞτaHWa
μν

QνB ðl̄σμννÞH̃Bμν

QeB ðl̄σμνeÞHBμν

QuG ðq̄σμνTAuÞH̃GA
μν

QdG ðq̄σμνTAdÞHGA
μν

QuW ðq̄σμνuÞτaH̃Wa
μν

QdW ðq̄σμνdÞτaHWa
μν

QuB ðq̄σμνuÞH̃Bμν

QdB ðq̄σμνdÞHBμν

7∶ ψ̄ψH2D

Qð1Þ
Hl ðH†iD

↔

μHÞðl̄γμlÞ
Qð3Þ

Hl ðH†iD
↔a

μHÞðl̄γμτalÞ
Qð1Þ

Hq ðH†iD
↔

μHÞðq̄γμqÞ
Qð3Þ

Hq ðH†iD
↔a

μHÞðq̄γμτaqÞ
QHν ðH†iD

↔

μHÞðν̄γμνÞ
(Table continued)
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TABLE II. (Continued)

7∶ ψ̄ψH2D

QHe ðH†iD
↔

μHÞðēγμeÞ
QHνe þ H:c: ðH̃†iDμHÞðν̄γμeÞ
QHu ðH†iD

↔

μHÞðūγμuÞ
QHd ðH†iD

↔

μHÞðd̄γμdÞ
QHud þ H:c: ðH̃†iDμHÞðūγμdÞ

8∶ ðL̄LÞðL̄LÞ
Qll ðl̄γμlÞðl̄γμlÞ
Qð1Þ

qq
ðq̄γμqÞðq̄γμqÞ

Qð3Þ
qq

ðq̄γμτaqÞðq̄γμτaqÞ
Qð1Þ

lq
ðl̄γμlÞðq̄γμqÞ

Qð3Þ
lq

ðl̄γμτalÞðq̄γμτaqÞ

8∶ ðR̄RÞðR̄RÞ
Qνν ðν̄γμνÞðν̄γμνÞ
Qee ðēγμeÞðēγμeÞ
Qνe ðν̄γμνÞðēγμeÞ
Quu ðūγμuÞðūγμuÞ
Qdd ðd̄γμdÞðd̄γμdÞ
Qð1Þ

ud
ðūγμuÞðd̄γμdÞ

Qð8Þ
ud

ðūγμTAuÞðd̄γμTAdÞ
Qνu ðν̄γμνÞðūγμuÞ
Qνd ðν̄γμνÞðd̄γμdÞ
Qeu ðēγμeÞðūγμuÞ
Qed ðēγμeÞðd̄γμdÞ
Qνedu þ H:c: ðν̄γμeÞðd̄γμuÞ

8∶ ðL̄LÞðR̄RÞ
Qlν ðl̄γμlÞðν̄γμνÞ
Qle ðl̄γμlÞðēγμeÞ
Qlu ðl̄γμlÞðūγμuÞ
Qld ðl̄γμlÞðd̄γμdÞ
Qqν ðq̄γμqÞðν̄γμνÞ
Qqe ðq̄γμqÞðēγμeÞ
Qð1Þ

qu
ðq̄γμqÞðūγμuÞ

Qð1Þ
qd

ðq̄γμqÞðd̄γμdÞ
Qð8Þ

qu ðq̄γμTAqÞðūγμTAuÞ
Qð8Þ

qd
ðq̄γμTAqÞðd̄γμTAdÞ

8∶ ðL̄RÞðR̄LÞ þ H:c:

Qlνuq ðl̄iνÞðūqiÞ
Qledq ðl̄ieÞðd̄qiÞ

8∶ ðL̄RÞðL̄RÞ þ H:c:

Qlνle ðl̄iνÞϵijðl̄jeÞ
(Table continued)

TABLE II. (Continued)

8∶ ðL̄RÞðL̄RÞ þ H:c:

Qð1Þ
quqd

ðq̄iuÞϵijðq̄jdÞ
Qð8Þ

quqd
ðq̄iTAuÞϵijðq̄jTAdÞ

Qð1Þ
lνqd

ðl̄iνÞϵijðq̄jdÞ
Qð1Þ

lequ
ðl̄ieÞϵijðq̄juÞ

Qð3Þ
lνqd

ðl̄iσμννÞϵijðq̄jσμνdÞ
Qð3Þ

lequ
ðl̄iσμνeÞϵijðq̄jσμνuÞ

TABLE III. νSMEFT dim-6 baryon-number-preserving and
lepton-number-preserving operators in our custodial basis.

1∶ X3

OG fABCGAν
μ GBρ

ν GCμ
ρ

OG̃ fABCG̃Aν
μ GBρ

ν GCμ
ρ

OW ϵabcWaν
μ Wbρ

ν Wcμ
ρ

OW̃ ϵabcW̃aν
μ Wbρ

ν Wcμ
ρ

2∶ H6

OH ½trðΣ†ΣÞ�3

3∶ H4D2

OH□ ½trðΣ†iDμΣÞ�2
OHD ½trðΣ†iDμΣτ3RÞ�2

5∶ ψ̄ψH3 þ H:c:

O�
lH trðΣ†ΣÞðl̄ΣP�lRÞ

O�
qH trðΣ†ΣÞðq̄ΣP�qRÞ

4∶ X2H2

OHG trðΣ†ΣÞGA
μνGAμν

OHG̃ trðΣ†ΣÞG̃A
μνGAμν

OHW trðΣ†ΣÞWa
μνWaμν

OHW̃ trðΣ†ΣÞW̃a
μνWaμν

OHB trðΣ†ΣÞBμνBμν

OHB̃ trðΣ†ΣÞB̃μνBμν

OHWB trðΣ†τaΣτ3RÞWa
μνBμν

OHW̃B trðΣ†τaΣτ3RÞW̃a
μνBμν

6∶ ψ̄ψXH þ H:c:

O�
lW ðl̄σμντaΣP�lRÞWa

μν

O�
lB ðl̄σμνΣP∓lRÞBμν

O�
qG ðq̄σμνTAΣP�qRÞGA

μν

(Table continued)
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TABLE III. (Continued)

6∶ ψ̄ψXH þ H:c:

O�
qW ðq̄σμντaΣP�qRÞWa

μν

O�
qB ðq̄σμνΣP∓qRÞBμν

7∶ ψ̄ψH2D

Oð1Þ
Hl

trðΣ†iDμΣτ3RÞðl̄γμlÞ
Oð3Þ

Hl
trðΣ†τaiDμΣÞðl̄γμτalÞ

Oð1Þ
Hq

trðΣ†iDμΣτ3RÞðq̄γμqÞ
Oð3Þ

Hq
trðΣ†τaiDμΣÞðq̄γμτaqÞ

Oð1Þ�
HlR

trðΣ†iDμΣτ3RÞðl̄RγμP�lRÞ
Oð3Þ�

HlR
trðΣ†iDμΣτaRÞðl̄RγμτaRP�lRÞ

Oð1Þ�
HqR

trðΣ†iDμΣτ3RÞðq̄RγμP�qRÞ
Oð3Þ�

HqR
trðΣ†iDμΣτaRÞðq̄RγμτaRP�qRÞ

8∶ ðL̄LÞðL̄LÞ
Oll ðl̄γμlÞðl̄γμlÞ
Oð1Þ

qq
ðq̄γμqÞðq̄γμqÞ

Oð3Þ
qq

ðq̄γμτaqÞðq̄γμτaqÞ
Oð1Þ

lq
ðl̄γμlÞðq̄γμqÞ

Oð3Þ
lq

ðl̄γμτalÞðq̄γμτaqÞ

8∶ ðR̄RÞðR̄RÞ
O��

lRlR
ðl̄RγμP�lRÞðl̄RγμP�lRÞ

Oþ−
lRlR ðl̄RγμPþlRÞðl̄RγμP−lRÞ

Oð1Þ��
qRqR

ðq̄RγμP�qRÞðq̄RγμP�qRÞ
Oð1Þþ−

qRqR
ðq̄RγμPþqRÞðq̄RγμP−qRÞ

Oð3Þþþ
qRqR

ðq̄RγμτaRqRÞðq̄RγμτaRqRÞ
Oð1Þ��

lRqR
ðl̄RγμP�lRÞðq̄RγμP�qRÞ

Oð1Þ�∓
lRqR

ðl̄RγμP�lRÞðq̄RγμP∓qRÞ
Oð3Þþ�

lRqR
ðl̄RγμτaRlRÞðq̄RγμτaRP�qRÞ

8∶ ðL̄LÞðR̄RÞ
O�

llR
ðl̄γμlÞðl̄RγμP�lRÞ

O�
lqR

ðl̄γμlÞðq̄RγμP�qRÞ
O�

qlR
ðq̄γμqÞðl̄RγμP�lRÞ

Oð1Þ�
qqR

ðq̄γμqÞðq̄RγμP�qRÞ
Oð8Þ�

qqR
ðq̄γμTAqÞðq̄RγμTAP�qRÞ

8∶ ðL̄RÞðR̄LÞ þ H:c:

O�
llRqRq ðl̄iljRÞPjk

� ðq̄kRqiÞ

8∶ ðL̄RÞðL̄RÞ þ H:c:

OllRllR ðl̄ilkRÞϵijϵklðl̄jllRÞ
(Table continued)

TABLE III. (Continued)

8∶ ðL̄RÞðL̄RÞ þ H:c:

Oð1Þ
qqRqqR

ðq̄iqkRÞϵijϵklðq̄jqlRÞ
Oð8Þ

qqRqqR
ðq̄iTAqkRÞϵijϵklðq̄jTAqlRÞ

Oð1Þ�
llRqqR

ðl̄ilkRÞϵijðϵP�Þklðq̄jqlRÞ
Oð3Þ�

llRqqR
ðl̄iσμνlkRÞϵijðϵP�Þklðq̄jσμνqlRÞ

TABLE IV. A dictionary of the custodial basis operators Oi in
terms of Warsaw basis operators Qi.

1∶ X3

OG QG
OG̃ QG̃
OW QW
OW̃ QW̃

2∶ H6

OH 8QH

3∶ H4D2

OH□ QH□

OHD QH□ þ 4QHD

5∶ ψ̄ψH3 þ H:c:

O�
lH 2ðQνH �QeHÞ

O�
qH 2ðQuH �QdHÞ

4∶ X2H2

OHG 2QHG
OHG̃ 2QHG̃
OHW 2QHW
OHW̃ 2QHW̃
OHB 2QHB
OHB̃ 2QHB̃
OHWB −2QHWB
OHW̃B −2QHW̃B

6∶ ψ̄ψXH þ H:c:

O�
lW QνW �QeW

O�
lB QνB ∓ QeB

O�
qG QuG �QdG

O�
qW QuW �QdW

O�
qB QuB ∓ QdB

7∶ ψ̄ψH2D

Oð1Þ
Hl −Qð1Þ

Hl

(Table continued)
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TABLE IV. (Continued)

7∶ ψ̄ψH2D

Oð3Þ
Hl Qð3Þ

Hl

Oð1Þ
Hq −Qð1Þ

Hq

Oð3Þ
Hq Qð3Þ

Hq

Oð1Þ�
HlR

−ðQHν �QHeÞ
Oð3Þ�

HlR
�2ðQHνe � H:c:Þ −QHν �QHe

Oð1Þ�
HqR

−ðQHu �QHdÞ
Oð3Þ�

HqR
�2ðQHud � H:c:Þ −QHu �QHd

8∶ ðL̄LÞðL̄LÞ
Oll Qll

Oð1Þ
qq Qð1Þ

qq

Oð3Þ
qq Qð3Þ

qq

Oð1Þ
lq Qð1Þ

lq

Oð3Þ
lq Qð3Þ

lq

8∶ ðR̄RÞðR̄RÞ
O��

lRlR
Qνν þQee � 2Qνe

Oþ−
lRlR

Qνν −Qee

Oð1Þ��
qRqR Quu þQdd � 2Qð1Þ

ud

Oð1Þþ−
qRqR

Quu −Qdd

Oð3Þþþ
qRqR 8Qð8Þ

ud − 2Nc−4
Nc

Qð1Þ
ud þQuu þQdd

Oð1Þ��
lRqR

ðQνu þQedÞ � ðQνd þQeuÞ
Oð1Þ�∓

lRqR
ðQνu −QedÞ ∓ ðQνd −QeuÞ

Oð3Þþ�
lRqR

2ðQνedu � H:c:Þ þ ðQνu −QeuÞ ∓ ðQνd −QedÞ

8∶ ðL̄LÞðR̄RÞ
O�

llR
Qlν �Qle

O�
lqR

Qlu �Qld

O�
qlR

Qqν �Qqe

Oð1Þ�
qqR Qð1Þ

qu �Qð1Þ
qd

Oð8Þ�
qqR Qð8Þ

qu �Qð8Þ
qd

8∶ ðL̄RÞðR̄LÞ þ H:c:

O�
llRqRq

Qlνuq �Qledq

8∶ ðL̄RÞðL̄RÞ þ H:c:

OllRllR 2Qlνle

Oð1Þ
qqRqqR 2Qð1Þ

quqd

Oð8Þ
qqRqqR 2Qð8Þ

quqd

Oð1Þ�
llRqqR

−Qð1Þ
lequ �Qð1Þ

lνqd

Oð3Þ�
llRqqR

−Qð3Þ
lequ �Qð3Þ

lνqd

TABLE V. A translation dictionary: the custodial basis Wilson
coefficients ai in terms of theWarsaw basisWilson coefficientsCi.

1∶ X3

aG CG
aG̃ CG̃
aW CW
aW̃ CW̃

2∶ H6

aH 1
8
CH

3∶ H4D2

aH□ CH□ − 1
4
CHD

aHD
1
4
CHD

5∶ ψ̄ψH3 þ H:c:

a�lH
1
4
ðCνH � CeHÞ

a�qH
1
4
ðCuH � CdHÞ

4∶ X2H2

aHG
1
2
CHG

aHG̃
1
2
CHG̃

aHW
1
2
CHW

aHW̃
1
2
CHW̃

aHB
1
2
CHB

aHB̃
1
2
CHB̃

aHWB − 1
2
CHWB

aHW̃B − 1
2
CHW̃B

6∶ ψ̄ψXH þ H:c:

a�lW
1
2
ðCνW � CeWÞ

a�lB
1
2
ðCνB � CeBÞ

a�qG
1
2
ðCuG � CdGÞ

a�qW
1
2
ðCuW � CdWÞ

a�qB
1
2
ðCuB � CdBÞ

7∶ ψ̄ψH2D

að1ÞHl −Cð1Þ
Hl

að3ÞHl Cð3Þ
Hl

að1ÞHq −Cð1Þ
Hq

að3ÞHq Cð3Þ
Hq

að1Þ�HlR
− 1

2
ðCHν � CHeÞ þ 1

4
ð�CHνe − C�

HνeÞ
að3Þ�HlR

1
4
ð�CHνe þ C�

HνeÞ
að1Þ�HqR

− 1
2
ðCHu � CHdÞ þ 1

4
ð�CHud − C�

HudÞ
að3Þ�HqR

1
4
ð�CHud þ C�

HudÞ

8∶ ðL̄LÞðL̄LÞ
all Cll

(Table continued)
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TABLE V. (Continued)

8∶ ðL̄LÞðL̄LÞ
að1Þqq Cð1Þ

qq

að3Þqq Cð3Þ
qq

að1Þlq Cð1Þ
lq

að3Þlq Cð3Þ
lq

8∶ ðR̄RÞðR̄RÞ
a��
lRlR

1
4
ðCνν þ Cee � CνeÞ

aþ−
lRlR

1
2
ðCνν − CeeÞ

að1Þ��
qRqR

1
4
½ðCuu þ CddÞ � Cð1Þ

ud − 1
4
Cð8Þ
ud � ð1

4
− 1

2Nc
ÞCð8Þ

ud �
að1Þþ−
qRqR

1
2
ðCuu − CddÞ

að3Þþþ
qRqR

1
8
Cð8Þ
ud

að1Þþ�
lRqR

1
4
½ðCνu þ CeuÞ � ðCνd þ CedÞ�

að1Þ−�lRqR

1
4
½ðCνu − CeuÞ � ðCνd − CedÞ þ ð−Cνedu � C�

νeduÞ�
að3Þþ�
lRqR

1
4
ðCνedu � C�

νeduÞ

8∶ ðL̄LÞðR̄RÞ
a�llR

1
2
ðClν � CleÞ

a�lqR
1
2
ðClu � CldÞ

a�qlR
1
2
ðCqν � CqeÞ

að1Þ�qqR
1
2
½Cð1Þ

qu � Cð1Þ
qd �

að8Þ�qqR
1
2
½Cð8Þ

qu � Cð8Þ
qd �

8∶ ðL̄RÞðR̄LÞ þ H:c:

a�llRqRq
1
2
ðClνuq � CledqÞ

8∶ ðL̄RÞðL̄RÞ þ H:c:

allRllR
1
2
Clνle

að1ÞqqRqqR
1
2
Cð1Þ
quqd

að8ÞqqRqqR
1
2
Cð8Þ
quqd

að1Þ�llRqqR
1
2
½−Cð1Þ

lequ � Cð1Þ
lνqd�

að3Þ�llRqqR
1
2
½−Cð3Þ

lequ � Cð3Þ
lνqd�

TABLE VI. A translation dictionary: the Warsaw basis Wilson
coefficientsCi in terms of the custodial basisWilson coefficients ai.

1∶ X3

CG;CG̃ aG; aG̃
CW; CW̃ aW; aW̃

2∶ H6

CH 8aH

(Table continued)

TABLE VI. (Continued)

3∶ H4D2

CH□ aH□ þ aHD
CHD 4aHD

5∶ ψ̄ψH3 þ H:c:

CνH; CeH 2ðaþlH � a−lHÞ
CuH; CdH 2ðaþqH � a−qHÞ

4∶ X2H2

CHG 2aHG
CHG̃ 2aHG̃
CHW 2aHW
CHW̃ 2aHW̃
CHB 2aHB
CHB̃ 2aHB̃
CHWB −2aHWB
CHW̃B −2aHW̃B

6∶ ψ̄ψXH þ H:c:

CνW; CeW aþlW � a−lW
CνB; CeB aþlB � a−lB
CuG; CdG aþqG � a−qG
CuW; CdW aþqW � a−qW
CuB; CdB aþqB þ a−qB

7∶ ψ̄ψH2D

Cð1Þ
Hl −að1ÞHl

Cð3Þ
Hl að3ÞHl

Cð1Þ
Hq −að1ÞHq

Cð3Þ
Hq að3ÞHq

CHν; CHe −að1ÞþHlR
∓ að1Þ−HlR

∓ að3ÞþHlR
− að3Þ−HlR

CHνe 2½að3ÞþHlR
− að3Þ−HlR

�
CHu; CHd −að1ÞþHqR

∓ að1Þ−HqR
∓ að3ÞþHqR

− að3Þ−HqR
CHud 2½að3ÞþHqR

− að3Þ−HqR
�

8∶ ðL̄LÞðL̄LÞ
Cll all
Cð1Þ
qq að1Þqq

Cð3Þ
qq að3Þqq

Cð1Þ
lq að1Þlq

Cð3Þ
lq að3Þlq

8∶ ðR̄RÞðR̄RÞ
Cνν aþþ

lRlR
þ a−−lRlR þ aþ−

lRlR
Cee aþþ

lRlR
þ a−−lRlR − aþ−

lRlR

(Table continued)
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dim-6νSMEFT (suppressing flavor indices). These oper-
ators are recombined to form our custodial basis summa-
rized in Table III. Table IV provides an explicit translation
dictionary between the operators in these two operator
bases. Translation dictionaries between the Wilson coef-
ficients Ci and ai, in both directions, are further provided in
Tables V and VI. Table VII summarizes the restrictions on
the Wilson coefficients Ci and ai to reduce νSMEFT back
to SMEFT.
Our notations in Table III are also a bit compact. For

example, we sometimes use O� to group custodial-pre-
serving/-violating operators together which, respectively,
involves P�. Such examples include O�

lH, O
�
qH, O

�
lW , O

�
qG,

O�
qW , O

ð3Þ�
HlR

, and Oð3Þ�
HqR

. A similar kind of notation is also
applied to some custodial-preserving four-fermion opera-
tors that break the isospin SUð2ÞRqR or SUð2ÞRlR. In
particular, the notation O−− implies that the operator
violates both the lepton and quark isospin.

[1] The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the
LEP Electroweak Working Group, the SLD Electroweak
and Heavy Flavour Groups, Precision electroweak mea-
surements on the Z resonance, Phys. Rep. 427, 257 (2006).

[2] The ALEPH, DELPHI, L3, OPAL Collaborations, the LEP
Electroweak Working Group, Electroweak measurements in
electron-positron collisions at W-boson-pair energies at
LEP, Phys. Rep. 532, 119 (2013).

TABLE VI. (Continued)

8∶ ðR̄RÞðR̄RÞ
Cνe 2ðaþþ

lRlR
− a−−lRlRÞ

Cuu að1Þþþ
qRqR þ að1Þ−−qRqR þ að1Þþ−

qRqR þ að3Þþþ
qRqR

Cdd að1Þþþ
qRqR þ að1Þ−−qRqR − að1Þþ−

qRqR þ að3Þþþ
qRqR

Cð1Þ
ud 2½að1Þþþ

qRqR − að1Þ−−qRqR � þ ð 4
Nc

− 2Það3Þþþ
qRqR

Cð8Þ
ud 8að3Þþþ

qRqR
Cνu að1Þþþ

lRqR
þ að1Þ−−lRqR

þ að1Þþ−
lRqR

þ að1Þ−þlRqR
þ að3Þþþ

lRqR
þ að3Þþ−

lRqR
Cνd að1Þþþ

lRqR
− að1Þ−−lRqR

− að1Þþ−
lRqR

þ að1Þ−þlRqR
− að3Þþþ

lRqR
þ að3Þþ−

lRqR
Ceu að1Þþþ

lRqR
− að1Þ−−lRqR

þ að1Þþ−
lRqR

− að1Þ−þlRqR
− að3Þþþ

lRqR
− að3Þþ−

lRqR
Ced að1Þþþ

lRqR
þ að1Þ−−lRqR

− að1Þþ−
lRqR

− að1Þ−þlRqR
þ að3Þþþ

lRqR
− að3Þþ−

lRqR
Cνedu 2½að3Þþþ

lRqR
þ að3Þþ−

lRqR
�

8∶ ðL̄LÞðR̄RÞ
Clν aþllR þ a−llR
Cle aþllR − a−llR
Clu aþlqR þ a−lqR
Cld aþlqR − a−lqR
Cqν aþqlR þ a−qlR
Cqe aþqlR − a−qlR
Cð1Þ
qu að1ÞþqqR þ að1Þ−qqR

Cð1Þ
qd að1ÞþqqR − að1Þ−qqR

Cð8Þ
qu að8ÞþqqR þ að8Þ−qqR

Cð8Þ
qd að8ÞþqqR − að8Þ−qqR

8∶ ðL̄RÞðR̄LÞ þ H:c:

Clνuq; Cledq aþllRqRq � a−llRqRq

8∶ ðL̄RÞðL̄RÞ þ H:c:

Clνle 2allRllR
Cð1Þ
quqd; C

ð8Þ
quqd 2að1ÞqqRqqR ; 2a

ð8Þ
qqRqqR

Cð1Þ
lνqd; C

ð1Þ
lequ ∓ að1ÞþllRqqR

− að1Þ−llRqqR

Cð3Þ
lνqd; C

ð3Þ
lequ ∓ að3ÞþllRqqR

− að3Þ−llRqqR

TABLE VII. Reducing νSMEFT to SMEFT: the left (right)
column shows the constraints on the Wilson coefficients in the
Warsaw (custodial) basis.

νSMEFT → SMEFT
in the Warsaw basis

νSMEFT → SMEFT
in the custodial basis

CνH ¼ 0 aþlH ¼ −a−lH
CνW ¼ CνB ¼ 0 aþlW ¼ −a−lW; a

þ
lB ¼ −a−lB

CHνe ¼ C�
Hνe ¼ 0 að3ÞþHlR

¼ að3Þ−HlR
¼ 0

CHν ¼ 0 að1ÞþHlR
¼ −að1Þ−HlR

Cνν ¼ Cνe ¼ 0 aþþ
lRlR

¼ a−−lRlR ¼ − 1
2
aþ−
lRlR

Cνedu ¼ C�
νedu ¼ 0 að3Þþþ

lRqR
¼ að3Þþ−

lRqR
¼ 0

Cνu ¼ Cνd ¼ 0 að1Þþþ
lRqR

¼ −að1Þ−þlRqR
; að1Þþ−

lRqR
¼ −að1Þ−−lRqR

Clν ¼ Cqν ¼ 0 aþllR ¼ −a−llR ; a
þ
qlR

¼ −a−qlR
Clνuq ¼ 0 aþllRqRq ¼ −a−llRqRq
Clνle ¼ 0 allRllR ¼ 0

Cð1Þ
lνqd ¼ Cð3Þ

lνqd ¼ 0 að1ÞþllRqqR
¼ −að1Þ−llRqqR

; að3ÞþllRqqR
¼ −að3Þ−llRqqR
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